1 /*
2  * Copyright (C) ST-Ericsson SA 2010
3  *
4  * License Terms: GNU General Public License v2
5  * Author: Arun R Murthy <arun.murthy@stericsson.com>
6  * Author: Daniel Willerud <daniel.willerud@stericsson.com>
7  * Author: Johan Palsson <johan.palsson@stericsson.com>
8  */
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/interrupt.h>
13 #include <linux/spinlock.h>
14 #include <linux/delay.h>
15 #include <linux/platform_device.h>
16 #include <linux/completion.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/list.h>
21 #include <linux/mfd/ab8500.h>
22 #include <linux/mfd/abx500.h>
23 #include <linux/mfd/ab8500/gpadc.h>
24 
25 /*
26  * GPADC register offsets
27  * Bank : 0x0A
28  */
29 #define AB8500_GPADC_CTRL1_REG		0x00
30 #define AB8500_GPADC_CTRL2_REG		0x01
31 #define AB8500_GPADC_CTRL3_REG		0x02
32 #define AB8500_GPADC_AUTO_TIMER_REG	0x03
33 #define AB8500_GPADC_STAT_REG		0x04
34 #define AB8500_GPADC_MANDATAL_REG	0x05
35 #define AB8500_GPADC_MANDATAH_REG	0x06
36 #define AB8500_GPADC_AUTODATAL_REG	0x07
37 #define AB8500_GPADC_AUTODATAH_REG	0x08
38 #define AB8500_GPADC_MUX_CTRL_REG	0x09
39 
40 /*
41  * OTP register offsets
42  * Bank : 0x15
43  */
44 #define AB8500_GPADC_CAL_1		0x0F
45 #define AB8500_GPADC_CAL_2		0x10
46 #define AB8500_GPADC_CAL_3		0x11
47 #define AB8500_GPADC_CAL_4		0x12
48 #define AB8500_GPADC_CAL_5		0x13
49 #define AB8500_GPADC_CAL_6		0x14
50 #define AB8500_GPADC_CAL_7		0x15
51 
52 /* gpadc constants */
53 #define EN_VINTCORE12			0x04
54 #define EN_VTVOUT			0x02
55 #define EN_GPADC			0x01
56 #define DIS_GPADC			0x00
57 #define SW_AVG_16			0x60
58 #define ADC_SW_CONV			0x04
59 #define EN_ICHAR			0x80
60 #define EN_BUF				0x40
61 #define DIS_ZERO			0x00
62 #define GPADC_BUSY			0x01
63 
64 /* GPADC constants from AB8500 spec, UM0836 */
65 #define ADC_RESOLUTION			1024
66 #define ADC_CH_BTEMP_MIN		0
67 #define ADC_CH_BTEMP_MAX		1350
68 #define ADC_CH_DIETEMP_MIN		0
69 #define ADC_CH_DIETEMP_MAX		1350
70 #define ADC_CH_CHG_V_MIN		0
71 #define ADC_CH_CHG_V_MAX		20030
72 #define ADC_CH_ACCDET2_MIN		0
73 #define ADC_CH_ACCDET2_MAX		2500
74 #define ADC_CH_VBAT_MIN			2300
75 #define ADC_CH_VBAT_MAX			4800
76 #define ADC_CH_CHG_I_MIN		0
77 #define ADC_CH_CHG_I_MAX		1500
78 #define ADC_CH_BKBAT_MIN		0
79 #define ADC_CH_BKBAT_MAX		3200
80 
81 /* This is used to not lose precision when dividing to get gain and offset */
82 #define CALIB_SCALE			1000
83 
84 enum cal_channels {
85 	ADC_INPUT_VMAIN = 0,
86 	ADC_INPUT_BTEMP,
87 	ADC_INPUT_VBAT,
88 	NBR_CAL_INPUTS,
89 };
90 
91 /**
92  * struct adc_cal_data - Table for storing gain and offset for the calibrated
93  * ADC channels
94  * @gain:		Gain of the ADC channel
95  * @offset:		Offset of the ADC channel
96  */
97 struct adc_cal_data {
98 	u64 gain;
99 	u64 offset;
100 };
101 
102 /**
103  * struct ab8500_gpadc - AB8500 GPADC device information
104  * @dev:			pointer to the struct device
105  * @node:			a list of AB8500 GPADCs, hence prepared for
106 				reentrance
107  * @ab8500_gpadc_complete:	pointer to the struct completion, to indicate
108  *				the completion of gpadc conversion
109  * @ab8500_gpadc_lock:		structure of type mutex
110  * @regu:			pointer to the struct regulator
111  * @irq:			interrupt number that is used by gpadc
112  * @cal_data			array of ADC calibration data structs
113  */
114 struct ab8500_gpadc {
115 	struct device *dev;
116 	struct list_head node;
117 	struct completion ab8500_gpadc_complete;
118 	struct mutex ab8500_gpadc_lock;
119 	struct regulator *regu;
120 	int irq;
121 	struct adc_cal_data cal_data[NBR_CAL_INPUTS];
122 };
123 
124 static LIST_HEAD(ab8500_gpadc_list);
125 
126 /**
127  * ab8500_gpadc_get() - returns a reference to the primary AB8500 GPADC
128  * (i.e. the first GPADC in the instance list)
129  */
ab8500_gpadc_get(char * name)130 struct ab8500_gpadc *ab8500_gpadc_get(char *name)
131 {
132 	struct ab8500_gpadc *gpadc;
133 
134 	list_for_each_entry(gpadc, &ab8500_gpadc_list, node) {
135 		if (!strcmp(name, dev_name(gpadc->dev)))
136 		    return gpadc;
137 	}
138 
139 	return ERR_PTR(-ENOENT);
140 }
141 EXPORT_SYMBOL(ab8500_gpadc_get);
142 
ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc * gpadc,u8 input,int ad_value)143 static int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 input,
144 	int ad_value)
145 {
146 	int res;
147 
148 	switch (input) {
149 	case MAIN_CHARGER_V:
150 		/* For some reason we don't have calibrated data */
151 		if (!gpadc->cal_data[ADC_INPUT_VMAIN].gain) {
152 			res = ADC_CH_CHG_V_MIN + (ADC_CH_CHG_V_MAX -
153 				ADC_CH_CHG_V_MIN) * ad_value /
154 				ADC_RESOLUTION;
155 			break;
156 		}
157 		/* Here we can use the calibrated data */
158 		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VMAIN].gain +
159 			gpadc->cal_data[ADC_INPUT_VMAIN].offset) / CALIB_SCALE;
160 		break;
161 
162 	case BAT_CTRL:
163 	case BTEMP_BALL:
164 	case ACC_DETECT1:
165 	case ADC_AUX1:
166 	case ADC_AUX2:
167 		/* For some reason we don't have calibrated data */
168 		if (!gpadc->cal_data[ADC_INPUT_BTEMP].gain) {
169 			res = ADC_CH_BTEMP_MIN + (ADC_CH_BTEMP_MAX -
170 				ADC_CH_BTEMP_MIN) * ad_value /
171 				ADC_RESOLUTION;
172 			break;
173 		}
174 		/* Here we can use the calibrated data */
175 		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_BTEMP].gain +
176 			gpadc->cal_data[ADC_INPUT_BTEMP].offset) / CALIB_SCALE;
177 		break;
178 
179 	case MAIN_BAT_V:
180 		/* For some reason we don't have calibrated data */
181 		if (!gpadc->cal_data[ADC_INPUT_VBAT].gain) {
182 			res = ADC_CH_VBAT_MIN + (ADC_CH_VBAT_MAX -
183 				ADC_CH_VBAT_MIN) * ad_value /
184 				ADC_RESOLUTION;
185 			break;
186 		}
187 		/* Here we can use the calibrated data */
188 		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VBAT].gain +
189 			gpadc->cal_data[ADC_INPUT_VBAT].offset) / CALIB_SCALE;
190 		break;
191 
192 	case DIE_TEMP:
193 		res = ADC_CH_DIETEMP_MIN +
194 			(ADC_CH_DIETEMP_MAX - ADC_CH_DIETEMP_MIN) * ad_value /
195 			ADC_RESOLUTION;
196 		break;
197 
198 	case ACC_DETECT2:
199 		res = ADC_CH_ACCDET2_MIN +
200 			(ADC_CH_ACCDET2_MAX - ADC_CH_ACCDET2_MIN) * ad_value /
201 			ADC_RESOLUTION;
202 		break;
203 
204 	case VBUS_V:
205 		res = ADC_CH_CHG_V_MIN +
206 			(ADC_CH_CHG_V_MAX - ADC_CH_CHG_V_MIN) * ad_value /
207 			ADC_RESOLUTION;
208 		break;
209 
210 	case MAIN_CHARGER_C:
211 	case USB_CHARGER_C:
212 		res = ADC_CH_CHG_I_MIN +
213 			(ADC_CH_CHG_I_MAX - ADC_CH_CHG_I_MIN) * ad_value /
214 			ADC_RESOLUTION;
215 		break;
216 
217 	case BK_BAT_V:
218 		res = ADC_CH_BKBAT_MIN +
219 			(ADC_CH_BKBAT_MAX - ADC_CH_BKBAT_MIN) * ad_value /
220 			ADC_RESOLUTION;
221 		break;
222 
223 	default:
224 		dev_err(gpadc->dev,
225 			"unknown channel, not possible to convert\n");
226 		res = -EINVAL;
227 		break;
228 
229 	}
230 	return res;
231 }
232 
233 /**
234  * ab8500_gpadc_convert() - gpadc conversion
235  * @input:	analog input to be converted to digital data
236  *
237  * This function converts the selected analog i/p to digital
238  * data.
239  */
ab8500_gpadc_convert(struct ab8500_gpadc * gpadc,u8 input)240 int ab8500_gpadc_convert(struct ab8500_gpadc *gpadc, u8 input)
241 {
242 	int ret;
243 	u16 data = 0;
244 	int looplimit = 0;
245 	u8 val, low_data, high_data;
246 
247 	if (!gpadc)
248 		return -ENODEV;
249 
250 	mutex_lock(&gpadc->ab8500_gpadc_lock);
251 	/* Enable VTVout LDO this is required for GPADC */
252 	regulator_enable(gpadc->regu);
253 
254 	/* Check if ADC is not busy, lock and proceed */
255 	do {
256 		ret = abx500_get_register_interruptible(gpadc->dev,
257 			AB8500_GPADC, AB8500_GPADC_STAT_REG, &val);
258 		if (ret < 0)
259 			goto out;
260 		if (!(val & GPADC_BUSY))
261 			break;
262 		msleep(10);
263 	} while (++looplimit < 10);
264 	if (looplimit >= 10 && (val & GPADC_BUSY)) {
265 		dev_err(gpadc->dev, "gpadc_conversion: GPADC busy");
266 		ret = -EINVAL;
267 		goto out;
268 	}
269 
270 	/* Enable GPADC */
271 	ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
272 		AB8500_GPADC, AB8500_GPADC_CTRL1_REG, EN_GPADC, EN_GPADC);
273 	if (ret < 0) {
274 		dev_err(gpadc->dev, "gpadc_conversion: enable gpadc failed\n");
275 		goto out;
276 	}
277 	/* Select the input source and set average samples to 16 */
278 	ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
279 		AB8500_GPADC_CTRL2_REG, (input | SW_AVG_16));
280 	if (ret < 0) {
281 		dev_err(gpadc->dev,
282 			"gpadc_conversion: set avg samples failed\n");
283 		goto out;
284 	}
285 	/*
286 	 * Enable ADC, buffering, select rising edge and enable ADC path
287 	 * charging current sense if it needed
288 	 */
289 	switch (input) {
290 	case MAIN_CHARGER_C:
291 	case USB_CHARGER_C:
292 		ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
293 			AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
294 			EN_BUF | EN_ICHAR,
295 			EN_BUF | EN_ICHAR);
296 		break;
297 	default:
298 		ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
299 			AB8500_GPADC, AB8500_GPADC_CTRL1_REG, EN_BUF, EN_BUF);
300 		break;
301 	}
302 	if (ret < 0) {
303 		dev_err(gpadc->dev,
304 			"gpadc_conversion: select falling edge failed\n");
305 		goto out;
306 	}
307 	ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
308 		AB8500_GPADC, AB8500_GPADC_CTRL1_REG, ADC_SW_CONV, ADC_SW_CONV);
309 	if (ret < 0) {
310 		dev_err(gpadc->dev,
311 			"gpadc_conversion: start s/w conversion failed\n");
312 		goto out;
313 	}
314 	/* wait for completion of conversion */
315 	if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete, 2*HZ)) {
316 		dev_err(gpadc->dev,
317 			"timeout: didn't receive GPADC conversion interrupt\n");
318 		ret = -EINVAL;
319 		goto out;
320 	}
321 
322 	/* Read the converted RAW data */
323 	ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC,
324 		AB8500_GPADC_MANDATAL_REG, &low_data);
325 	if (ret < 0) {
326 		dev_err(gpadc->dev, "gpadc_conversion: read low data failed\n");
327 		goto out;
328 	}
329 
330 	ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC,
331 		AB8500_GPADC_MANDATAH_REG, &high_data);
332 	if (ret < 0) {
333 		dev_err(gpadc->dev,
334 			"gpadc_conversion: read high data failed\n");
335 		goto out;
336 	}
337 
338 	data = (high_data << 8) | low_data;
339 	/* Disable GPADC */
340 	ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
341 		AB8500_GPADC_CTRL1_REG, DIS_GPADC);
342 	if (ret < 0) {
343 		dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n");
344 		goto out;
345 	}
346 	/* Disable VTVout LDO this is required for GPADC */
347 	regulator_disable(gpadc->regu);
348 	mutex_unlock(&gpadc->ab8500_gpadc_lock);
349 	ret = ab8500_gpadc_ad_to_voltage(gpadc, input, data);
350 	return ret;
351 
352 out:
353 	/*
354 	 * It has shown to be needed to turn off the GPADC if an error occurs,
355 	 * otherwise we might have problem when waiting for the busy bit in the
356 	 * GPADC status register to go low. In V1.1 there wait_for_completion
357 	 * seems to timeout when waiting for an interrupt.. Not seen in V2.0
358 	 */
359 	(void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
360 		AB8500_GPADC_CTRL1_REG, DIS_GPADC);
361 	regulator_disable(gpadc->regu);
362 	mutex_unlock(&gpadc->ab8500_gpadc_lock);
363 	dev_err(gpadc->dev,
364 		"gpadc_conversion: Failed to AD convert channel %d\n", input);
365 	return ret;
366 }
367 EXPORT_SYMBOL(ab8500_gpadc_convert);
368 
369 /**
370  * ab8500_bm_gpswadcconvend_handler() - isr for s/w gpadc conversion completion
371  * @irq:	irq number
372  * @data:	pointer to the data passed during request irq
373  *
374  * This is a interrupt service routine for s/w gpadc conversion completion.
375  * Notifies the gpadc completion is completed and the converted raw value
376  * can be read from the registers.
377  * Returns IRQ status(IRQ_HANDLED)
378  */
ab8500_bm_gpswadcconvend_handler(int irq,void * _gpadc)379 static irqreturn_t ab8500_bm_gpswadcconvend_handler(int irq, void *_gpadc)
380 {
381 	struct ab8500_gpadc *gpadc = _gpadc;
382 
383 	complete(&gpadc->ab8500_gpadc_complete);
384 
385 	return IRQ_HANDLED;
386 }
387 
388 static int otp_cal_regs[] = {
389 	AB8500_GPADC_CAL_1,
390 	AB8500_GPADC_CAL_2,
391 	AB8500_GPADC_CAL_3,
392 	AB8500_GPADC_CAL_4,
393 	AB8500_GPADC_CAL_5,
394 	AB8500_GPADC_CAL_6,
395 	AB8500_GPADC_CAL_7,
396 };
397 
ab8500_gpadc_read_calibration_data(struct ab8500_gpadc * gpadc)398 static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
399 {
400 	int i;
401 	int ret[ARRAY_SIZE(otp_cal_regs)];
402 	u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)];
403 
404 	int vmain_high, vmain_low;
405 	int btemp_high, btemp_low;
406 	int vbat_high, vbat_low;
407 
408 	/* First we read all OTP registers and store the error code */
409 	for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) {
410 		ret[i] = abx500_get_register_interruptible(gpadc->dev,
411 			AB8500_OTP_EMUL, otp_cal_regs[i],  &gpadc_cal[i]);
412 		if (ret[i] < 0)
413 			dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n",
414 				__func__, otp_cal_regs[i]);
415 	}
416 
417 	/*
418 	 * The ADC calibration data is stored in OTP registers.
419 	 * The layout of the calibration data is outlined below and a more
420 	 * detailed description can be found in UM0836
421 	 *
422 	 * vm_h/l = vmain_high/low
423 	 * bt_h/l = btemp_high/low
424 	 * vb_h/l = vbat_high/low
425 	 *
426 	 * Data bits:
427 	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0
428 	 * |.......|.......|.......|.......|.......|.......|.......|.......
429 	 * |						   | vm_h9 | vm_h8
430 	 * |.......|.......|.......|.......|.......|.......|.......|.......
431 	 * |		   | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
432 	 * |.......|.......|.......|.......|.......|.......|.......|.......
433 	 * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
434 	 * |.......|.......|.......|.......|.......|.......|.......|.......
435 	 * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
436 	 * |.......|.......|.......|.......|.......|.......|.......|.......
437 	 * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
438 	 * |.......|.......|.......|.......|.......|.......|.......|.......
439 	 * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
440 	 * |.......|.......|.......|.......|.......|.......|.......|.......
441 	 * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
442 	 * |.......|.......|.......|.......|.......|.......|.......|.......
443 	 *
444 	 *
445 	 * Ideal output ADC codes corresponding to injected input voltages
446 	 * during manufacturing is:
447 	 *
448 	 * vmain_high: Vin = 19500mV / ADC ideal code = 997
449 	 * vmain_low:  Vin = 315mV   / ADC ideal code = 16
450 	 * btemp_high: Vin = 1300mV  / ADC ideal code = 985
451 	 * btemp_low:  Vin = 21mV    / ADC ideal code = 16
452 	 * vbat_high:  Vin = 4700mV  / ADC ideal code = 982
453 	 * vbat_low:   Vin = 2380mV  / ADC ideal code = 33
454 	 */
455 
456 	/* Calculate gain and offset for VMAIN if all reads succeeded */
457 	if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) {
458 		vmain_high = (((gpadc_cal[0] & 0x03) << 8) |
459 			((gpadc_cal[1] & 0x3F) << 2) |
460 			((gpadc_cal[2] & 0xC0) >> 6));
461 
462 		vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
463 
464 		gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE *
465 			(19500 - 315) /	(vmain_high - vmain_low);
466 
467 		gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE * 19500 -
468 			(CALIB_SCALE * (19500 - 315) /
469 			 (vmain_high - vmain_low)) * vmain_high;
470 	} else {
471 		gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0;
472 	}
473 
474 	/* Calculate gain and offset for BTEMP if all reads succeeded */
475 	if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) {
476 		btemp_high = (((gpadc_cal[2] & 0x01) << 9) |
477 			(gpadc_cal[3] << 1) |
478 			((gpadc_cal[4] & 0x80) >> 7));
479 
480 		btemp_low = ((gpadc_cal[4] & 0x7C) >> 2);
481 
482 		gpadc->cal_data[ADC_INPUT_BTEMP].gain =
483 			CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low);
484 
485 		gpadc->cal_data[ADC_INPUT_BTEMP].offset = CALIB_SCALE * 1300 -
486 			(CALIB_SCALE * (1300 - 21) /
487 			(btemp_high - btemp_low)) * btemp_high;
488 	} else {
489 		gpadc->cal_data[ADC_INPUT_BTEMP].gain = 0;
490 	}
491 
492 	/* Calculate gain and offset for VBAT if all reads succeeded */
493 	if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) {
494 		vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]);
495 		vbat_low = ((gpadc_cal[6] & 0xFC) >> 2);
496 
497 		gpadc->cal_data[ADC_INPUT_VBAT].gain = CALIB_SCALE *
498 			(4700 - 2380) /	(vbat_high - vbat_low);
499 
500 		gpadc->cal_data[ADC_INPUT_VBAT].offset = CALIB_SCALE * 4700 -
501 			(CALIB_SCALE * (4700 - 2380) /
502 			(vbat_high - vbat_low)) * vbat_high;
503 	} else {
504 		gpadc->cal_data[ADC_INPUT_VBAT].gain = 0;
505 	}
506 
507 	dev_dbg(gpadc->dev, "VMAIN gain %llu offset %llu\n",
508 		gpadc->cal_data[ADC_INPUT_VMAIN].gain,
509 		gpadc->cal_data[ADC_INPUT_VMAIN].offset);
510 
511 	dev_dbg(gpadc->dev, "BTEMP gain %llu offset %llu\n",
512 		gpadc->cal_data[ADC_INPUT_BTEMP].gain,
513 		gpadc->cal_data[ADC_INPUT_BTEMP].offset);
514 
515 	dev_dbg(gpadc->dev, "VBAT gain %llu offset %llu\n",
516 		gpadc->cal_data[ADC_INPUT_VBAT].gain,
517 		gpadc->cal_data[ADC_INPUT_VBAT].offset);
518 }
519 
ab8500_gpadc_probe(struct platform_device * pdev)520 static int __devinit ab8500_gpadc_probe(struct platform_device *pdev)
521 {
522 	int ret = 0;
523 	struct ab8500_gpadc *gpadc;
524 
525 	gpadc = kzalloc(sizeof(struct ab8500_gpadc), GFP_KERNEL);
526 	if (!gpadc) {
527 		dev_err(&pdev->dev, "Error: No memory\n");
528 		return -ENOMEM;
529 	}
530 
531 	gpadc->irq = platform_get_irq_byname(pdev, "SW_CONV_END");
532 	if (gpadc->irq < 0) {
533 		dev_err(gpadc->dev, "failed to get platform irq-%d\n",
534 			gpadc->irq);
535 		ret = gpadc->irq;
536 		goto fail;
537 	}
538 
539 	gpadc->dev = &pdev->dev;
540 	mutex_init(&gpadc->ab8500_gpadc_lock);
541 
542 	/* Initialize completion used to notify completion of conversion */
543 	init_completion(&gpadc->ab8500_gpadc_complete);
544 
545 	/* Register interrupt  - SwAdcComplete */
546 	ret = request_threaded_irq(gpadc->irq, NULL,
547 		ab8500_bm_gpswadcconvend_handler,
548 		IRQF_NO_SUSPEND | IRQF_SHARED, "ab8500-gpadc", gpadc);
549 	if (ret < 0) {
550 		dev_err(gpadc->dev, "Failed to register interrupt, irq: %d\n",
551 			gpadc->irq);
552 		goto fail;
553 	}
554 
555 	/* VTVout LDO used to power up ab8500-GPADC */
556 	gpadc->regu = regulator_get(&pdev->dev, "vddadc");
557 	if (IS_ERR(gpadc->regu)) {
558 		ret = PTR_ERR(gpadc->regu);
559 		dev_err(gpadc->dev, "failed to get vtvout LDO\n");
560 		goto fail_irq;
561 	}
562 	ab8500_gpadc_read_calibration_data(gpadc);
563 	list_add_tail(&gpadc->node, &ab8500_gpadc_list);
564 	dev_dbg(gpadc->dev, "probe success\n");
565 	return 0;
566 fail_irq:
567 	free_irq(gpadc->irq, gpadc);
568 fail:
569 	kfree(gpadc);
570 	gpadc = NULL;
571 	return ret;
572 }
573 
ab8500_gpadc_remove(struct platform_device * pdev)574 static int __devexit ab8500_gpadc_remove(struct platform_device *pdev)
575 {
576 	struct ab8500_gpadc *gpadc = platform_get_drvdata(pdev);
577 
578 	/* remove this gpadc entry from the list */
579 	list_del(&gpadc->node);
580 	/* remove interrupt  - completion of Sw ADC conversion */
581 	free_irq(gpadc->irq, gpadc);
582 	/* disable VTVout LDO that is being used by GPADC */
583 	regulator_put(gpadc->regu);
584 	kfree(gpadc);
585 	gpadc = NULL;
586 	return 0;
587 }
588 
589 static struct platform_driver ab8500_gpadc_driver = {
590 	.probe = ab8500_gpadc_probe,
591 	.remove = __devexit_p(ab8500_gpadc_remove),
592 	.driver = {
593 		.name = "ab8500-gpadc",
594 		.owner = THIS_MODULE,
595 	},
596 };
597 
ab8500_gpadc_init(void)598 static int __init ab8500_gpadc_init(void)
599 {
600 	return platform_driver_register(&ab8500_gpadc_driver);
601 }
602 
ab8500_gpadc_exit(void)603 static void __exit ab8500_gpadc_exit(void)
604 {
605 	platform_driver_unregister(&ab8500_gpadc_driver);
606 }
607 
608 subsys_initcall_sync(ab8500_gpadc_init);
609 module_exit(ab8500_gpadc_exit);
610 
611 MODULE_LICENSE("GPL v2");
612 MODULE_AUTHOR("Arun R Murthy, Daniel Willerud, Johan Palsson");
613 MODULE_ALIAS("platform:ab8500_gpadc");
614 MODULE_DESCRIPTION("AB8500 GPADC driver");
615