1 /*
2 * driver for ENE KB3926 B/C/D/E/F CIR (pnp id: ENE0XXX)
3 *
4 * Copyright (C) 2010 Maxim Levitsky <maximlevitsky@gmail.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
19 * USA
20 *
21 * Special thanks to:
22 * Sami R. <maesesami@gmail.com> for lot of help in debugging and therefore
23 * bringing to life support for transmission & learning mode.
24 *
25 * Charlie Andrews <charliethepilot@googlemail.com> for lots of help in
26 * bringing up the support of new firmware buffer that is popular
27 * on latest notebooks
28 *
29 * ENE for partial device documentation
30 *
31 */
32
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/pnp.h>
36 #include <linux/io.h>
37 #include <linux/interrupt.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <media/rc-core.h>
41 #include "ene_ir.h"
42
43 static int sample_period;
44 static bool learning_mode_force;
45 static int debug;
46 static bool txsim;
47
ene_set_reg_addr(struct ene_device * dev,u16 reg)48 static void ene_set_reg_addr(struct ene_device *dev, u16 reg)
49 {
50 outb(reg >> 8, dev->hw_io + ENE_ADDR_HI);
51 outb(reg & 0xFF, dev->hw_io + ENE_ADDR_LO);
52 }
53
54 /* read a hardware register */
ene_read_reg(struct ene_device * dev,u16 reg)55 static u8 ene_read_reg(struct ene_device *dev, u16 reg)
56 {
57 u8 retval;
58 ene_set_reg_addr(dev, reg);
59 retval = inb(dev->hw_io + ENE_IO);
60 dbg_regs("reg %04x == %02x", reg, retval);
61 return retval;
62 }
63
64 /* write a hardware register */
ene_write_reg(struct ene_device * dev,u16 reg,u8 value)65 static void ene_write_reg(struct ene_device *dev, u16 reg, u8 value)
66 {
67 dbg_regs("reg %04x <- %02x", reg, value);
68 ene_set_reg_addr(dev, reg);
69 outb(value, dev->hw_io + ENE_IO);
70 }
71
72 /* Set bits in hardware register */
ene_set_reg_mask(struct ene_device * dev,u16 reg,u8 mask)73 static void ene_set_reg_mask(struct ene_device *dev, u16 reg, u8 mask)
74 {
75 dbg_regs("reg %04x |= %02x", reg, mask);
76 ene_set_reg_addr(dev, reg);
77 outb(inb(dev->hw_io + ENE_IO) | mask, dev->hw_io + ENE_IO);
78 }
79
80 /* Clear bits in hardware register */
ene_clear_reg_mask(struct ene_device * dev,u16 reg,u8 mask)81 static void ene_clear_reg_mask(struct ene_device *dev, u16 reg, u8 mask)
82 {
83 dbg_regs("reg %04x &= ~%02x ", reg, mask);
84 ene_set_reg_addr(dev, reg);
85 outb(inb(dev->hw_io + ENE_IO) & ~mask, dev->hw_io + ENE_IO);
86 }
87
88 /* A helper to set/clear a bit in register according to boolean variable */
ene_set_clear_reg_mask(struct ene_device * dev,u16 reg,u8 mask,bool set)89 static void ene_set_clear_reg_mask(struct ene_device *dev, u16 reg, u8 mask,
90 bool set)
91 {
92 if (set)
93 ene_set_reg_mask(dev, reg, mask);
94 else
95 ene_clear_reg_mask(dev, reg, mask);
96 }
97
98 /* detect hardware features */
ene_hw_detect(struct ene_device * dev)99 static int ene_hw_detect(struct ene_device *dev)
100 {
101 u8 chip_major, chip_minor;
102 u8 hw_revision, old_ver;
103 u8 fw_reg2, fw_reg1;
104
105 ene_clear_reg_mask(dev, ENE_ECSTS, ENE_ECSTS_RSRVD);
106 chip_major = ene_read_reg(dev, ENE_ECVER_MAJOR);
107 chip_minor = ene_read_reg(dev, ENE_ECVER_MINOR);
108 ene_set_reg_mask(dev, ENE_ECSTS, ENE_ECSTS_RSRVD);
109
110 hw_revision = ene_read_reg(dev, ENE_ECHV);
111 old_ver = ene_read_reg(dev, ENE_HW_VER_OLD);
112
113 dev->pll_freq = (ene_read_reg(dev, ENE_PLLFRH) << 4) +
114 (ene_read_reg(dev, ENE_PLLFRL) >> 4);
115
116 if (sample_period != ENE_DEFAULT_SAMPLE_PERIOD)
117 dev->rx_period_adjust =
118 dev->pll_freq == ENE_DEFAULT_PLL_FREQ ? 2 : 4;
119
120 if (hw_revision == 0xFF) {
121 ene_warn("device seems to be disabled");
122 ene_warn("send a mail to lirc-list@lists.sourceforge.net");
123 ene_warn("please attach output of acpidump and dmidecode");
124 return -ENODEV;
125 }
126
127 ene_notice("chip is 0x%02x%02x - kbver = 0x%02x, rev = 0x%02x",
128 chip_major, chip_minor, old_ver, hw_revision);
129
130 ene_notice("PLL freq = %d", dev->pll_freq);
131
132 if (chip_major == 0x33) {
133 ene_warn("chips 0x33xx aren't supported");
134 return -ENODEV;
135 }
136
137 if (chip_major == 0x39 && chip_minor == 0x26 && hw_revision == 0xC0) {
138 dev->hw_revision = ENE_HW_C;
139 ene_notice("KB3926C detected");
140 } else if (old_ver == 0x24 && hw_revision == 0xC0) {
141 dev->hw_revision = ENE_HW_B;
142 ene_notice("KB3926B detected");
143 } else {
144 dev->hw_revision = ENE_HW_D;
145 ene_notice("KB3926D or higher detected");
146 }
147
148 /* detect features hardware supports */
149 if (dev->hw_revision < ENE_HW_C)
150 return 0;
151
152 fw_reg1 = ene_read_reg(dev, ENE_FW1);
153 fw_reg2 = ene_read_reg(dev, ENE_FW2);
154
155 ene_notice("Firmware regs: %02x %02x", fw_reg1, fw_reg2);
156
157 dev->hw_use_gpio_0a = !!(fw_reg2 & ENE_FW2_GP0A);
158 dev->hw_learning_and_tx_capable = !!(fw_reg2 & ENE_FW2_LEARNING);
159 dev->hw_extra_buffer = !!(fw_reg1 & ENE_FW1_HAS_EXTRA_BUF);
160
161 if (dev->hw_learning_and_tx_capable)
162 dev->hw_fan_input = !!(fw_reg2 & ENE_FW2_FAN_INPUT);
163
164 ene_notice("Hardware features:");
165
166 if (dev->hw_learning_and_tx_capable) {
167 ene_notice("* Supports transmitting & learning mode");
168 ene_notice(" This feature is rare and therefore,");
169 ene_notice(" you are welcome to test it,");
170 ene_notice(" and/or contact the author via:");
171 ene_notice(" lirc-list@lists.sourceforge.net");
172 ene_notice(" or maximlevitsky@gmail.com");
173
174 ene_notice("* Uses GPIO %s for IR raw input",
175 dev->hw_use_gpio_0a ? "40" : "0A");
176
177 if (dev->hw_fan_input)
178 ene_notice("* Uses unused fan feedback input as source"
179 " of demodulated IR data");
180 }
181
182 if (!dev->hw_fan_input)
183 ene_notice("* Uses GPIO %s for IR demodulated input",
184 dev->hw_use_gpio_0a ? "0A" : "40");
185
186 if (dev->hw_extra_buffer)
187 ene_notice("* Uses new style input buffer");
188 return 0;
189 }
190
191 /* Read properities of hw sample buffer */
ene_rx_setup_hw_buffer(struct ene_device * dev)192 static void ene_rx_setup_hw_buffer(struct ene_device *dev)
193 {
194 u16 tmp;
195
196 ene_rx_read_hw_pointer(dev);
197 dev->r_pointer = dev->w_pointer;
198
199 if (!dev->hw_extra_buffer) {
200 dev->buffer_len = ENE_FW_PACKET_SIZE * 2;
201 return;
202 }
203
204 tmp = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER);
205 tmp |= ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER+1) << 8;
206 dev->extra_buf1_address = tmp;
207
208 dev->extra_buf1_len = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 2);
209
210 tmp = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 3);
211 tmp |= ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 4) << 8;
212 dev->extra_buf2_address = tmp;
213
214 dev->extra_buf2_len = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 5);
215
216 dev->buffer_len = dev->extra_buf1_len + dev->extra_buf2_len + 8;
217
218 ene_notice("Hardware uses 2 extended buffers:");
219 ene_notice(" 0x%04x - len : %d", dev->extra_buf1_address,
220 dev->extra_buf1_len);
221 ene_notice(" 0x%04x - len : %d", dev->extra_buf2_address,
222 dev->extra_buf2_len);
223
224 ene_notice("Total buffer len = %d", dev->buffer_len);
225
226 if (dev->buffer_len > 64 || dev->buffer_len < 16)
227 goto error;
228
229 if (dev->extra_buf1_address > 0xFBFC ||
230 dev->extra_buf1_address < 0xEC00)
231 goto error;
232
233 if (dev->extra_buf2_address > 0xFBFC ||
234 dev->extra_buf2_address < 0xEC00)
235 goto error;
236
237 if (dev->r_pointer > dev->buffer_len)
238 goto error;
239
240 ene_set_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND);
241 return;
242 error:
243 ene_warn("Error validating extra buffers, device probably won't work");
244 dev->hw_extra_buffer = false;
245 ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND);
246 }
247
248
249 /* Restore the pointers to extra buffers - to make module reload work*/
ene_rx_restore_hw_buffer(struct ene_device * dev)250 static void ene_rx_restore_hw_buffer(struct ene_device *dev)
251 {
252 if (!dev->hw_extra_buffer)
253 return;
254
255 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 0,
256 dev->extra_buf1_address & 0xFF);
257 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 1,
258 dev->extra_buf1_address >> 8);
259 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 2, dev->extra_buf1_len);
260
261 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 3,
262 dev->extra_buf2_address & 0xFF);
263 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 4,
264 dev->extra_buf2_address >> 8);
265 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 5,
266 dev->extra_buf2_len);
267 ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND);
268 }
269
270 /* Read hardware write pointer */
ene_rx_read_hw_pointer(struct ene_device * dev)271 static void ene_rx_read_hw_pointer(struct ene_device *dev)
272 {
273 if (dev->hw_extra_buffer)
274 dev->w_pointer = ene_read_reg(dev, ENE_FW_RX_POINTER);
275 else
276 dev->w_pointer = ene_read_reg(dev, ENE_FW2)
277 & ENE_FW2_BUF_WPTR ? 0 : ENE_FW_PACKET_SIZE;
278
279 dbg_verbose("RB: HW write pointer: %02x, driver read pointer: %02x",
280 dev->w_pointer, dev->r_pointer);
281 }
282
283 /* Gets address of next sample from HW ring buffer */
ene_rx_get_sample_reg(struct ene_device * dev)284 static int ene_rx_get_sample_reg(struct ene_device *dev)
285 {
286 int r_pointer;
287
288 if (dev->r_pointer == dev->w_pointer) {
289 dbg_verbose("RB: hit end, try update w_pointer");
290 ene_rx_read_hw_pointer(dev);
291 }
292
293 if (dev->r_pointer == dev->w_pointer) {
294 dbg_verbose("RB: end of data at %d", dev->r_pointer);
295 return 0;
296 }
297
298 dbg_verbose("RB: reading at offset %d", dev->r_pointer);
299 r_pointer = dev->r_pointer;
300
301 dev->r_pointer++;
302 if (dev->r_pointer == dev->buffer_len)
303 dev->r_pointer = 0;
304
305 dbg_verbose("RB: next read will be from offset %d", dev->r_pointer);
306
307 if (r_pointer < 8) {
308 dbg_verbose("RB: read at main buffer at %d", r_pointer);
309 return ENE_FW_SAMPLE_BUFFER + r_pointer;
310 }
311
312 r_pointer -= 8;
313
314 if (r_pointer < dev->extra_buf1_len) {
315 dbg_verbose("RB: read at 1st extra buffer at %d", r_pointer);
316 return dev->extra_buf1_address + r_pointer;
317 }
318
319 r_pointer -= dev->extra_buf1_len;
320
321 if (r_pointer < dev->extra_buf2_len) {
322 dbg_verbose("RB: read at 2nd extra buffer at %d", r_pointer);
323 return dev->extra_buf2_address + r_pointer;
324 }
325
326 dbg("attempt to read beyong ring bufer end");
327 return 0;
328 }
329
330 /* Sense current received carrier */
ene_rx_sense_carrier(struct ene_device * dev)331 void ene_rx_sense_carrier(struct ene_device *dev)
332 {
333 DEFINE_IR_RAW_EVENT(ev);
334
335 int carrier, duty_cycle;
336 int period = ene_read_reg(dev, ENE_CIRCAR_PRD);
337 int hperiod = ene_read_reg(dev, ENE_CIRCAR_HPRD);
338
339 if (!(period & ENE_CIRCAR_PRD_VALID))
340 return;
341
342 period &= ~ENE_CIRCAR_PRD_VALID;
343
344 if (!period)
345 return;
346
347 dbg("RX: hardware carrier period = %02x", period);
348 dbg("RX: hardware carrier pulse period = %02x", hperiod);
349
350 carrier = 2000000 / period;
351 duty_cycle = (hperiod * 100) / period;
352 dbg("RX: sensed carrier = %d Hz, duty cycle %d%%",
353 carrier, duty_cycle);
354 if (dev->carrier_detect_enabled) {
355 ev.carrier_report = true;
356 ev.carrier = carrier;
357 ev.duty_cycle = duty_cycle;
358 ir_raw_event_store(dev->rdev, &ev);
359 }
360 }
361
362 /* this enables/disables the CIR RX engine */
ene_rx_enable_cir_engine(struct ene_device * dev,bool enable)363 static void ene_rx_enable_cir_engine(struct ene_device *dev, bool enable)
364 {
365 ene_set_clear_reg_mask(dev, ENE_CIRCFG,
366 ENE_CIRCFG_RX_EN | ENE_CIRCFG_RX_IRQ, enable);
367 }
368
369 /* this selects input for CIR engine. Ether GPIO 0A or GPIO40*/
ene_rx_select_input(struct ene_device * dev,bool gpio_0a)370 static void ene_rx_select_input(struct ene_device *dev, bool gpio_0a)
371 {
372 ene_set_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_GPIO0A, gpio_0a);
373 }
374
375 /*
376 * this enables alternative input via fan tachometer sensor and bypasses
377 * the hw CIR engine
378 */
ene_rx_enable_fan_input(struct ene_device * dev,bool enable)379 static void ene_rx_enable_fan_input(struct ene_device *dev, bool enable)
380 {
381 if (!dev->hw_fan_input)
382 return;
383
384 if (!enable)
385 ene_write_reg(dev, ENE_FAN_AS_IN1, 0);
386 else {
387 ene_write_reg(dev, ENE_FAN_AS_IN1, ENE_FAN_AS_IN1_EN);
388 ene_write_reg(dev, ENE_FAN_AS_IN2, ENE_FAN_AS_IN2_EN);
389 }
390 }
391
392 /* setup the receiver for RX*/
ene_rx_setup(struct ene_device * dev)393 static void ene_rx_setup(struct ene_device *dev)
394 {
395 bool learning_mode = dev->learning_mode_enabled ||
396 dev->carrier_detect_enabled;
397 int sample_period_adjust = 0;
398
399 dbg("RX: setup receiver, learning mode = %d", learning_mode);
400
401
402 /* This selects RLC input and clears CFG2 settings */
403 ene_write_reg(dev, ENE_CIRCFG2, 0x00);
404
405 /* set sample period*/
406 if (sample_period == ENE_DEFAULT_SAMPLE_PERIOD)
407 sample_period_adjust =
408 dev->pll_freq == ENE_DEFAULT_PLL_FREQ ? 1 : 2;
409
410 ene_write_reg(dev, ENE_CIRRLC_CFG,
411 (sample_period + sample_period_adjust) |
412 ENE_CIRRLC_CFG_OVERFLOW);
413 /* revB doesn't support inputs */
414 if (dev->hw_revision < ENE_HW_C)
415 goto select_timeout;
416
417 if (learning_mode) {
418
419 WARN_ON(!dev->hw_learning_and_tx_capable);
420
421 /* Enable the opposite of the normal input
422 That means that if GPIO40 is normally used, use GPIO0A
423 and vice versa.
424 This input will carry non demodulated
425 signal, and we will tell the hw to demodulate it itself */
426 ene_rx_select_input(dev, !dev->hw_use_gpio_0a);
427 dev->rx_fan_input_inuse = false;
428
429 /* Enable carrier demodulation */
430 ene_set_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_CARR_DEMOD);
431
432 /* Enable carrier detection */
433 ene_write_reg(dev, ENE_CIRCAR_PULS, 0x63);
434 ene_set_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_CARR_DETECT,
435 dev->carrier_detect_enabled || debug);
436 } else {
437 if (dev->hw_fan_input)
438 dev->rx_fan_input_inuse = true;
439 else
440 ene_rx_select_input(dev, dev->hw_use_gpio_0a);
441
442 /* Disable carrier detection & demodulation */
443 ene_clear_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_CARR_DEMOD);
444 ene_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_CARR_DETECT);
445 }
446
447 select_timeout:
448 if (dev->rx_fan_input_inuse) {
449 dev->rdev->rx_resolution = US_TO_NS(ENE_FW_SAMPLE_PERIOD_FAN);
450
451 /* Fan input doesn't support timeouts, it just ends the
452 input with a maximum sample */
453 dev->rdev->min_timeout = dev->rdev->max_timeout =
454 US_TO_NS(ENE_FW_SMPL_BUF_FAN_MSK *
455 ENE_FW_SAMPLE_PERIOD_FAN);
456 } else {
457 dev->rdev->rx_resolution = US_TO_NS(sample_period);
458
459 /* Theoreticly timeout is unlimited, but we cap it
460 * because it was seen that on one device, it
461 * would stop sending spaces after around 250 msec.
462 * Besides, this is close to 2^32 anyway and timeout is u32.
463 */
464 dev->rdev->min_timeout = US_TO_NS(127 * sample_period);
465 dev->rdev->max_timeout = US_TO_NS(200000);
466 }
467
468 if (dev->hw_learning_and_tx_capable)
469 dev->rdev->tx_resolution = US_TO_NS(sample_period);
470
471 if (dev->rdev->timeout > dev->rdev->max_timeout)
472 dev->rdev->timeout = dev->rdev->max_timeout;
473 if (dev->rdev->timeout < dev->rdev->min_timeout)
474 dev->rdev->timeout = dev->rdev->min_timeout;
475 }
476
477 /* Enable the device for receive */
ene_rx_enable(struct ene_device * dev)478 static void ene_rx_enable(struct ene_device *dev)
479 {
480 u8 reg_value;
481
482 /* Enable system interrupt */
483 if (dev->hw_revision < ENE_HW_C) {
484 ene_write_reg(dev, ENEB_IRQ, dev->irq << 1);
485 ene_write_reg(dev, ENEB_IRQ_UNK1, 0x01);
486 } else {
487 reg_value = ene_read_reg(dev, ENE_IRQ) & 0xF0;
488 reg_value |= ENE_IRQ_UNK_EN;
489 reg_value &= ~ENE_IRQ_STATUS;
490 reg_value |= (dev->irq & ENE_IRQ_MASK);
491 ene_write_reg(dev, ENE_IRQ, reg_value);
492 }
493
494 /* Enable inputs */
495 ene_rx_enable_fan_input(dev, dev->rx_fan_input_inuse);
496 ene_rx_enable_cir_engine(dev, !dev->rx_fan_input_inuse);
497
498 /* ack any pending irqs - just in case */
499 ene_irq_status(dev);
500
501 /* enable firmware bits */
502 ene_set_reg_mask(dev, ENE_FW1, ENE_FW1_ENABLE | ENE_FW1_IRQ);
503
504 /* enter idle mode */
505 ir_raw_event_set_idle(dev->rdev, true);
506 dev->rx_enabled = true;
507 }
508
509 /* Disable the device receiver */
ene_rx_disable(struct ene_device * dev)510 static void ene_rx_disable(struct ene_device *dev)
511 {
512 /* disable inputs */
513 ene_rx_enable_cir_engine(dev, false);
514 ene_rx_enable_fan_input(dev, false);
515
516 /* disable hardware IRQ and firmware flag */
517 ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_ENABLE | ENE_FW1_IRQ);
518
519 ir_raw_event_set_idle(dev->rdev, true);
520 dev->rx_enabled = false;
521 }
522
523 /* This resets the receiver. Useful to stop stream of spaces at end of
524 * transmission
525 */
ene_rx_reset(struct ene_device * dev)526 static void ene_rx_reset(struct ene_device *dev)
527 {
528 ene_clear_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_RX_EN);
529 ene_set_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_RX_EN);
530 }
531
532 /* Set up the TX carrier frequency and duty cycle */
ene_tx_set_carrier(struct ene_device * dev)533 static void ene_tx_set_carrier(struct ene_device *dev)
534 {
535 u8 tx_puls_width;
536 unsigned long flags;
537
538 spin_lock_irqsave(&dev->hw_lock, flags);
539
540 ene_set_clear_reg_mask(dev, ENE_CIRCFG,
541 ENE_CIRCFG_TX_CARR, dev->tx_period > 0);
542
543 if (!dev->tx_period)
544 goto unlock;
545
546 BUG_ON(dev->tx_duty_cycle >= 100 || dev->tx_duty_cycle <= 0);
547
548 tx_puls_width = dev->tx_period / (100 / dev->tx_duty_cycle);
549
550 if (!tx_puls_width)
551 tx_puls_width = 1;
552
553 dbg("TX: pulse distance = %d * 500 ns", dev->tx_period);
554 dbg("TX: pulse width = %d * 500 ns", tx_puls_width);
555
556 ene_write_reg(dev, ENE_CIRMOD_PRD, dev->tx_period | ENE_CIRMOD_PRD_POL);
557 ene_write_reg(dev, ENE_CIRMOD_HPRD, tx_puls_width);
558 unlock:
559 spin_unlock_irqrestore(&dev->hw_lock, flags);
560 }
561
562 /* Enable/disable transmitters */
ene_tx_set_transmitters(struct ene_device * dev)563 static void ene_tx_set_transmitters(struct ene_device *dev)
564 {
565 unsigned long flags;
566
567 spin_lock_irqsave(&dev->hw_lock, flags);
568 ene_set_clear_reg_mask(dev, ENE_GPIOFS8, ENE_GPIOFS8_GPIO41,
569 !!(dev->transmitter_mask & 0x01));
570 ene_set_clear_reg_mask(dev, ENE_GPIOFS1, ENE_GPIOFS1_GPIO0D,
571 !!(dev->transmitter_mask & 0x02));
572 spin_unlock_irqrestore(&dev->hw_lock, flags);
573 }
574
575 /* prepare transmission */
ene_tx_enable(struct ene_device * dev)576 static void ene_tx_enable(struct ene_device *dev)
577 {
578 u8 conf1 = ene_read_reg(dev, ENE_CIRCFG);
579 u8 fwreg2 = ene_read_reg(dev, ENE_FW2);
580
581 dev->saved_conf1 = conf1;
582
583 /* Show information about currently connected transmitter jacks */
584 if (fwreg2 & ENE_FW2_EMMITER1_CONN)
585 dbg("TX: Transmitter #1 is connected");
586
587 if (fwreg2 & ENE_FW2_EMMITER2_CONN)
588 dbg("TX: Transmitter #2 is connected");
589
590 if (!(fwreg2 & (ENE_FW2_EMMITER1_CONN | ENE_FW2_EMMITER2_CONN)))
591 ene_warn("TX: transmitter cable isn't connected!");
592
593 /* disable receive on revc */
594 if (dev->hw_revision == ENE_HW_C)
595 conf1 &= ~ENE_CIRCFG_RX_EN;
596
597 /* Enable TX engine */
598 conf1 |= ENE_CIRCFG_TX_EN | ENE_CIRCFG_TX_IRQ;
599 ene_write_reg(dev, ENE_CIRCFG, conf1);
600 }
601
602 /* end transmission */
ene_tx_disable(struct ene_device * dev)603 static void ene_tx_disable(struct ene_device *dev)
604 {
605 ene_write_reg(dev, ENE_CIRCFG, dev->saved_conf1);
606 dev->tx_buffer = NULL;
607 }
608
609
610 /* TX one sample - must be called with dev->hw_lock*/
ene_tx_sample(struct ene_device * dev)611 static void ene_tx_sample(struct ene_device *dev)
612 {
613 u8 raw_tx;
614 u32 sample;
615 bool pulse = dev->tx_sample_pulse;
616
617 if (!dev->tx_buffer) {
618 ene_warn("TX: BUG: attempt to transmit NULL buffer");
619 return;
620 }
621
622 /* Grab next TX sample */
623 if (!dev->tx_sample) {
624
625 if (dev->tx_pos == dev->tx_len) {
626 if (!dev->tx_done) {
627 dbg("TX: no more data to send");
628 dev->tx_done = true;
629 goto exit;
630 } else {
631 dbg("TX: last sample sent by hardware");
632 ene_tx_disable(dev);
633 complete(&dev->tx_complete);
634 return;
635 }
636 }
637
638 sample = dev->tx_buffer[dev->tx_pos++];
639 dev->tx_sample_pulse = !dev->tx_sample_pulse;
640
641 dev->tx_sample = DIV_ROUND_CLOSEST(sample, sample_period);
642
643 if (!dev->tx_sample)
644 dev->tx_sample = 1;
645 }
646
647 raw_tx = min(dev->tx_sample , (unsigned int)ENE_CIRRLC_OUT_MASK);
648 dev->tx_sample -= raw_tx;
649
650 dbg("TX: sample %8d (%s)", raw_tx * sample_period,
651 pulse ? "pulse" : "space");
652 if (pulse)
653 raw_tx |= ENE_CIRRLC_OUT_PULSE;
654
655 ene_write_reg(dev,
656 dev->tx_reg ? ENE_CIRRLC_OUT1 : ENE_CIRRLC_OUT0, raw_tx);
657
658 dev->tx_reg = !dev->tx_reg;
659 exit:
660 /* simulate TX done interrupt */
661 if (txsim)
662 mod_timer(&dev->tx_sim_timer, jiffies + HZ / 500);
663 }
664
665 /* timer to simulate tx done interrupt */
ene_tx_irqsim(unsigned long data)666 static void ene_tx_irqsim(unsigned long data)
667 {
668 struct ene_device *dev = (struct ene_device *)data;
669 unsigned long flags;
670
671 spin_lock_irqsave(&dev->hw_lock, flags);
672 ene_tx_sample(dev);
673 spin_unlock_irqrestore(&dev->hw_lock, flags);
674 }
675
676
677 /* read irq status and ack it */
ene_irq_status(struct ene_device * dev)678 static int ene_irq_status(struct ene_device *dev)
679 {
680 u8 irq_status;
681 u8 fw_flags1, fw_flags2;
682 int retval = 0;
683
684 fw_flags2 = ene_read_reg(dev, ENE_FW2);
685
686 if (dev->hw_revision < ENE_HW_C) {
687 irq_status = ene_read_reg(dev, ENEB_IRQ_STATUS);
688
689 if (!(irq_status & ENEB_IRQ_STATUS_IR))
690 return 0;
691
692 ene_clear_reg_mask(dev, ENEB_IRQ_STATUS, ENEB_IRQ_STATUS_IR);
693 return ENE_IRQ_RX;
694 }
695
696 irq_status = ene_read_reg(dev, ENE_IRQ);
697 if (!(irq_status & ENE_IRQ_STATUS))
698 return 0;
699
700 /* original driver does that twice - a workaround ? */
701 ene_write_reg(dev, ENE_IRQ, irq_status & ~ENE_IRQ_STATUS);
702 ene_write_reg(dev, ENE_IRQ, irq_status & ~ENE_IRQ_STATUS);
703
704 /* check RX interrupt */
705 if (fw_flags2 & ENE_FW2_RXIRQ) {
706 retval |= ENE_IRQ_RX;
707 ene_write_reg(dev, ENE_FW2, fw_flags2 & ~ENE_FW2_RXIRQ);
708 }
709
710 /* check TX interrupt */
711 fw_flags1 = ene_read_reg(dev, ENE_FW1);
712 if (fw_flags1 & ENE_FW1_TXIRQ) {
713 ene_write_reg(dev, ENE_FW1, fw_flags1 & ~ENE_FW1_TXIRQ);
714 retval |= ENE_IRQ_TX;
715 }
716
717 return retval;
718 }
719
720 /* interrupt handler */
ene_isr(int irq,void * data)721 static irqreturn_t ene_isr(int irq, void *data)
722 {
723 u16 hw_value, reg;
724 int hw_sample, irq_status;
725 bool pulse;
726 unsigned long flags;
727 irqreturn_t retval = IRQ_NONE;
728 struct ene_device *dev = (struct ene_device *)data;
729 DEFINE_IR_RAW_EVENT(ev);
730
731 spin_lock_irqsave(&dev->hw_lock, flags);
732
733 dbg_verbose("ISR called");
734 ene_rx_read_hw_pointer(dev);
735 irq_status = ene_irq_status(dev);
736
737 if (!irq_status)
738 goto unlock;
739
740 retval = IRQ_HANDLED;
741
742 if (irq_status & ENE_IRQ_TX) {
743 dbg_verbose("TX interrupt");
744 if (!dev->hw_learning_and_tx_capable) {
745 dbg("TX interrupt on unsupported device!");
746 goto unlock;
747 }
748 ene_tx_sample(dev);
749 }
750
751 if (!(irq_status & ENE_IRQ_RX))
752 goto unlock;
753
754 dbg_verbose("RX interrupt");
755
756 if (dev->hw_learning_and_tx_capable)
757 ene_rx_sense_carrier(dev);
758
759 /* On hardware that don't support extra buffer we need to trust
760 the interrupt and not track the read pointer */
761 if (!dev->hw_extra_buffer)
762 dev->r_pointer = dev->w_pointer == 0 ? ENE_FW_PACKET_SIZE : 0;
763
764 while (1) {
765
766 reg = ene_rx_get_sample_reg(dev);
767
768 dbg_verbose("next sample to read at: %04x", reg);
769 if (!reg)
770 break;
771
772 hw_value = ene_read_reg(dev, reg);
773
774 if (dev->rx_fan_input_inuse) {
775
776 int offset = ENE_FW_SMPL_BUF_FAN - ENE_FW_SAMPLE_BUFFER;
777
778 /* read high part of the sample */
779 hw_value |= ene_read_reg(dev, reg + offset) << 8;
780 pulse = hw_value & ENE_FW_SMPL_BUF_FAN_PLS;
781
782 /* clear space bit, and other unused bits */
783 hw_value &= ENE_FW_SMPL_BUF_FAN_MSK;
784 hw_sample = hw_value * ENE_FW_SAMPLE_PERIOD_FAN;
785
786 } else {
787 pulse = !(hw_value & ENE_FW_SAMPLE_SPACE);
788 hw_value &= ~ENE_FW_SAMPLE_SPACE;
789 hw_sample = hw_value * sample_period;
790
791 if (dev->rx_period_adjust) {
792 hw_sample *= 100;
793 hw_sample /= (100 + dev->rx_period_adjust);
794 }
795 }
796
797 if (!dev->hw_extra_buffer && !hw_sample) {
798 dev->r_pointer = dev->w_pointer;
799 continue;
800 }
801
802 dbg("RX: %d (%s)", hw_sample, pulse ? "pulse" : "space");
803
804 ev.duration = US_TO_NS(hw_sample);
805 ev.pulse = pulse;
806 ir_raw_event_store_with_filter(dev->rdev, &ev);
807 }
808
809 ir_raw_event_handle(dev->rdev);
810 unlock:
811 spin_unlock_irqrestore(&dev->hw_lock, flags);
812 return retval;
813 }
814
815 /* Initialize default settings */
ene_setup_default_settings(struct ene_device * dev)816 static void ene_setup_default_settings(struct ene_device *dev)
817 {
818 dev->tx_period = 32;
819 dev->tx_duty_cycle = 50; /*%*/
820 dev->transmitter_mask = 0x03;
821 dev->learning_mode_enabled = learning_mode_force;
822
823 /* Set reasonable default timeout */
824 dev->rdev->timeout = US_TO_NS(150000);
825 }
826
827 /* Upload all hardware settings at once. Used at load and resume time */
ene_setup_hw_settings(struct ene_device * dev)828 static void ene_setup_hw_settings(struct ene_device *dev)
829 {
830 if (dev->hw_learning_and_tx_capable) {
831 ene_tx_set_carrier(dev);
832 ene_tx_set_transmitters(dev);
833 }
834
835 ene_rx_setup(dev);
836 }
837
838 /* outside interface: called on first open*/
ene_open(struct rc_dev * rdev)839 static int ene_open(struct rc_dev *rdev)
840 {
841 struct ene_device *dev = rdev->priv;
842 unsigned long flags;
843
844 spin_lock_irqsave(&dev->hw_lock, flags);
845 ene_rx_enable(dev);
846 spin_unlock_irqrestore(&dev->hw_lock, flags);
847 return 0;
848 }
849
850 /* outside interface: called on device close*/
ene_close(struct rc_dev * rdev)851 static void ene_close(struct rc_dev *rdev)
852 {
853 struct ene_device *dev = rdev->priv;
854 unsigned long flags;
855 spin_lock_irqsave(&dev->hw_lock, flags);
856
857 ene_rx_disable(dev);
858 spin_unlock_irqrestore(&dev->hw_lock, flags);
859 }
860
861 /* outside interface: set transmitter mask */
ene_set_tx_mask(struct rc_dev * rdev,u32 tx_mask)862 static int ene_set_tx_mask(struct rc_dev *rdev, u32 tx_mask)
863 {
864 struct ene_device *dev = rdev->priv;
865 dbg("TX: attempt to set transmitter mask %02x", tx_mask);
866
867 /* invalid txmask */
868 if (!tx_mask || tx_mask & ~0x03) {
869 dbg("TX: invalid mask");
870 /* return count of transmitters */
871 return 2;
872 }
873
874 dev->transmitter_mask = tx_mask;
875 ene_tx_set_transmitters(dev);
876 return 0;
877 }
878
879 /* outside interface : set tx carrier */
ene_set_tx_carrier(struct rc_dev * rdev,u32 carrier)880 static int ene_set_tx_carrier(struct rc_dev *rdev, u32 carrier)
881 {
882 struct ene_device *dev = rdev->priv;
883 u32 period = 2000000 / carrier;
884
885 dbg("TX: attempt to set tx carrier to %d kHz", carrier);
886
887 if (period && (period > ENE_CIRMOD_PRD_MAX ||
888 period < ENE_CIRMOD_PRD_MIN)) {
889
890 dbg("TX: out of range %d-%d kHz carrier",
891 2000 / ENE_CIRMOD_PRD_MIN, 2000 / ENE_CIRMOD_PRD_MAX);
892 return -1;
893 }
894
895 dev->tx_period = period;
896 ene_tx_set_carrier(dev);
897 return 0;
898 }
899
900 /*outside interface : set tx duty cycle */
ene_set_tx_duty_cycle(struct rc_dev * rdev,u32 duty_cycle)901 static int ene_set_tx_duty_cycle(struct rc_dev *rdev, u32 duty_cycle)
902 {
903 struct ene_device *dev = rdev->priv;
904 dbg("TX: setting duty cycle to %d%%", duty_cycle);
905 dev->tx_duty_cycle = duty_cycle;
906 ene_tx_set_carrier(dev);
907 return 0;
908 }
909
910 /* outside interface: enable learning mode */
ene_set_learning_mode(struct rc_dev * rdev,int enable)911 static int ene_set_learning_mode(struct rc_dev *rdev, int enable)
912 {
913 struct ene_device *dev = rdev->priv;
914 unsigned long flags;
915 if (enable == dev->learning_mode_enabled)
916 return 0;
917
918 spin_lock_irqsave(&dev->hw_lock, flags);
919 dev->learning_mode_enabled = enable;
920 ene_rx_disable(dev);
921 ene_rx_setup(dev);
922 ene_rx_enable(dev);
923 spin_unlock_irqrestore(&dev->hw_lock, flags);
924 return 0;
925 }
926
ene_set_carrier_report(struct rc_dev * rdev,int enable)927 static int ene_set_carrier_report(struct rc_dev *rdev, int enable)
928 {
929 struct ene_device *dev = rdev->priv;
930 unsigned long flags;
931
932 if (enable == dev->carrier_detect_enabled)
933 return 0;
934
935 spin_lock_irqsave(&dev->hw_lock, flags);
936 dev->carrier_detect_enabled = enable;
937 ene_rx_disable(dev);
938 ene_rx_setup(dev);
939 ene_rx_enable(dev);
940 spin_unlock_irqrestore(&dev->hw_lock, flags);
941 return 0;
942 }
943
944 /* outside interface: enable or disable idle mode */
ene_set_idle(struct rc_dev * rdev,bool idle)945 static void ene_set_idle(struct rc_dev *rdev, bool idle)
946 {
947 struct ene_device *dev = rdev->priv;
948
949 if (idle) {
950 ene_rx_reset(dev);
951 dbg("RX: end of data");
952 }
953 }
954
955 /* outside interface: transmit */
ene_transmit(struct rc_dev * rdev,int * buf,u32 n)956 static int ene_transmit(struct rc_dev *rdev, int *buf, u32 n)
957 {
958 struct ene_device *dev = rdev->priv;
959 unsigned long flags;
960
961 dev->tx_buffer = buf;
962 dev->tx_len = n / sizeof(int);
963 dev->tx_pos = 0;
964 dev->tx_reg = 0;
965 dev->tx_done = 0;
966 dev->tx_sample = 0;
967 dev->tx_sample_pulse = 0;
968
969 dbg("TX: %d samples", dev->tx_len);
970
971 spin_lock_irqsave(&dev->hw_lock, flags);
972
973 ene_tx_enable(dev);
974
975 /* Transmit first two samples */
976 ene_tx_sample(dev);
977 ene_tx_sample(dev);
978
979 spin_unlock_irqrestore(&dev->hw_lock, flags);
980
981 if (wait_for_completion_timeout(&dev->tx_complete, 2 * HZ) == 0) {
982 dbg("TX: timeout");
983 spin_lock_irqsave(&dev->hw_lock, flags);
984 ene_tx_disable(dev);
985 spin_unlock_irqrestore(&dev->hw_lock, flags);
986 } else
987 dbg("TX: done");
988 return n;
989 }
990
991 /* probe entry */
ene_probe(struct pnp_dev * pnp_dev,const struct pnp_device_id * id)992 static int ene_probe(struct pnp_dev *pnp_dev, const struct pnp_device_id *id)
993 {
994 int error = -ENOMEM;
995 struct rc_dev *rdev;
996 struct ene_device *dev;
997
998 /* allocate memory */
999 dev = kzalloc(sizeof(struct ene_device), GFP_KERNEL);
1000 rdev = rc_allocate_device();
1001 if (!dev || !rdev)
1002 goto error1;
1003
1004 /* validate resources */
1005 error = -ENODEV;
1006
1007 /* init these to -1, as 0 is valid for both */
1008 dev->hw_io = -1;
1009 dev->irq = -1;
1010
1011 if (!pnp_port_valid(pnp_dev, 0) ||
1012 pnp_port_len(pnp_dev, 0) < ENE_IO_SIZE)
1013 goto error;
1014
1015 if (!pnp_irq_valid(pnp_dev, 0))
1016 goto error;
1017
1018 spin_lock_init(&dev->hw_lock);
1019
1020 /* claim the resources */
1021 error = -EBUSY;
1022 dev->hw_io = pnp_port_start(pnp_dev, 0);
1023 if (!request_region(dev->hw_io, ENE_IO_SIZE, ENE_DRIVER_NAME)) {
1024 dev->hw_io = -1;
1025 dev->irq = -1;
1026 goto error;
1027 }
1028
1029 dev->irq = pnp_irq(pnp_dev, 0);
1030 if (request_irq(dev->irq, ene_isr,
1031 IRQF_SHARED, ENE_DRIVER_NAME, (void *)dev)) {
1032 dev->irq = -1;
1033 goto error;
1034 }
1035
1036 pnp_set_drvdata(pnp_dev, dev);
1037 dev->pnp_dev = pnp_dev;
1038
1039 /* don't allow too short/long sample periods */
1040 if (sample_period < 5 || sample_period > 0x7F)
1041 sample_period = ENE_DEFAULT_SAMPLE_PERIOD;
1042
1043 /* detect hardware version and features */
1044 error = ene_hw_detect(dev);
1045 if (error)
1046 goto error;
1047
1048 if (!dev->hw_learning_and_tx_capable && txsim) {
1049 dev->hw_learning_and_tx_capable = true;
1050 setup_timer(&dev->tx_sim_timer, ene_tx_irqsim,
1051 (long unsigned int)dev);
1052 ene_warn("Simulation of TX activated");
1053 }
1054
1055 if (!dev->hw_learning_and_tx_capable)
1056 learning_mode_force = false;
1057
1058 rdev->driver_type = RC_DRIVER_IR_RAW;
1059 rdev->allowed_protos = RC_TYPE_ALL;
1060 rdev->priv = dev;
1061 rdev->open = ene_open;
1062 rdev->close = ene_close;
1063 rdev->s_idle = ene_set_idle;
1064 rdev->driver_name = ENE_DRIVER_NAME;
1065 rdev->map_name = RC_MAP_RC6_MCE;
1066 rdev->input_name = "ENE eHome Infrared Remote Receiver";
1067
1068 if (dev->hw_learning_and_tx_capable) {
1069 rdev->s_learning_mode = ene_set_learning_mode;
1070 init_completion(&dev->tx_complete);
1071 rdev->tx_ir = ene_transmit;
1072 rdev->s_tx_mask = ene_set_tx_mask;
1073 rdev->s_tx_carrier = ene_set_tx_carrier;
1074 rdev->s_tx_duty_cycle = ene_set_tx_duty_cycle;
1075 rdev->s_carrier_report = ene_set_carrier_report;
1076 rdev->input_name = "ENE eHome Infrared Remote Transceiver";
1077 }
1078
1079 dev->rdev = rdev;
1080
1081 ene_rx_setup_hw_buffer(dev);
1082 ene_setup_default_settings(dev);
1083 ene_setup_hw_settings(dev);
1084
1085 device_set_wakeup_capable(&pnp_dev->dev, true);
1086 device_set_wakeup_enable(&pnp_dev->dev, true);
1087
1088 error = rc_register_device(rdev);
1089 if (error < 0)
1090 goto error;
1091
1092 ene_notice("driver has been successfully loaded");
1093 return 0;
1094 error:
1095 if (dev && dev->irq >= 0)
1096 free_irq(dev->irq, dev);
1097 if (dev && dev->hw_io >= 0)
1098 release_region(dev->hw_io, ENE_IO_SIZE);
1099 error1:
1100 rc_free_device(rdev);
1101 kfree(dev);
1102 return error;
1103 }
1104
1105 /* main unload function */
ene_remove(struct pnp_dev * pnp_dev)1106 static void ene_remove(struct pnp_dev *pnp_dev)
1107 {
1108 struct ene_device *dev = pnp_get_drvdata(pnp_dev);
1109 unsigned long flags;
1110
1111 spin_lock_irqsave(&dev->hw_lock, flags);
1112 ene_rx_disable(dev);
1113 ene_rx_restore_hw_buffer(dev);
1114 spin_unlock_irqrestore(&dev->hw_lock, flags);
1115
1116 free_irq(dev->irq, dev);
1117 release_region(dev->hw_io, ENE_IO_SIZE);
1118 rc_unregister_device(dev->rdev);
1119 kfree(dev);
1120 }
1121
1122 /* enable wake on IR (wakes on specific button on original remote) */
ene_enable_wake(struct ene_device * dev,int enable)1123 static void ene_enable_wake(struct ene_device *dev, int enable)
1124 {
1125 enable = enable && device_may_wakeup(&dev->pnp_dev->dev);
1126 dbg("wake on IR %s", enable ? "enabled" : "disabled");
1127 ene_set_clear_reg_mask(dev, ENE_FW1, ENE_FW1_WAKE, enable);
1128 }
1129
1130 #ifdef CONFIG_PM
ene_suspend(struct pnp_dev * pnp_dev,pm_message_t state)1131 static int ene_suspend(struct pnp_dev *pnp_dev, pm_message_t state)
1132 {
1133 struct ene_device *dev = pnp_get_drvdata(pnp_dev);
1134 ene_enable_wake(dev, true);
1135
1136 /* TODO: add support for wake pattern */
1137 return 0;
1138 }
1139
ene_resume(struct pnp_dev * pnp_dev)1140 static int ene_resume(struct pnp_dev *pnp_dev)
1141 {
1142 struct ene_device *dev = pnp_get_drvdata(pnp_dev);
1143 ene_setup_hw_settings(dev);
1144
1145 if (dev->rx_enabled)
1146 ene_rx_enable(dev);
1147
1148 ene_enable_wake(dev, false);
1149 return 0;
1150 }
1151 #endif
1152
ene_shutdown(struct pnp_dev * pnp_dev)1153 static void ene_shutdown(struct pnp_dev *pnp_dev)
1154 {
1155 struct ene_device *dev = pnp_get_drvdata(pnp_dev);
1156 ene_enable_wake(dev, true);
1157 }
1158
1159 static const struct pnp_device_id ene_ids[] = {
1160 {.id = "ENE0100",},
1161 {.id = "ENE0200",},
1162 {.id = "ENE0201",},
1163 {.id = "ENE0202",},
1164 {},
1165 };
1166
1167 static struct pnp_driver ene_driver = {
1168 .name = ENE_DRIVER_NAME,
1169 .id_table = ene_ids,
1170 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1171
1172 .probe = ene_probe,
1173 .remove = __devexit_p(ene_remove),
1174 #ifdef CONFIG_PM
1175 .suspend = ene_suspend,
1176 .resume = ene_resume,
1177 #endif
1178 .shutdown = ene_shutdown,
1179 };
1180
ene_init(void)1181 static int __init ene_init(void)
1182 {
1183 return pnp_register_driver(&ene_driver);
1184 }
1185
ene_exit(void)1186 static void ene_exit(void)
1187 {
1188 pnp_unregister_driver(&ene_driver);
1189 }
1190
1191 module_param(sample_period, int, S_IRUGO);
1192 MODULE_PARM_DESC(sample_period, "Hardware sample period (50 us default)");
1193
1194 module_param(learning_mode_force, bool, S_IRUGO);
1195 MODULE_PARM_DESC(learning_mode_force, "Enable learning mode by default");
1196
1197 module_param(debug, int, S_IRUGO | S_IWUSR);
1198 MODULE_PARM_DESC(debug, "Debug level");
1199
1200 module_param(txsim, bool, S_IRUGO);
1201 MODULE_PARM_DESC(txsim,
1202 "Simulate TX features on unsupported hardware (dangerous)");
1203
1204 MODULE_DEVICE_TABLE(pnp, ene_ids);
1205 MODULE_DESCRIPTION
1206 ("Infrared input driver for KB3926B/C/D/E/F "
1207 "(aka ENE0100/ENE0200/ENE0201/ENE0202) CIR port");
1208
1209 MODULE_AUTHOR("Maxim Levitsky");
1210 MODULE_LICENSE("GPL");
1211
1212 module_init(ene_init);
1213 module_exit(ene_exit);
1214