1 /*
2  * Support for IDE interfaces on PowerMacs.
3  *
4  * These IDE interfaces are memory-mapped and have a DBDMA channel
5  * for doing DMA.
6  *
7  *  Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8  *  Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
9  *
10  *  This program is free software; you can redistribute it and/or
11  *  modify it under the terms of the GNU General Public License
12  *  as published by the Free Software Foundation; either version
13  *  2 of the License, or (at your option) any later version.
14  *
15  * Some code taken from drivers/ide/ide-dma.c:
16  *
17  *  Copyright (c) 1995-1998  Mark Lord
18  *
19  * TODO: - Use pre-calculated (kauai) timing tables all the time and
20  * get rid of the "rounded" tables used previously, so we have the
21  * same table format for all controllers and can then just have one
22  * big table
23  *
24  */
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/pci.h>
33 #include <linux/adb.h>
34 #include <linux/pmu.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 
38 #include <asm/prom.h>
39 #include <asm/io.h>
40 #include <asm/dbdma.h>
41 #include <asm/ide.h>
42 #include <asm/pci-bridge.h>
43 #include <asm/machdep.h>
44 #include <asm/pmac_feature.h>
45 #include <asm/sections.h>
46 #include <asm/irq.h>
47 #include <asm/mediabay.h>
48 
49 #define DRV_NAME "ide-pmac"
50 
51 #undef IDE_PMAC_DEBUG
52 
53 #define DMA_WAIT_TIMEOUT	50
54 
55 typedef struct pmac_ide_hwif {
56 	unsigned long			regbase;
57 	int				irq;
58 	int				kind;
59 	int				aapl_bus_id;
60 	unsigned			broken_dma : 1;
61 	unsigned			broken_dma_warn : 1;
62 	struct device_node*		node;
63 	struct macio_dev		*mdev;
64 	u32				timings[4];
65 	volatile u32 __iomem *		*kauai_fcr;
66 	ide_hwif_t			*hwif;
67 
68 	/* Those fields are duplicating what is in hwif. We currently
69 	 * can't use the hwif ones because of some assumptions that are
70 	 * beeing done by the generic code about the kind of dma controller
71 	 * and format of the dma table. This will have to be fixed though.
72 	 */
73 	volatile struct dbdma_regs __iomem *	dma_regs;
74 	struct dbdma_cmd*		dma_table_cpu;
75 } pmac_ide_hwif_t;
76 
77 enum {
78 	controller_ohare,	/* OHare based */
79 	controller_heathrow,	/* Heathrow/Paddington */
80 	controller_kl_ata3,	/* KeyLargo ATA-3 */
81 	controller_kl_ata4,	/* KeyLargo ATA-4 */
82 	controller_un_ata6,	/* UniNorth2 ATA-6 */
83 	controller_k2_ata6,	/* K2 ATA-6 */
84 	controller_sh_ata6,	/* Shasta ATA-6 */
85 };
86 
87 static const char* model_name[] = {
88 	"OHare ATA",		/* OHare based */
89 	"Heathrow ATA",		/* Heathrow/Paddington */
90 	"KeyLargo ATA-3",	/* KeyLargo ATA-3 (MDMA only) */
91 	"KeyLargo ATA-4",	/* KeyLargo ATA-4 (UDMA/66) */
92 	"UniNorth ATA-6",	/* UniNorth2 ATA-6 (UDMA/100) */
93 	"K2 ATA-6",		/* K2 ATA-6 (UDMA/100) */
94 	"Shasta ATA-6",		/* Shasta ATA-6 (UDMA/133) */
95 };
96 
97 /*
98  * Extra registers, both 32-bit little-endian
99  */
100 #define IDE_TIMING_CONFIG	0x200
101 #define IDE_INTERRUPT		0x300
102 
103 /* Kauai (U2) ATA has different register setup */
104 #define IDE_KAUAI_PIO_CONFIG	0x200
105 #define IDE_KAUAI_ULTRA_CONFIG	0x210
106 #define IDE_KAUAI_POLL_CONFIG	0x220
107 
108 /*
109  * Timing configuration register definitions
110  */
111 
112 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
113 #define SYSCLK_TICKS(t)		(((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
114 #define SYSCLK_TICKS_66(t)	(((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
115 #define IDE_SYSCLK_NS		30	/* 33Mhz cell */
116 #define IDE_SYSCLK_66_NS	15	/* 66Mhz cell */
117 
118 /* 133Mhz cell, found in shasta.
119  * See comments about 100 Mhz Uninorth 2...
120  * Note that PIO_MASK and MDMA_MASK seem to overlap
121  */
122 #define TR_133_PIOREG_PIO_MASK		0xff000fff
123 #define TR_133_PIOREG_MDMA_MASK		0x00fff800
124 #define TR_133_UDMAREG_UDMA_MASK	0x0003ffff
125 #define TR_133_UDMAREG_UDMA_EN		0x00000001
126 
127 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
128  * this one yet, it appears as a pci device (106b/0033) on uninorth
129  * internal PCI bus and it's clock is controlled like gem or fw. It
130  * appears to be an evolution of keylargo ATA4 with a timing register
131  * extended to 2 32bits registers and a similar DBDMA channel. Other
132  * registers seem to exist but I can't tell much about them.
133  *
134  * So far, I'm using pre-calculated tables for this extracted from
135  * the values used by the MacOS X driver.
136  *
137  * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
138  * register controls the UDMA timings. At least, it seems bit 0
139  * of this one enables UDMA vs. MDMA, and bits 4..7 are the
140  * cycle time in units of 10ns. Bits 8..15 are used by I don't
141  * know their meaning yet
142  */
143 #define TR_100_PIOREG_PIO_MASK		0xff000fff
144 #define TR_100_PIOREG_MDMA_MASK		0x00fff000
145 #define TR_100_UDMAREG_UDMA_MASK	0x0000ffff
146 #define TR_100_UDMAREG_UDMA_EN		0x00000001
147 
148 
149 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
150  * 40 connector cable and to 4 on 80 connector one.
151  * Clock unit is 15ns (66Mhz)
152  *
153  * 3 Values can be programmed:
154  *  - Write data setup, which appears to match the cycle time. They
155  *    also call it DIOW setup.
156  *  - Ready to pause time (from spec)
157  *  - Address setup. That one is weird. I don't see where exactly
158  *    it fits in UDMA cycles, I got it's name from an obscure piece
159  *    of commented out code in Darwin. They leave it to 0, we do as
160  *    well, despite a comment that would lead to think it has a
161  *    min value of 45ns.
162  * Apple also add 60ns to the write data setup (or cycle time ?) on
163  * reads.
164  */
165 #define TR_66_UDMA_MASK			0xfff00000
166 #define TR_66_UDMA_EN			0x00100000 /* Enable Ultra mode for DMA */
167 #define TR_66_UDMA_ADDRSETUP_MASK	0xe0000000 /* Address setup */
168 #define TR_66_UDMA_ADDRSETUP_SHIFT	29
169 #define TR_66_UDMA_RDY2PAUS_MASK	0x1e000000 /* Ready 2 pause time */
170 #define TR_66_UDMA_RDY2PAUS_SHIFT	25
171 #define TR_66_UDMA_WRDATASETUP_MASK	0x01e00000 /* Write data setup time */
172 #define TR_66_UDMA_WRDATASETUP_SHIFT	21
173 #define TR_66_MDMA_MASK			0x000ffc00
174 #define TR_66_MDMA_RECOVERY_MASK	0x000f8000
175 #define TR_66_MDMA_RECOVERY_SHIFT	15
176 #define TR_66_MDMA_ACCESS_MASK		0x00007c00
177 #define TR_66_MDMA_ACCESS_SHIFT		10
178 #define TR_66_PIO_MASK			0x000003ff
179 #define TR_66_PIO_RECOVERY_MASK		0x000003e0
180 #define TR_66_PIO_RECOVERY_SHIFT	5
181 #define TR_66_PIO_ACCESS_MASK		0x0000001f
182 #define TR_66_PIO_ACCESS_SHIFT		0
183 
184 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
185  * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
186  *
187  * The access time and recovery time can be programmed. Some older
188  * Darwin code base limit OHare to 150ns cycle time. I decided to do
189  * the same here fore safety against broken old hardware ;)
190  * The HalfTick bit, when set, adds half a clock (15ns) to the access
191  * time and removes one from recovery. It's not supported on KeyLargo
192  * implementation afaik. The E bit appears to be set for PIO mode 0 and
193  * is used to reach long timings used in this mode.
194  */
195 #define TR_33_MDMA_MASK			0x003ff800
196 #define TR_33_MDMA_RECOVERY_MASK	0x001f0000
197 #define TR_33_MDMA_RECOVERY_SHIFT	16
198 #define TR_33_MDMA_ACCESS_MASK		0x0000f800
199 #define TR_33_MDMA_ACCESS_SHIFT		11
200 #define TR_33_MDMA_HALFTICK		0x00200000
201 #define TR_33_PIO_MASK			0x000007ff
202 #define TR_33_PIO_E			0x00000400
203 #define TR_33_PIO_RECOVERY_MASK		0x000003e0
204 #define TR_33_PIO_RECOVERY_SHIFT	5
205 #define TR_33_PIO_ACCESS_MASK		0x0000001f
206 #define TR_33_PIO_ACCESS_SHIFT		0
207 
208 /*
209  * Interrupt register definitions
210  */
211 #define IDE_INTR_DMA			0x80000000
212 #define IDE_INTR_DEVICE			0x40000000
213 
214 /*
215  * FCR Register on Kauai. Not sure what bit 0x4 is  ...
216  */
217 #define KAUAI_FCR_UATA_MAGIC		0x00000004
218 #define KAUAI_FCR_UATA_RESET_N		0x00000002
219 #define KAUAI_FCR_UATA_ENABLE		0x00000001
220 
221 /* Rounded Multiword DMA timings
222  *
223  * I gave up finding a generic formula for all controller
224  * types and instead, built tables based on timing values
225  * used by Apple in Darwin's implementation.
226  */
227 struct mdma_timings_t {
228 	int	accessTime;
229 	int	recoveryTime;
230 	int	cycleTime;
231 };
232 
233 struct mdma_timings_t mdma_timings_33[] =
234 {
235     { 240, 240, 480 },
236     { 180, 180, 360 },
237     { 135, 135, 270 },
238     { 120, 120, 240 },
239     { 105, 105, 210 },
240     {  90,  90, 180 },
241     {  75,  75, 150 },
242     {  75,  45, 120 },
243     {   0,   0,   0 }
244 };
245 
246 struct mdma_timings_t mdma_timings_33k[] =
247 {
248     { 240, 240, 480 },
249     { 180, 180, 360 },
250     { 150, 150, 300 },
251     { 120, 120, 240 },
252     {  90, 120, 210 },
253     {  90,  90, 180 },
254     {  90,  60, 150 },
255     {  90,  30, 120 },
256     {   0,   0,   0 }
257 };
258 
259 struct mdma_timings_t mdma_timings_66[] =
260 {
261     { 240, 240, 480 },
262     { 180, 180, 360 },
263     { 135, 135, 270 },
264     { 120, 120, 240 },
265     { 105, 105, 210 },
266     {  90,  90, 180 },
267     {  90,  75, 165 },
268     {  75,  45, 120 },
269     {   0,   0,   0 }
270 };
271 
272 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
273 struct {
274 	int	addrSetup; /* ??? */
275 	int	rdy2pause;
276 	int	wrDataSetup;
277 } kl66_udma_timings[] =
278 {
279     {   0, 180,  120 },	/* Mode 0 */
280     {   0, 150,  90 },	/*      1 */
281     {   0, 120,  60 },	/*      2 */
282     {   0, 90,   45 },	/*      3 */
283     {   0, 90,   30 }	/*      4 */
284 };
285 
286 /* UniNorth 2 ATA/100 timings */
287 struct kauai_timing {
288 	int	cycle_time;
289 	u32	timing_reg;
290 };
291 
292 static struct kauai_timing	kauai_pio_timings[] =
293 {
294 	{ 930	, 0x08000fff },
295 	{ 600	, 0x08000a92 },
296 	{ 383	, 0x0800060f },
297 	{ 360	, 0x08000492 },
298 	{ 330	, 0x0800048f },
299 	{ 300	, 0x080003cf },
300 	{ 270	, 0x080003cc },
301 	{ 240	, 0x0800038b },
302 	{ 239	, 0x0800030c },
303 	{ 180	, 0x05000249 },
304 	{ 120	, 0x04000148 },
305 	{ 0	, 0 },
306 };
307 
308 static struct kauai_timing	kauai_mdma_timings[] =
309 {
310 	{ 1260	, 0x00fff000 },
311 	{ 480	, 0x00618000 },
312 	{ 360	, 0x00492000 },
313 	{ 270	, 0x0038e000 },
314 	{ 240	, 0x0030c000 },
315 	{ 210	, 0x002cb000 },
316 	{ 180	, 0x00249000 },
317 	{ 150	, 0x00209000 },
318 	{ 120	, 0x00148000 },
319 	{ 0	, 0 },
320 };
321 
322 static struct kauai_timing	kauai_udma_timings[] =
323 {
324 	{ 120	, 0x000070c0 },
325 	{ 90	, 0x00005d80 },
326 	{ 60	, 0x00004a60 },
327 	{ 45	, 0x00003a50 },
328 	{ 30	, 0x00002a30 },
329 	{ 20	, 0x00002921 },
330 	{ 0	, 0 },
331 };
332 
333 static struct kauai_timing	shasta_pio_timings[] =
334 {
335 	{ 930	, 0x08000fff },
336 	{ 600	, 0x0A000c97 },
337 	{ 383	, 0x07000712 },
338 	{ 360	, 0x040003cd },
339 	{ 330	, 0x040003cd },
340 	{ 300	, 0x040003cd },
341 	{ 270	, 0x040003cd },
342 	{ 240	, 0x040003cd },
343 	{ 239	, 0x040003cd },
344 	{ 180	, 0x0400028b },
345 	{ 120	, 0x0400010a },
346 	{ 0	, 0 },
347 };
348 
349 static struct kauai_timing	shasta_mdma_timings[] =
350 {
351 	{ 1260	, 0x00fff000 },
352 	{ 480	, 0x00820800 },
353 	{ 360	, 0x00820800 },
354 	{ 270	, 0x00820800 },
355 	{ 240	, 0x00820800 },
356 	{ 210	, 0x00820800 },
357 	{ 180	, 0x00820800 },
358 	{ 150	, 0x0028b000 },
359 	{ 120	, 0x001ca000 },
360 	{ 0	, 0 },
361 };
362 
363 static struct kauai_timing	shasta_udma133_timings[] =
364 {
365 	{ 120   , 0x00035901, },
366 	{ 90    , 0x000348b1, },
367 	{ 60    , 0x00033881, },
368 	{ 45    , 0x00033861, },
369 	{ 30    , 0x00033841, },
370 	{ 20    , 0x00033031, },
371 	{ 15    , 0x00033021, },
372 	{ 0	, 0 },
373 };
374 
375 
376 static inline u32
kauai_lookup_timing(struct kauai_timing * table,int cycle_time)377 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
378 {
379 	int i;
380 
381 	for (i=0; table[i].cycle_time; i++)
382 		if (cycle_time > table[i+1].cycle_time)
383 			return table[i].timing_reg;
384 	BUG();
385 	return 0;
386 }
387 
388 /* allow up to 256 DBDMA commands per xfer */
389 #define MAX_DCMDS		256
390 
391 /*
392  * Wait 1s for disk to answer on IDE bus after a hard reset
393  * of the device (via GPIO/FCR).
394  *
395  * Some devices seem to "pollute" the bus even after dropping
396  * the BSY bit (typically some combo drives slave on the UDMA
397  * bus) after a hard reset. Since we hard reset all drives on
398  * KeyLargo ATA66, we have to keep that delay around. I may end
399  * up not hard resetting anymore on these and keep the delay only
400  * for older interfaces instead (we have to reset when coming
401  * from MacOS...) --BenH.
402  */
403 #define IDE_WAKEUP_DELAY	(1*HZ)
404 
405 static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
406 
407 #define PMAC_IDE_REG(x) \
408 	((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
409 
410 /*
411  * Apply the timings of the proper unit (master/slave) to the shared
412  * timing register when selecting that unit. This version is for
413  * ASICs with a single timing register
414  */
pmac_ide_apply_timings(ide_drive_t * drive)415 static void pmac_ide_apply_timings(ide_drive_t *drive)
416 {
417 	ide_hwif_t *hwif = drive->hwif;
418 	pmac_ide_hwif_t *pmif =
419 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
420 
421 	if (drive->dn & 1)
422 		writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
423 	else
424 		writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
425 	(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
426 }
427 
428 /*
429  * Apply the timings of the proper unit (master/slave) to the shared
430  * timing register when selecting that unit. This version is for
431  * ASICs with a dual timing register (Kauai)
432  */
pmac_ide_kauai_apply_timings(ide_drive_t * drive)433 static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
434 {
435 	ide_hwif_t *hwif = drive->hwif;
436 	pmac_ide_hwif_t *pmif =
437 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
438 
439 	if (drive->dn & 1) {
440 		writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
441 		writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
442 	} else {
443 		writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
444 		writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
445 	}
446 	(void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
447 }
448 
449 /*
450  * Force an update of controller timing values for a given drive
451  */
452 static void
pmac_ide_do_update_timings(ide_drive_t * drive)453 pmac_ide_do_update_timings(ide_drive_t *drive)
454 {
455 	ide_hwif_t *hwif = drive->hwif;
456 	pmac_ide_hwif_t *pmif =
457 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
458 
459 	if (pmif->kind == controller_sh_ata6 ||
460 	    pmif->kind == controller_un_ata6 ||
461 	    pmif->kind == controller_k2_ata6)
462 		pmac_ide_kauai_apply_timings(drive);
463 	else
464 		pmac_ide_apply_timings(drive);
465 }
466 
pmac_dev_select(ide_drive_t * drive)467 static void pmac_dev_select(ide_drive_t *drive)
468 {
469 	pmac_ide_apply_timings(drive);
470 
471 	writeb(drive->select | ATA_DEVICE_OBS,
472 	       (void __iomem *)drive->hwif->io_ports.device_addr);
473 }
474 
pmac_kauai_dev_select(ide_drive_t * drive)475 static void pmac_kauai_dev_select(ide_drive_t *drive)
476 {
477 	pmac_ide_kauai_apply_timings(drive);
478 
479 	writeb(drive->select | ATA_DEVICE_OBS,
480 	       (void __iomem *)drive->hwif->io_ports.device_addr);
481 }
482 
pmac_exec_command(ide_hwif_t * hwif,u8 cmd)483 static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
484 {
485 	writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
486 	(void)readl((void __iomem *)(hwif->io_ports.data_addr
487 				     + IDE_TIMING_CONFIG));
488 }
489 
pmac_write_devctl(ide_hwif_t * hwif,u8 ctl)490 static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
491 {
492 	writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
493 	(void)readl((void __iomem *)(hwif->io_ports.data_addr
494 				     + IDE_TIMING_CONFIG));
495 }
496 
497 /*
498  * Old tuning functions (called on hdparm -p), sets up drive PIO timings
499  */
pmac_ide_set_pio_mode(ide_hwif_t * hwif,ide_drive_t * drive)500 static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
501 {
502 	pmac_ide_hwif_t *pmif =
503 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
504 	const u8 pio = drive->pio_mode - XFER_PIO_0;
505 	struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
506 	u32 *timings, t;
507 	unsigned accessTicks, recTicks;
508 	unsigned accessTime, recTime;
509 	unsigned int cycle_time;
510 
511 	/* which drive is it ? */
512 	timings = &pmif->timings[drive->dn & 1];
513 	t = *timings;
514 
515 	cycle_time = ide_pio_cycle_time(drive, pio);
516 
517 	switch (pmif->kind) {
518 	case controller_sh_ata6: {
519 		/* 133Mhz cell */
520 		u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
521 		t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
522 		break;
523 		}
524 	case controller_un_ata6:
525 	case controller_k2_ata6: {
526 		/* 100Mhz cell */
527 		u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
528 		t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
529 		break;
530 		}
531 	case controller_kl_ata4:
532 		/* 66Mhz cell */
533 		recTime = cycle_time - tim->active - tim->setup;
534 		recTime = max(recTime, 150U);
535 		accessTime = tim->active;
536 		accessTime = max(accessTime, 150U);
537 		accessTicks = SYSCLK_TICKS_66(accessTime);
538 		accessTicks = min(accessTicks, 0x1fU);
539 		recTicks = SYSCLK_TICKS_66(recTime);
540 		recTicks = min(recTicks, 0x1fU);
541 		t = (t & ~TR_66_PIO_MASK) |
542 			(accessTicks << TR_66_PIO_ACCESS_SHIFT) |
543 			(recTicks << TR_66_PIO_RECOVERY_SHIFT);
544 		break;
545 	default: {
546 		/* 33Mhz cell */
547 		int ebit = 0;
548 		recTime = cycle_time - tim->active - tim->setup;
549 		recTime = max(recTime, 150U);
550 		accessTime = tim->active;
551 		accessTime = max(accessTime, 150U);
552 		accessTicks = SYSCLK_TICKS(accessTime);
553 		accessTicks = min(accessTicks, 0x1fU);
554 		accessTicks = max(accessTicks, 4U);
555 		recTicks = SYSCLK_TICKS(recTime);
556 		recTicks = min(recTicks, 0x1fU);
557 		recTicks = max(recTicks, 5U) - 4;
558 		if (recTicks > 9) {
559 			recTicks--; /* guess, but it's only for PIO0, so... */
560 			ebit = 1;
561 		}
562 		t = (t & ~TR_33_PIO_MASK) |
563 				(accessTicks << TR_33_PIO_ACCESS_SHIFT) |
564 				(recTicks << TR_33_PIO_RECOVERY_SHIFT);
565 		if (ebit)
566 			t |= TR_33_PIO_E;
567 		break;
568 		}
569 	}
570 
571 #ifdef IDE_PMAC_DEBUG
572 	printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
573 		drive->name, pio,  *timings);
574 #endif
575 
576 	*timings = t;
577 	pmac_ide_do_update_timings(drive);
578 }
579 
580 /*
581  * Calculate KeyLargo ATA/66 UDMA timings
582  */
583 static int
set_timings_udma_ata4(u32 * timings,u8 speed)584 set_timings_udma_ata4(u32 *timings, u8 speed)
585 {
586 	unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
587 
588 	if (speed > XFER_UDMA_4)
589 		return 1;
590 
591 	rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
592 	wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
593 	addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
594 
595 	*timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
596 			(wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
597 			(rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
598 			(addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
599 			TR_66_UDMA_EN;
600 #ifdef IDE_PMAC_DEBUG
601 	printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
602 		speed & 0xf,  *timings);
603 #endif
604 
605 	return 0;
606 }
607 
608 /*
609  * Calculate Kauai ATA/100 UDMA timings
610  */
611 static int
set_timings_udma_ata6(u32 * pio_timings,u32 * ultra_timings,u8 speed)612 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
613 {
614 	struct ide_timing *t = ide_timing_find_mode(speed);
615 	u32 tr;
616 
617 	if (speed > XFER_UDMA_5 || t == NULL)
618 		return 1;
619 	tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
620 	*ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
621 	*ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
622 
623 	return 0;
624 }
625 
626 /*
627  * Calculate Shasta ATA/133 UDMA timings
628  */
629 static int
set_timings_udma_shasta(u32 * pio_timings,u32 * ultra_timings,u8 speed)630 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
631 {
632 	struct ide_timing *t = ide_timing_find_mode(speed);
633 	u32 tr;
634 
635 	if (speed > XFER_UDMA_6 || t == NULL)
636 		return 1;
637 	tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
638 	*ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
639 	*ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
640 
641 	return 0;
642 }
643 
644 /*
645  * Calculate MDMA timings for all cells
646  */
647 static void
set_timings_mdma(ide_drive_t * drive,int intf_type,u32 * timings,u32 * timings2,u8 speed)648 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
649 		 	u8 speed)
650 {
651 	u16 *id = drive->id;
652 	int cycleTime, accessTime = 0, recTime = 0;
653 	unsigned accessTicks, recTicks;
654 	struct mdma_timings_t* tm = NULL;
655 	int i;
656 
657 	/* Get default cycle time for mode */
658 	switch(speed & 0xf) {
659 		case 0: cycleTime = 480; break;
660 		case 1: cycleTime = 150; break;
661 		case 2: cycleTime = 120; break;
662 		default:
663 			BUG();
664 			break;
665 	}
666 
667 	/* Check if drive provides explicit DMA cycle time */
668 	if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
669 		cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
670 
671 	/* OHare limits according to some old Apple sources */
672 	if ((intf_type == controller_ohare) && (cycleTime < 150))
673 		cycleTime = 150;
674 	/* Get the proper timing array for this controller */
675 	switch(intf_type) {
676 	        case controller_sh_ata6:
677 		case controller_un_ata6:
678 		case controller_k2_ata6:
679 			break;
680 		case controller_kl_ata4:
681 			tm = mdma_timings_66;
682 			break;
683 		case controller_kl_ata3:
684 			tm = mdma_timings_33k;
685 			break;
686 		default:
687 			tm = mdma_timings_33;
688 			break;
689 	}
690 	if (tm != NULL) {
691 		/* Lookup matching access & recovery times */
692 		i = -1;
693 		for (;;) {
694 			if (tm[i+1].cycleTime < cycleTime)
695 				break;
696 			i++;
697 		}
698 		cycleTime = tm[i].cycleTime;
699 		accessTime = tm[i].accessTime;
700 		recTime = tm[i].recoveryTime;
701 
702 #ifdef IDE_PMAC_DEBUG
703 		printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
704 			drive->name, cycleTime, accessTime, recTime);
705 #endif
706 	}
707 	switch(intf_type) {
708 	case controller_sh_ata6: {
709 		/* 133Mhz cell */
710 		u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
711 		*timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
712 		*timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
713 		}
714 	case controller_un_ata6:
715 	case controller_k2_ata6: {
716 		/* 100Mhz cell */
717 		u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
718 		*timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
719 		*timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
720 		}
721 		break;
722 	case controller_kl_ata4:
723 		/* 66Mhz cell */
724 		accessTicks = SYSCLK_TICKS_66(accessTime);
725 		accessTicks = min(accessTicks, 0x1fU);
726 		accessTicks = max(accessTicks, 0x1U);
727 		recTicks = SYSCLK_TICKS_66(recTime);
728 		recTicks = min(recTicks, 0x1fU);
729 		recTicks = max(recTicks, 0x3U);
730 		/* Clear out mdma bits and disable udma */
731 		*timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
732 			(accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
733 			(recTicks << TR_66_MDMA_RECOVERY_SHIFT);
734 		break;
735 	case controller_kl_ata3:
736 		/* 33Mhz cell on KeyLargo */
737 		accessTicks = SYSCLK_TICKS(accessTime);
738 		accessTicks = max(accessTicks, 1U);
739 		accessTicks = min(accessTicks, 0x1fU);
740 		accessTime = accessTicks * IDE_SYSCLK_NS;
741 		recTicks = SYSCLK_TICKS(recTime);
742 		recTicks = max(recTicks, 1U);
743 		recTicks = min(recTicks, 0x1fU);
744 		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
745 				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
746 				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
747 		break;
748 	default: {
749 		/* 33Mhz cell on others */
750 		int halfTick = 0;
751 		int origAccessTime = accessTime;
752 		int origRecTime = recTime;
753 
754 		accessTicks = SYSCLK_TICKS(accessTime);
755 		accessTicks = max(accessTicks, 1U);
756 		accessTicks = min(accessTicks, 0x1fU);
757 		accessTime = accessTicks * IDE_SYSCLK_NS;
758 		recTicks = SYSCLK_TICKS(recTime);
759 		recTicks = max(recTicks, 2U) - 1;
760 		recTicks = min(recTicks, 0x1fU);
761 		recTime = (recTicks + 1) * IDE_SYSCLK_NS;
762 		if ((accessTicks > 1) &&
763 		    ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
764 		    ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
765             		halfTick = 1;
766 			accessTicks--;
767 		}
768 		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
769 				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
770 				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
771 		if (halfTick)
772 			*timings |= TR_33_MDMA_HALFTICK;
773 		}
774 	}
775 #ifdef IDE_PMAC_DEBUG
776 	printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
777 		drive->name, speed & 0xf,  *timings);
778 #endif
779 }
780 
pmac_ide_set_dma_mode(ide_hwif_t * hwif,ide_drive_t * drive)781 static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
782 {
783 	pmac_ide_hwif_t *pmif =
784 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
785 	int ret = 0;
786 	u32 *timings, *timings2, tl[2];
787 	u8 unit = drive->dn & 1;
788 	const u8 speed = drive->dma_mode;
789 
790 	timings = &pmif->timings[unit];
791 	timings2 = &pmif->timings[unit+2];
792 
793 	/* Copy timings to local image */
794 	tl[0] = *timings;
795 	tl[1] = *timings2;
796 
797 	if (speed >= XFER_UDMA_0) {
798 		if (pmif->kind == controller_kl_ata4)
799 			ret = set_timings_udma_ata4(&tl[0], speed);
800 		else if (pmif->kind == controller_un_ata6
801 			 || pmif->kind == controller_k2_ata6)
802 			ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
803 		else if (pmif->kind == controller_sh_ata6)
804 			ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
805 		else
806 			ret = -1;
807 	} else
808 		set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
809 
810 	if (ret)
811 		return;
812 
813 	/* Apply timings to controller */
814 	*timings = tl[0];
815 	*timings2 = tl[1];
816 
817 	pmac_ide_do_update_timings(drive);
818 }
819 
820 /*
821  * Blast some well known "safe" values to the timing registers at init or
822  * wakeup from sleep time, before we do real calculation
823  */
824 static void
sanitize_timings(pmac_ide_hwif_t * pmif)825 sanitize_timings(pmac_ide_hwif_t *pmif)
826 {
827 	unsigned int value, value2 = 0;
828 
829 	switch(pmif->kind) {
830 		case controller_sh_ata6:
831 			value = 0x0a820c97;
832 			value2 = 0x00033031;
833 			break;
834 		case controller_un_ata6:
835 		case controller_k2_ata6:
836 			value = 0x08618a92;
837 			value2 = 0x00002921;
838 			break;
839 		case controller_kl_ata4:
840 			value = 0x0008438c;
841 			break;
842 		case controller_kl_ata3:
843 			value = 0x00084526;
844 			break;
845 		case controller_heathrow:
846 		case controller_ohare:
847 		default:
848 			value = 0x00074526;
849 			break;
850 	}
851 	pmif->timings[0] = pmif->timings[1] = value;
852 	pmif->timings[2] = pmif->timings[3] = value2;
853 }
854 
on_media_bay(pmac_ide_hwif_t * pmif)855 static int on_media_bay(pmac_ide_hwif_t *pmif)
856 {
857 	return pmif->mdev && pmif->mdev->media_bay != NULL;
858 }
859 
860 /* Suspend call back, should be called after the child devices
861  * have actually been suspended
862  */
pmac_ide_do_suspend(pmac_ide_hwif_t * pmif)863 static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
864 {
865 	/* We clear the timings */
866 	pmif->timings[0] = 0;
867 	pmif->timings[1] = 0;
868 
869 	disable_irq(pmif->irq);
870 
871 	/* The media bay will handle itself just fine */
872 	if (on_media_bay(pmif))
873 		return 0;
874 
875 	/* Kauai has bus control FCRs directly here */
876 	if (pmif->kauai_fcr) {
877 		u32 fcr = readl(pmif->kauai_fcr);
878 		fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
879 		writel(fcr, pmif->kauai_fcr);
880 	}
881 
882 	/* Disable the bus on older machines and the cell on kauai */
883 	ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
884 			    0);
885 
886 	return 0;
887 }
888 
889 /* Resume call back, should be called before the child devices
890  * are resumed
891  */
pmac_ide_do_resume(pmac_ide_hwif_t * pmif)892 static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
893 {
894 	/* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
895 	if (!on_media_bay(pmif)) {
896 		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
897 		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
898 		msleep(10);
899 		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
900 
901 		/* Kauai has it different */
902 		if (pmif->kauai_fcr) {
903 			u32 fcr = readl(pmif->kauai_fcr);
904 			fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
905 			writel(fcr, pmif->kauai_fcr);
906 		}
907 
908 		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
909 	}
910 
911 	/* Sanitize drive timings */
912 	sanitize_timings(pmif);
913 
914 	enable_irq(pmif->irq);
915 
916 	return 0;
917 }
918 
pmac_ide_cable_detect(ide_hwif_t * hwif)919 static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
920 {
921 	pmac_ide_hwif_t *pmif =
922 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
923 	struct device_node *np = pmif->node;
924 	const char *cable = of_get_property(np, "cable-type", NULL);
925 	struct device_node *root = of_find_node_by_path("/");
926 	const char *model = of_get_property(root, "model", NULL);
927 
928 	/* Get cable type from device-tree. */
929 	if (cable && !strncmp(cable, "80-", 3)) {
930 		/* Some drives fail to detect 80c cable in PowerBook */
931 		/* These machine use proprietary short IDE cable anyway */
932 		if (!strncmp(model, "PowerBook", 9))
933 			return ATA_CBL_PATA40_SHORT;
934 		else
935 			return ATA_CBL_PATA80;
936 	}
937 
938 	/*
939 	 * G5's seem to have incorrect cable type in device-tree.
940 	 * Let's assume they have a 80 conductor cable, this seem
941 	 * to be always the case unless the user mucked around.
942 	 */
943 	if (of_device_is_compatible(np, "K2-UATA") ||
944 	    of_device_is_compatible(np, "shasta-ata"))
945 		return ATA_CBL_PATA80;
946 
947 	return ATA_CBL_PATA40;
948 }
949 
pmac_ide_init_dev(ide_drive_t * drive)950 static void pmac_ide_init_dev(ide_drive_t *drive)
951 {
952 	ide_hwif_t *hwif = drive->hwif;
953 	pmac_ide_hwif_t *pmif =
954 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
955 
956 	if (on_media_bay(pmif)) {
957 		if (check_media_bay(pmif->mdev->media_bay) == MB_CD) {
958 			drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
959 			return;
960 		}
961 		drive->dev_flags |= IDE_DFLAG_NOPROBE;
962 	}
963 }
964 
965 static const struct ide_tp_ops pmac_tp_ops = {
966 	.exec_command		= pmac_exec_command,
967 	.read_status		= ide_read_status,
968 	.read_altstatus		= ide_read_altstatus,
969 	.write_devctl		= pmac_write_devctl,
970 
971 	.dev_select		= pmac_dev_select,
972 	.tf_load		= ide_tf_load,
973 	.tf_read		= ide_tf_read,
974 
975 	.input_data		= ide_input_data,
976 	.output_data		= ide_output_data,
977 };
978 
979 static const struct ide_tp_ops pmac_ata6_tp_ops = {
980 	.exec_command		= pmac_exec_command,
981 	.read_status		= ide_read_status,
982 	.read_altstatus		= ide_read_altstatus,
983 	.write_devctl		= pmac_write_devctl,
984 
985 	.dev_select		= pmac_kauai_dev_select,
986 	.tf_load		= ide_tf_load,
987 	.tf_read		= ide_tf_read,
988 
989 	.input_data		= ide_input_data,
990 	.output_data		= ide_output_data,
991 };
992 
993 static const struct ide_port_ops pmac_ide_ata4_port_ops = {
994 	.init_dev		= pmac_ide_init_dev,
995 	.set_pio_mode		= pmac_ide_set_pio_mode,
996 	.set_dma_mode		= pmac_ide_set_dma_mode,
997 	.cable_detect		= pmac_ide_cable_detect,
998 };
999 
1000 static const struct ide_port_ops pmac_ide_port_ops = {
1001 	.init_dev		= pmac_ide_init_dev,
1002 	.set_pio_mode		= pmac_ide_set_pio_mode,
1003 	.set_dma_mode		= pmac_ide_set_dma_mode,
1004 };
1005 
1006 static const struct ide_dma_ops pmac_dma_ops;
1007 
1008 static const struct ide_port_info pmac_port_info = {
1009 	.name			= DRV_NAME,
1010 	.init_dma		= pmac_ide_init_dma,
1011 	.chipset		= ide_pmac,
1012 	.tp_ops			= &pmac_tp_ops,
1013 	.port_ops		= &pmac_ide_port_ops,
1014 	.dma_ops		= &pmac_dma_ops,
1015 	.host_flags		= IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1016 				  IDE_HFLAG_POST_SET_MODE |
1017 				  IDE_HFLAG_MMIO |
1018 				  IDE_HFLAG_UNMASK_IRQS,
1019 	.pio_mask		= ATA_PIO4,
1020 	.mwdma_mask		= ATA_MWDMA2,
1021 };
1022 
1023 /*
1024  * Setup, register & probe an IDE channel driven by this driver, this is
1025  * called by one of the 2 probe functions (macio or PCI).
1026  */
pmac_ide_setup_device(pmac_ide_hwif_t * pmif,struct ide_hw * hw)1027 static int __devinit pmac_ide_setup_device(pmac_ide_hwif_t *pmif,
1028 					   struct ide_hw *hw)
1029 {
1030 	struct device_node *np = pmif->node;
1031 	const int *bidp;
1032 	struct ide_host *host;
1033 	ide_hwif_t *hwif;
1034 	struct ide_hw *hws[] = { hw };
1035 	struct ide_port_info d = pmac_port_info;
1036 	int rc;
1037 
1038 	pmif->broken_dma = pmif->broken_dma_warn = 0;
1039 	if (of_device_is_compatible(np, "shasta-ata")) {
1040 		pmif->kind = controller_sh_ata6;
1041 		d.tp_ops = &pmac_ata6_tp_ops;
1042 		d.port_ops = &pmac_ide_ata4_port_ops;
1043 		d.udma_mask = ATA_UDMA6;
1044 	} else if (of_device_is_compatible(np, "kauai-ata")) {
1045 		pmif->kind = controller_un_ata6;
1046 		d.tp_ops = &pmac_ata6_tp_ops;
1047 		d.port_ops = &pmac_ide_ata4_port_ops;
1048 		d.udma_mask = ATA_UDMA5;
1049 	} else if (of_device_is_compatible(np, "K2-UATA")) {
1050 		pmif->kind = controller_k2_ata6;
1051 		d.tp_ops = &pmac_ata6_tp_ops;
1052 		d.port_ops = &pmac_ide_ata4_port_ops;
1053 		d.udma_mask = ATA_UDMA5;
1054 	} else if (of_device_is_compatible(np, "keylargo-ata")) {
1055 		if (strcmp(np->name, "ata-4") == 0) {
1056 			pmif->kind = controller_kl_ata4;
1057 			d.port_ops = &pmac_ide_ata4_port_ops;
1058 			d.udma_mask = ATA_UDMA4;
1059 		} else
1060 			pmif->kind = controller_kl_ata3;
1061 	} else if (of_device_is_compatible(np, "heathrow-ata")) {
1062 		pmif->kind = controller_heathrow;
1063 	} else {
1064 		pmif->kind = controller_ohare;
1065 		pmif->broken_dma = 1;
1066 	}
1067 
1068 	bidp = of_get_property(np, "AAPL,bus-id", NULL);
1069 	pmif->aapl_bus_id =  bidp ? *bidp : 0;
1070 
1071 	/* On Kauai-type controllers, we make sure the FCR is correct */
1072 	if (pmif->kauai_fcr)
1073 		writel(KAUAI_FCR_UATA_MAGIC |
1074 		       KAUAI_FCR_UATA_RESET_N |
1075 		       KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1076 
1077 	/* Make sure we have sane timings */
1078 	sanitize_timings(pmif);
1079 
1080 	/* If we are on a media bay, wait for it to settle and lock it */
1081 	if (pmif->mdev)
1082 		lock_media_bay(pmif->mdev->media_bay);
1083 
1084 	host = ide_host_alloc(&d, hws, 1);
1085 	if (host == NULL) {
1086 		rc = -ENOMEM;
1087 		goto bail;
1088 	}
1089 	hwif = pmif->hwif = host->ports[0];
1090 
1091 	if (on_media_bay(pmif)) {
1092 		/* Fixup bus ID for media bay */
1093 		if (!bidp)
1094 			pmif->aapl_bus_id = 1;
1095 	} else if (pmif->kind == controller_ohare) {
1096 		/* The code below is having trouble on some ohare machines
1097 		 * (timing related ?). Until I can put my hand on one of these
1098 		 * units, I keep the old way
1099 		 */
1100 		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1101 	} else {
1102  		/* This is necessary to enable IDE when net-booting */
1103 		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1104 		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1105 		msleep(10);
1106 		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1107 		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1108 	}
1109 
1110 	printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1111 	       "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1112 	       pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1113 	       on_media_bay(pmif) ? " (mediabay)" : "", hw->irq);
1114 
1115 	rc = ide_host_register(host, &d, hws);
1116 	if (rc)
1117 		pmif->hwif = NULL;
1118 
1119 	if (pmif->mdev)
1120 		unlock_media_bay(pmif->mdev->media_bay);
1121 
1122  bail:
1123 	if (rc && host)
1124 		ide_host_free(host);
1125 	return rc;
1126 }
1127 
pmac_ide_init_ports(struct ide_hw * hw,unsigned long base)1128 static void __devinit pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
1129 {
1130 	int i;
1131 
1132 	for (i = 0; i < 8; ++i)
1133 		hw->io_ports_array[i] = base + i * 0x10;
1134 
1135 	hw->io_ports.ctl_addr = base + 0x160;
1136 }
1137 
1138 /*
1139  * Attach to a macio probed interface
1140  */
1141 static int __devinit
pmac_ide_macio_attach(struct macio_dev * mdev,const struct of_device_id * match)1142 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1143 {
1144 	void __iomem *base;
1145 	unsigned long regbase;
1146 	pmac_ide_hwif_t *pmif;
1147 	int irq, rc;
1148 	struct ide_hw hw;
1149 
1150 	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1151 	if (pmif == NULL)
1152 		return -ENOMEM;
1153 
1154 	if (macio_resource_count(mdev) == 0) {
1155 		printk(KERN_WARNING "ide-pmac: no address for %s\n",
1156 				    mdev->ofdev.dev.of_node->full_name);
1157 		rc = -ENXIO;
1158 		goto out_free_pmif;
1159 	}
1160 
1161 	/* Request memory resource for IO ports */
1162 	if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1163 		printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1164 				"%s!\n", mdev->ofdev.dev.of_node->full_name);
1165 		rc = -EBUSY;
1166 		goto out_free_pmif;
1167 	}
1168 
1169 	/* XXX This is bogus. Should be fixed in the registry by checking
1170 	 * the kind of host interrupt controller, a bit like gatwick
1171 	 * fixes in irq.c. That works well enough for the single case
1172 	 * where that happens though...
1173 	 */
1174 	if (macio_irq_count(mdev) == 0) {
1175 		printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1176 				    "13\n", mdev->ofdev.dev.of_node->full_name);
1177 		irq = irq_create_mapping(NULL, 13);
1178 	} else
1179 		irq = macio_irq(mdev, 0);
1180 
1181 	base = ioremap(macio_resource_start(mdev, 0), 0x400);
1182 	regbase = (unsigned long) base;
1183 
1184 	pmif->mdev = mdev;
1185 	pmif->node = mdev->ofdev.dev.of_node;
1186 	pmif->regbase = regbase;
1187 	pmif->irq = irq;
1188 	pmif->kauai_fcr = NULL;
1189 
1190 	if (macio_resource_count(mdev) >= 2) {
1191 		if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1192 			printk(KERN_WARNING "ide-pmac: can't request DMA "
1193 					    "resource for %s!\n",
1194 					    mdev->ofdev.dev.of_node->full_name);
1195 		else
1196 			pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1197 	} else
1198 		pmif->dma_regs = NULL;
1199 
1200 	dev_set_drvdata(&mdev->ofdev.dev, pmif);
1201 
1202 	memset(&hw, 0, sizeof(hw));
1203 	pmac_ide_init_ports(&hw, pmif->regbase);
1204 	hw.irq = irq;
1205 	hw.dev = &mdev->bus->pdev->dev;
1206 	hw.parent = &mdev->ofdev.dev;
1207 
1208 	rc = pmac_ide_setup_device(pmif, &hw);
1209 	if (rc != 0) {
1210 		/* The inteface is released to the common IDE layer */
1211 		dev_set_drvdata(&mdev->ofdev.dev, NULL);
1212 		iounmap(base);
1213 		if (pmif->dma_regs) {
1214 			iounmap(pmif->dma_regs);
1215 			macio_release_resource(mdev, 1);
1216 		}
1217 		macio_release_resource(mdev, 0);
1218 		kfree(pmif);
1219 	}
1220 
1221 	return rc;
1222 
1223 out_free_pmif:
1224 	kfree(pmif);
1225 	return rc;
1226 }
1227 
1228 static int
pmac_ide_macio_suspend(struct macio_dev * mdev,pm_message_t mesg)1229 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1230 {
1231 	pmac_ide_hwif_t *pmif =
1232 		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1233 	int rc = 0;
1234 
1235 	if (mesg.event != mdev->ofdev.dev.power.power_state.event
1236 			&& (mesg.event & PM_EVENT_SLEEP)) {
1237 		rc = pmac_ide_do_suspend(pmif);
1238 		if (rc == 0)
1239 			mdev->ofdev.dev.power.power_state = mesg;
1240 	}
1241 
1242 	return rc;
1243 }
1244 
1245 static int
pmac_ide_macio_resume(struct macio_dev * mdev)1246 pmac_ide_macio_resume(struct macio_dev *mdev)
1247 {
1248 	pmac_ide_hwif_t *pmif =
1249 		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1250 	int rc = 0;
1251 
1252 	if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1253 		rc = pmac_ide_do_resume(pmif);
1254 		if (rc == 0)
1255 			mdev->ofdev.dev.power.power_state = PMSG_ON;
1256 	}
1257 
1258 	return rc;
1259 }
1260 
1261 /*
1262  * Attach to a PCI probed interface
1263  */
1264 static int __devinit
pmac_ide_pci_attach(struct pci_dev * pdev,const struct pci_device_id * id)1265 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1266 {
1267 	struct device_node *np;
1268 	pmac_ide_hwif_t *pmif;
1269 	void __iomem *base;
1270 	unsigned long rbase, rlen;
1271 	int rc;
1272 	struct ide_hw hw;
1273 
1274 	np = pci_device_to_OF_node(pdev);
1275 	if (np == NULL) {
1276 		printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1277 		return -ENODEV;
1278 	}
1279 
1280 	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1281 	if (pmif == NULL)
1282 		return -ENOMEM;
1283 
1284 	if (pci_enable_device(pdev)) {
1285 		printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1286 				    "%s\n", np->full_name);
1287 		rc = -ENXIO;
1288 		goto out_free_pmif;
1289 	}
1290 	pci_set_master(pdev);
1291 
1292 	if (pci_request_regions(pdev, "Kauai ATA")) {
1293 		printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1294 				"%s\n", np->full_name);
1295 		rc = -ENXIO;
1296 		goto out_free_pmif;
1297 	}
1298 
1299 	pmif->mdev = NULL;
1300 	pmif->node = np;
1301 
1302 	rbase = pci_resource_start(pdev, 0);
1303 	rlen = pci_resource_len(pdev, 0);
1304 
1305 	base = ioremap(rbase, rlen);
1306 	pmif->regbase = (unsigned long) base + 0x2000;
1307 	pmif->dma_regs = base + 0x1000;
1308 	pmif->kauai_fcr = base;
1309 	pmif->irq = pdev->irq;
1310 
1311 	pci_set_drvdata(pdev, pmif);
1312 
1313 	memset(&hw, 0, sizeof(hw));
1314 	pmac_ide_init_ports(&hw, pmif->regbase);
1315 	hw.irq = pdev->irq;
1316 	hw.dev = &pdev->dev;
1317 
1318 	rc = pmac_ide_setup_device(pmif, &hw);
1319 	if (rc != 0) {
1320 		/* The inteface is released to the common IDE layer */
1321 		pci_set_drvdata(pdev, NULL);
1322 		iounmap(base);
1323 		pci_release_regions(pdev);
1324 		kfree(pmif);
1325 	}
1326 
1327 	return rc;
1328 
1329 out_free_pmif:
1330 	kfree(pmif);
1331 	return rc;
1332 }
1333 
1334 static int
pmac_ide_pci_suspend(struct pci_dev * pdev,pm_message_t mesg)1335 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1336 {
1337 	pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
1338 	int rc = 0;
1339 
1340 	if (mesg.event != pdev->dev.power.power_state.event
1341 			&& (mesg.event & PM_EVENT_SLEEP)) {
1342 		rc = pmac_ide_do_suspend(pmif);
1343 		if (rc == 0)
1344 			pdev->dev.power.power_state = mesg;
1345 	}
1346 
1347 	return rc;
1348 }
1349 
1350 static int
pmac_ide_pci_resume(struct pci_dev * pdev)1351 pmac_ide_pci_resume(struct pci_dev *pdev)
1352 {
1353 	pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
1354 	int rc = 0;
1355 
1356 	if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1357 		rc = pmac_ide_do_resume(pmif);
1358 		if (rc == 0)
1359 			pdev->dev.power.power_state = PMSG_ON;
1360 	}
1361 
1362 	return rc;
1363 }
1364 
1365 #ifdef CONFIG_PMAC_MEDIABAY
pmac_ide_macio_mb_event(struct macio_dev * mdev,int mb_state)1366 static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state)
1367 {
1368 	pmac_ide_hwif_t *pmif =
1369 		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1370 
1371 	switch(mb_state) {
1372 	case MB_CD:
1373 		if (!pmif->hwif->present)
1374 			ide_port_scan(pmif->hwif);
1375 		break;
1376 	default:
1377 		if (pmif->hwif->present)
1378 			ide_port_unregister_devices(pmif->hwif);
1379 	}
1380 }
1381 #endif /* CONFIG_PMAC_MEDIABAY */
1382 
1383 
1384 static struct of_device_id pmac_ide_macio_match[] =
1385 {
1386 	{
1387 	.name 		= "IDE",
1388 	},
1389 	{
1390 	.name 		= "ATA",
1391 	},
1392 	{
1393 	.type		= "ide",
1394 	},
1395 	{
1396 	.type		= "ata",
1397 	},
1398 	{},
1399 };
1400 
1401 static struct macio_driver pmac_ide_macio_driver =
1402 {
1403 	.driver = {
1404 		.name 		= "ide-pmac",
1405 		.owner		= THIS_MODULE,
1406 		.of_match_table	= pmac_ide_macio_match,
1407 	},
1408 	.probe		= pmac_ide_macio_attach,
1409 	.suspend	= pmac_ide_macio_suspend,
1410 	.resume		= pmac_ide_macio_resume,
1411 #ifdef CONFIG_PMAC_MEDIABAY
1412 	.mediabay_event	= pmac_ide_macio_mb_event,
1413 #endif
1414 };
1415 
1416 static const struct pci_device_id pmac_ide_pci_match[] = {
1417 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA),	0 },
1418 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100),	0 },
1419 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100),	0 },
1420 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA),	0 },
1421 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA),	0 },
1422 	{},
1423 };
1424 
1425 static struct pci_driver pmac_ide_pci_driver = {
1426 	.name		= "ide-pmac",
1427 	.id_table	= pmac_ide_pci_match,
1428 	.probe		= pmac_ide_pci_attach,
1429 	.suspend	= pmac_ide_pci_suspend,
1430 	.resume		= pmac_ide_pci_resume,
1431 };
1432 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1433 
pmac_ide_probe(void)1434 int __init pmac_ide_probe(void)
1435 {
1436 	int error;
1437 
1438 	if (!machine_is(powermac))
1439 		return -ENODEV;
1440 
1441 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1442 	error = pci_register_driver(&pmac_ide_pci_driver);
1443 	if (error)
1444 		goto out;
1445 	error = macio_register_driver(&pmac_ide_macio_driver);
1446 	if (error) {
1447 		pci_unregister_driver(&pmac_ide_pci_driver);
1448 		goto out;
1449 	}
1450 #else
1451 	error = macio_register_driver(&pmac_ide_macio_driver);
1452 	if (error)
1453 		goto out;
1454 	error = pci_register_driver(&pmac_ide_pci_driver);
1455 	if (error) {
1456 		macio_unregister_driver(&pmac_ide_macio_driver);
1457 		goto out;
1458 	}
1459 #endif
1460 out:
1461 	return error;
1462 }
1463 
1464 /*
1465  * pmac_ide_build_dmatable builds the DBDMA command list
1466  * for a transfer and sets the DBDMA channel to point to it.
1467  */
pmac_ide_build_dmatable(ide_drive_t * drive,struct ide_cmd * cmd)1468 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1469 {
1470 	ide_hwif_t *hwif = drive->hwif;
1471 	pmac_ide_hwif_t *pmif =
1472 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1473 	struct dbdma_cmd *table;
1474 	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1475 	struct scatterlist *sg;
1476 	int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1477 	int i = cmd->sg_nents, count = 0;
1478 
1479 	/* DMA table is already aligned */
1480 	table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1481 
1482 	/* Make sure DMA controller is stopped (necessary ?) */
1483 	writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1484 	while (readl(&dma->status) & RUN)
1485 		udelay(1);
1486 
1487 	/* Build DBDMA commands list */
1488 	sg = hwif->sg_table;
1489 	while (i && sg_dma_len(sg)) {
1490 		u32 cur_addr;
1491 		u32 cur_len;
1492 
1493 		cur_addr = sg_dma_address(sg);
1494 		cur_len = sg_dma_len(sg);
1495 
1496 		if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1497 			if (pmif->broken_dma_warn == 0) {
1498 				printk(KERN_WARNING "%s: DMA on non aligned address, "
1499 				       "switching to PIO on Ohare chipset\n", drive->name);
1500 				pmif->broken_dma_warn = 1;
1501 			}
1502 			return 0;
1503 		}
1504 		while (cur_len) {
1505 			unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1506 
1507 			if (count++ >= MAX_DCMDS) {
1508 				printk(KERN_WARNING "%s: DMA table too small\n",
1509 				       drive->name);
1510 				return 0;
1511 			}
1512 			st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1513 			st_le16(&table->req_count, tc);
1514 			st_le32(&table->phy_addr, cur_addr);
1515 			table->cmd_dep = 0;
1516 			table->xfer_status = 0;
1517 			table->res_count = 0;
1518 			cur_addr += tc;
1519 			cur_len -= tc;
1520 			++table;
1521 		}
1522 		sg = sg_next(sg);
1523 		i--;
1524 	}
1525 
1526 	/* convert the last command to an input/output last command */
1527 	if (count) {
1528 		st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1529 		/* add the stop command to the end of the list */
1530 		memset(table, 0, sizeof(struct dbdma_cmd));
1531 		st_le16(&table->command, DBDMA_STOP);
1532 		mb();
1533 		writel(hwif->dmatable_dma, &dma->cmdptr);
1534 		return 1;
1535 	}
1536 
1537 	printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1538 
1539 	return 0; /* revert to PIO for this request */
1540 }
1541 
1542 /*
1543  * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1544  * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1545  */
pmac_ide_dma_setup(ide_drive_t * drive,struct ide_cmd * cmd)1546 static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1547 {
1548 	ide_hwif_t *hwif = drive->hwif;
1549 	pmac_ide_hwif_t *pmif =
1550 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1551 	u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1552 	u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1553 
1554 	if (pmac_ide_build_dmatable(drive, cmd) == 0)
1555 		return 1;
1556 
1557 	/* Apple adds 60ns to wrDataSetup on reads */
1558 	if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1559 		writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1560 			PMAC_IDE_REG(IDE_TIMING_CONFIG));
1561 		(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 /*
1568  * Kick the DMA controller into life after the DMA command has been issued
1569  * to the drive.
1570  */
1571 static void
pmac_ide_dma_start(ide_drive_t * drive)1572 pmac_ide_dma_start(ide_drive_t *drive)
1573 {
1574 	ide_hwif_t *hwif = drive->hwif;
1575 	pmac_ide_hwif_t *pmif =
1576 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1577 	volatile struct dbdma_regs __iomem *dma;
1578 
1579 	dma = pmif->dma_regs;
1580 
1581 	writel((RUN << 16) | RUN, &dma->control);
1582 	/* Make sure it gets to the controller right now */
1583 	(void)readl(&dma->control);
1584 }
1585 
1586 /*
1587  * After a DMA transfer, make sure the controller is stopped
1588  */
1589 static int
pmac_ide_dma_end(ide_drive_t * drive)1590 pmac_ide_dma_end (ide_drive_t *drive)
1591 {
1592 	ide_hwif_t *hwif = drive->hwif;
1593 	pmac_ide_hwif_t *pmif =
1594 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1595 	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1596 	u32 dstat;
1597 
1598 	dstat = readl(&dma->status);
1599 	writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1600 
1601 	/* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1602 	 * in theory, but with ATAPI decices doing buffer underruns, that would
1603 	 * cause us to disable DMA, which isn't what we want
1604 	 */
1605 	return (dstat & (RUN|DEAD)) != RUN;
1606 }
1607 
1608 /*
1609  * Check out that the interrupt we got was for us. We can't always know this
1610  * for sure with those Apple interfaces (well, we could on the recent ones but
1611  * that's not implemented yet), on the other hand, we don't have shared interrupts
1612  * so it's not really a problem
1613  */
1614 static int
pmac_ide_dma_test_irq(ide_drive_t * drive)1615 pmac_ide_dma_test_irq (ide_drive_t *drive)
1616 {
1617 	ide_hwif_t *hwif = drive->hwif;
1618 	pmac_ide_hwif_t *pmif =
1619 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1620 	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1621 	unsigned long status, timeout;
1622 
1623 	/* We have to things to deal with here:
1624 	 *
1625 	 * - The dbdma won't stop if the command was started
1626 	 * but completed with an error without transferring all
1627 	 * datas. This happens when bad blocks are met during
1628 	 * a multi-block transfer.
1629 	 *
1630 	 * - The dbdma fifo hasn't yet finished flushing to
1631 	 * to system memory when the disk interrupt occurs.
1632 	 *
1633 	 */
1634 
1635 	/* If ACTIVE is cleared, the STOP command have passed and
1636 	 * transfer is complete.
1637 	 */
1638 	status = readl(&dma->status);
1639 	if (!(status & ACTIVE))
1640 		return 1;
1641 
1642 	/* If dbdma didn't execute the STOP command yet, the
1643 	 * active bit is still set. We consider that we aren't
1644 	 * sharing interrupts (which is hopefully the case with
1645 	 * those controllers) and so we just try to flush the
1646 	 * channel for pending data in the fifo
1647 	 */
1648 	udelay(1);
1649 	writel((FLUSH << 16) | FLUSH, &dma->control);
1650 	timeout = 0;
1651 	for (;;) {
1652 		udelay(1);
1653 		status = readl(&dma->status);
1654 		if ((status & FLUSH) == 0)
1655 			break;
1656 		if (++timeout > 100) {
1657 			printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n",
1658 			       hwif->index);
1659 			break;
1660 		}
1661 	}
1662 	return 1;
1663 }
1664 
pmac_ide_dma_host_set(ide_drive_t * drive,int on)1665 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1666 {
1667 }
1668 
1669 static void
pmac_ide_dma_lost_irq(ide_drive_t * drive)1670 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1671 {
1672 	ide_hwif_t *hwif = drive->hwif;
1673 	pmac_ide_hwif_t *pmif =
1674 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1675 	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1676 	unsigned long status = readl(&dma->status);
1677 
1678 	printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1679 }
1680 
1681 static const struct ide_dma_ops pmac_dma_ops = {
1682 	.dma_host_set		= pmac_ide_dma_host_set,
1683 	.dma_setup		= pmac_ide_dma_setup,
1684 	.dma_start		= pmac_ide_dma_start,
1685 	.dma_end		= pmac_ide_dma_end,
1686 	.dma_test_irq		= pmac_ide_dma_test_irq,
1687 	.dma_lost_irq		= pmac_ide_dma_lost_irq,
1688 };
1689 
1690 /*
1691  * Allocate the data structures needed for using DMA with an interface
1692  * and fill the proper list of functions pointers
1693  */
pmac_ide_init_dma(ide_hwif_t * hwif,const struct ide_port_info * d)1694 static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1695 				       const struct ide_port_info *d)
1696 {
1697 	pmac_ide_hwif_t *pmif =
1698 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1699 	struct pci_dev *dev = to_pci_dev(hwif->dev);
1700 
1701 	/* We won't need pci_dev if we switch to generic consistent
1702 	 * DMA routines ...
1703 	 */
1704 	if (dev == NULL || pmif->dma_regs == 0)
1705 		return -ENODEV;
1706 	/*
1707 	 * Allocate space for the DBDMA commands.
1708 	 * The +2 is +1 for the stop command and +1 to allow for
1709 	 * aligning the start address to a multiple of 16 bytes.
1710 	 */
1711 	pmif->dma_table_cpu = pci_alloc_consistent(
1712 		dev,
1713 		(MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1714 		&hwif->dmatable_dma);
1715 	if (pmif->dma_table_cpu == NULL) {
1716 		printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1717 		       hwif->name);
1718 		return -ENOMEM;
1719 	}
1720 
1721 	hwif->sg_max_nents = MAX_DCMDS;
1722 
1723 	return 0;
1724 }
1725 
1726 module_init(pmac_ide_probe);
1727 
1728 MODULE_LICENSE("GPL");
1729