1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
8 * Copyright (C) 2007-2010 Silicon Graphics, Inc. All rights reserved.
9 */
10
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <asm/types.h>
20 #include <asm/percpu.h>
21 #include <asm/uv/uv_mmrs.h>
22 #include <asm/irq_vectors.h>
23 #include <asm/io_apic.h>
24
25
26 /*
27 * Addressing Terminology
28 *
29 * M - The low M bits of a physical address represent the offset
30 * into the blade local memory. RAM memory on a blade is physically
31 * contiguous (although various IO spaces may punch holes in
32 * it)..
33 *
34 * N - Number of bits in the node portion of a socket physical
35 * address.
36 *
37 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
38 * routers always have low bit of 1, C/MBricks have low bit
39 * equal to 0. Most addressing macros that target UV hub chips
40 * right shift the NASID by 1 to exclude the always-zero bit.
41 * NASIDs contain up to 15 bits.
42 *
43 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44 * of nasids.
45 *
46 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
47 * of the nasid for socket usage.
48 *
49 *
50 * NumaLink Global Physical Address Format:
51 * +--------------------------------+---------------------+
52 * |00..000| GNODE | NodeOffset |
53 * +--------------------------------+---------------------+
54 * |<-------53 - M bits --->|<--------M bits ----->
55 *
56 * M - number of node offset bits (35 .. 40)
57 *
58 *
59 * Memory/UV-HUB Processor Socket Address Format:
60 * +----------------+---------------+---------------------+
61 * |00..000000000000| PNODE | NodeOffset |
62 * +----------------+---------------+---------------------+
63 * <--- N bits --->|<--------M bits ----->
64 *
65 * M - number of node offset bits (35 .. 40)
66 * N - number of PNODE bits (0 .. 10)
67 *
68 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
69 * The actual values are configuration dependent and are set at
70 * boot time. M & N values are set by the hardware/BIOS at boot.
71 *
72 *
73 * APICID format
74 * NOTE!!!!!! This is the current format of the APICID. However, code
75 * should assume that this will change in the future. Use functions
76 * in this file for all APICID bit manipulations and conversion.
77 *
78 * 1111110000000000
79 * 5432109876543210
80 * pppppppppplc0cch Nehalem-EX
81 * ppppppppplcc0cch Westmere-EX
82 * sssssssssss
83 *
84 * p = pnode bits
85 * l = socket number on board
86 * c = core
87 * h = hyperthread
88 * s = bits that are in the SOCKET_ID CSR
89 *
90 * Note: Processor only supports 12 bits in the APICID register. The ACPI
91 * tables hold all 16 bits. Software needs to be aware of this.
92 *
93 * Unless otherwise specified, all references to APICID refer to
94 * the FULL value contained in ACPI tables, not the subset in the
95 * processor APICID register.
96 */
97
98
99 /*
100 * Maximum number of bricks in all partitions and in all coherency domains.
101 * This is the total number of bricks accessible in the numalink fabric. It
102 * includes all C & M bricks. Routers are NOT included.
103 *
104 * This value is also the value of the maximum number of non-router NASIDs
105 * in the numalink fabric.
106 *
107 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
108 */
109 #define UV_MAX_NUMALINK_BLADES 16384
110
111 /*
112 * Maximum number of C/Mbricks within a software SSI (hardware may support
113 * more).
114 */
115 #define UV_MAX_SSI_BLADES 256
116
117 /*
118 * The largest possible NASID of a C or M brick (+ 2)
119 */
120 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
121
122 struct uv_scir_s {
123 struct timer_list timer;
124 unsigned long offset;
125 unsigned long last;
126 unsigned long idle_on;
127 unsigned long idle_off;
128 unsigned char state;
129 unsigned char enabled;
130 };
131
132 /*
133 * The following defines attributes of the HUB chip. These attributes are
134 * frequently referenced and are kept in the per-cpu data areas of each cpu.
135 * They are kept together in a struct to minimize cache misses.
136 */
137 struct uv_hub_info_s {
138 unsigned long global_mmr_base;
139 unsigned long gpa_mask;
140 unsigned int gnode_extra;
141 unsigned long gnode_upper;
142 unsigned long lowmem_remap_top;
143 unsigned long lowmem_remap_base;
144 unsigned short pnode;
145 unsigned short pnode_mask;
146 unsigned short coherency_domain_number;
147 unsigned short numa_blade_id;
148 unsigned char blade_processor_id;
149 unsigned char m_val;
150 unsigned char n_val;
151 struct uv_scir_s scir;
152 unsigned char apic_pnode_shift;
153 };
154
155 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
156 #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
157 #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
158
159 union uvh_apicid {
160 unsigned long v;
161 struct uvh_apicid_s {
162 unsigned long local_apic_mask : 24;
163 unsigned long local_apic_shift : 5;
164 unsigned long unused1 : 3;
165 unsigned long pnode_mask : 24;
166 unsigned long pnode_shift : 5;
167 unsigned long unused2 : 3;
168 } s;
169 };
170
171 /*
172 * Local & Global MMR space macros.
173 * Note: macros are intended to be used ONLY by inline functions
174 * in this file - not by other kernel code.
175 * n - NASID (full 15-bit global nasid)
176 * g - GNODE (full 15-bit global nasid, right shifted 1)
177 * p - PNODE (local part of nsids, right shifted 1)
178 */
179 #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
180 #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
181 #define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
182
183 #define UV_LOCAL_MMR_BASE 0xf4000000UL
184 #define UV_GLOBAL_MMR32_BASE 0xf8000000UL
185 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
186 #define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
187 #define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
188
189 #define UV_GLOBAL_GRU_MMR_BASE 0x4000000
190
191 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
192 #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
193
194 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
195
196 #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
197 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
198
199 #define UVH_APICID 0x002D0E00L
200 #define UV_APIC_PNODE_SHIFT 6
201
202 #define UV_APICID_HIBIT_MASK 0xffff0000
203
204 /* Local Bus from cpu's perspective */
205 #define LOCAL_BUS_BASE 0x1c00000
206 #define LOCAL_BUS_SIZE (4 * 1024 * 1024)
207
208 /*
209 * System Controller Interface Reg
210 *
211 * Note there are NO leds on a UV system. This register is only
212 * used by the system controller to monitor system-wide operation.
213 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
214 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
215 * a node.
216 *
217 * The window is located at top of ACPI MMR space
218 */
219 #define SCIR_WINDOW_COUNT 64
220 #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
221 LOCAL_BUS_SIZE - \
222 SCIR_WINDOW_COUNT)
223
224 #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
225 #define SCIR_CPU_ACTIVITY 0x02 /* not idle */
226 #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
227
228 /* Loop through all installed blades */
229 #define for_each_possible_blade(bid) \
230 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
231
232 /*
233 * Macros for converting between kernel virtual addresses, socket local physical
234 * addresses, and UV global physical addresses.
235 * Note: use the standard __pa() & __va() macros for converting
236 * between socket virtual and socket physical addresses.
237 */
238
239 /* socket phys RAM --> UV global physical address */
uv_soc_phys_ram_to_gpa(unsigned long paddr)240 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
241 {
242 if (paddr < uv_hub_info->lowmem_remap_top)
243 paddr |= uv_hub_info->lowmem_remap_base;
244 return paddr | uv_hub_info->gnode_upper;
245 }
246
247
248 /* socket virtual --> UV global physical address */
uv_gpa(void * v)249 static inline unsigned long uv_gpa(void *v)
250 {
251 return uv_soc_phys_ram_to_gpa(__pa(v));
252 }
253
254 /* Top two bits indicate the requested address is in MMR space. */
255 static inline int
uv_gpa_in_mmr_space(unsigned long gpa)256 uv_gpa_in_mmr_space(unsigned long gpa)
257 {
258 return (gpa >> 62) == 0x3UL;
259 }
260
261 /* UV global physical address --> socket phys RAM */
uv_gpa_to_soc_phys_ram(unsigned long gpa)262 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
263 {
264 unsigned long paddr = gpa & uv_hub_info->gpa_mask;
265 unsigned long remap_base = uv_hub_info->lowmem_remap_base;
266 unsigned long remap_top = uv_hub_info->lowmem_remap_top;
267
268 if (paddr >= remap_base && paddr < remap_base + remap_top)
269 paddr -= remap_base;
270 return paddr;
271 }
272
273
274 /* gnode -> pnode */
uv_gpa_to_gnode(unsigned long gpa)275 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
276 {
277 return gpa >> uv_hub_info->m_val;
278 }
279
280 /* gpa -> pnode */
uv_gpa_to_pnode(unsigned long gpa)281 static inline int uv_gpa_to_pnode(unsigned long gpa)
282 {
283 unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
284
285 return uv_gpa_to_gnode(gpa) & n_mask;
286 }
287
288 /* pnode, offset --> socket virtual */
uv_pnode_offset_to_vaddr(int pnode,unsigned long offset)289 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
290 {
291 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
292 }
293
294
295 /*
296 * Extract a PNODE from an APICID (full apicid, not processor subset)
297 */
uv_apicid_to_pnode(int apicid)298 static inline int uv_apicid_to_pnode(int apicid)
299 {
300 return (apicid >> uv_hub_info->apic_pnode_shift);
301 }
302
303 /*
304 * Access global MMRs using the low memory MMR32 space. This region supports
305 * faster MMR access but not all MMRs are accessible in this space.
306 */
uv_global_mmr32_address(int pnode,unsigned long offset)307 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
308 {
309 return __va(UV_GLOBAL_MMR32_BASE |
310 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
311 }
312
uv_write_global_mmr32(int pnode,unsigned long offset,unsigned long val)313 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
314 {
315 writeq(val, uv_global_mmr32_address(pnode, offset));
316 }
317
uv_read_global_mmr32(int pnode,unsigned long offset)318 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
319 {
320 return readq(uv_global_mmr32_address(pnode, offset));
321 }
322
323 /*
324 * Access Global MMR space using the MMR space located at the top of physical
325 * memory.
326 */
uv_global_mmr64_address(int pnode,unsigned long offset)327 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
328 {
329 return __va(UV_GLOBAL_MMR64_BASE |
330 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
331 }
332
uv_write_global_mmr64(int pnode,unsigned long offset,unsigned long val)333 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
334 {
335 writeq(val, uv_global_mmr64_address(pnode, offset));
336 }
337
uv_read_global_mmr64(int pnode,unsigned long offset)338 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
339 {
340 return readq(uv_global_mmr64_address(pnode, offset));
341 }
342
343 /*
344 * Global MMR space addresses when referenced by the GRU. (GRU does
345 * NOT use socket addressing).
346 */
uv_global_gru_mmr_address(int pnode,unsigned long offset)347 static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
348 {
349 return UV_GLOBAL_GRU_MMR_BASE | offset |
350 ((unsigned long)pnode << uv_hub_info->m_val);
351 }
352
uv_write_global_mmr8(int pnode,unsigned long offset,unsigned char val)353 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
354 {
355 writeb(val, uv_global_mmr64_address(pnode, offset));
356 }
357
uv_read_global_mmr8(int pnode,unsigned long offset)358 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
359 {
360 return readb(uv_global_mmr64_address(pnode, offset));
361 }
362
363 /*
364 * Access hub local MMRs. Faster than using global space but only local MMRs
365 * are accessible.
366 */
uv_local_mmr_address(unsigned long offset)367 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
368 {
369 return __va(UV_LOCAL_MMR_BASE | offset);
370 }
371
uv_read_local_mmr(unsigned long offset)372 static inline unsigned long uv_read_local_mmr(unsigned long offset)
373 {
374 return readq(uv_local_mmr_address(offset));
375 }
376
uv_write_local_mmr(unsigned long offset,unsigned long val)377 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
378 {
379 writeq(val, uv_local_mmr_address(offset));
380 }
381
uv_read_local_mmr8(unsigned long offset)382 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
383 {
384 return readb(uv_local_mmr_address(offset));
385 }
386
uv_write_local_mmr8(unsigned long offset,unsigned char val)387 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
388 {
389 writeb(val, uv_local_mmr_address(offset));
390 }
391
392 /*
393 * Structures and definitions for converting between cpu, node, pnode, and blade
394 * numbers.
395 */
396 struct uv_blade_info {
397 unsigned short nr_possible_cpus;
398 unsigned short nr_online_cpus;
399 unsigned short pnode;
400 short memory_nid;
401 spinlock_t nmi_lock;
402 unsigned long nmi_count;
403 };
404 extern struct uv_blade_info *uv_blade_info;
405 extern short *uv_node_to_blade;
406 extern short *uv_cpu_to_blade;
407 extern short uv_possible_blades;
408
409 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
uv_blade_processor_id(void)410 static inline int uv_blade_processor_id(void)
411 {
412 return uv_hub_info->blade_processor_id;
413 }
414
415 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
uv_numa_blade_id(void)416 static inline int uv_numa_blade_id(void)
417 {
418 return uv_hub_info->numa_blade_id;
419 }
420
421 /* Convert a cpu number to the the UV blade number */
uv_cpu_to_blade_id(int cpu)422 static inline int uv_cpu_to_blade_id(int cpu)
423 {
424 return uv_cpu_to_blade[cpu];
425 }
426
427 /* Convert linux node number to the UV blade number */
uv_node_to_blade_id(int nid)428 static inline int uv_node_to_blade_id(int nid)
429 {
430 return uv_node_to_blade[nid];
431 }
432
433 /* Convert a blade id to the PNODE of the blade */
uv_blade_to_pnode(int bid)434 static inline int uv_blade_to_pnode(int bid)
435 {
436 return uv_blade_info[bid].pnode;
437 }
438
439 /* Nid of memory node on blade. -1 if no blade-local memory */
uv_blade_to_memory_nid(int bid)440 static inline int uv_blade_to_memory_nid(int bid)
441 {
442 return uv_blade_info[bid].memory_nid;
443 }
444
445 /* Determine the number of possible cpus on a blade */
uv_blade_nr_possible_cpus(int bid)446 static inline int uv_blade_nr_possible_cpus(int bid)
447 {
448 return uv_blade_info[bid].nr_possible_cpus;
449 }
450
451 /* Determine the number of online cpus on a blade */
uv_blade_nr_online_cpus(int bid)452 static inline int uv_blade_nr_online_cpus(int bid)
453 {
454 return uv_blade_info[bid].nr_online_cpus;
455 }
456
457 /* Convert a cpu id to the PNODE of the blade containing the cpu */
uv_cpu_to_pnode(int cpu)458 static inline int uv_cpu_to_pnode(int cpu)
459 {
460 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
461 }
462
463 /* Convert a linux node number to the PNODE of the blade */
uv_node_to_pnode(int nid)464 static inline int uv_node_to_pnode(int nid)
465 {
466 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
467 }
468
469 /* Maximum possible number of blades */
uv_num_possible_blades(void)470 static inline int uv_num_possible_blades(void)
471 {
472 return uv_possible_blades;
473 }
474
475 /* Update SCIR state */
uv_set_scir_bits(unsigned char value)476 static inline void uv_set_scir_bits(unsigned char value)
477 {
478 if (uv_hub_info->scir.state != value) {
479 uv_hub_info->scir.state = value;
480 uv_write_local_mmr8(uv_hub_info->scir.offset, value);
481 }
482 }
483
uv_scir_offset(int apicid)484 static inline unsigned long uv_scir_offset(int apicid)
485 {
486 return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
487 }
488
uv_set_cpu_scir_bits(int cpu,unsigned char value)489 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
490 {
491 if (uv_cpu_hub_info(cpu)->scir.state != value) {
492 uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
493 uv_cpu_hub_info(cpu)->scir.offset, value);
494 uv_cpu_hub_info(cpu)->scir.state = value;
495 }
496 }
497
498 extern unsigned int uv_apicid_hibits;
uv_hub_ipi_value(int apicid,int vector,int mode)499 static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
500 {
501 apicid |= uv_apicid_hibits;
502 return (1UL << UVH_IPI_INT_SEND_SHFT) |
503 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
504 (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
505 (vector << UVH_IPI_INT_VECTOR_SHFT);
506 }
507
uv_hub_send_ipi(int pnode,int apicid,int vector)508 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
509 {
510 unsigned long val;
511 unsigned long dmode = dest_Fixed;
512
513 if (vector == NMI_VECTOR)
514 dmode = dest_NMI;
515
516 val = uv_hub_ipi_value(apicid, vector, dmode);
517 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
518 }
519
520 /*
521 * Get the minimum revision number of the hub chips within the partition.
522 * 1 - initial rev 1.0 silicon
523 * 2 - rev 2.0 production silicon
524 */
uv_get_min_hub_revision_id(void)525 static inline int uv_get_min_hub_revision_id(void)
526 {
527 extern int uv_min_hub_revision_id;
528
529 return uv_min_hub_revision_id;
530 }
531
532 #endif /* CONFIG_X86_64 */
533 #endif /* _ASM_X86_UV_UV_HUB_H */
534