1 /*
2  * linux/arch/unicore32/kernel/process.c
3  *
4  * Code specific to PKUnity SoC and UniCore ISA
5  *
6  * Copyright (C) 2001-2010 GUAN Xue-tao
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <stdarg.h>
13 
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/stddef.h>
19 #include <linux/unistd.h>
20 #include <linux/delay.h>
21 #include <linux/reboot.h>
22 #include <linux/interrupt.h>
23 #include <linux/kallsyms.h>
24 #include <linux/init.h>
25 #include <linux/cpu.h>
26 #include <linux/elfcore.h>
27 #include <linux/pm.h>
28 #include <linux/tick.h>
29 #include <linux/utsname.h>
30 #include <linux/uaccess.h>
31 #include <linux/random.h>
32 #include <linux/gpio.h>
33 #include <linux/stacktrace.h>
34 
35 #include <asm/cacheflush.h>
36 #include <asm/processor.h>
37 #include <asm/system.h>
38 #include <asm/stacktrace.h>
39 
40 #include "setup.h"
41 
42 static const char * const processor_modes[] = {
43 	"UK00", "UK01", "UK02", "UK03", "UK04", "UK05", "UK06", "UK07",
44 	"UK08", "UK09", "UK0A", "UK0B", "UK0C", "UK0D", "UK0E", "UK0F",
45 	"USER", "REAL", "INTR", "PRIV", "UK14", "UK15", "UK16", "ABRT",
46 	"UK18", "UK19", "UK1A", "EXTN", "UK1C", "UK1D", "UK1E", "SUSR"
47 };
48 
49 /*
50  * The idle thread, has rather strange semantics for calling pm_idle,
51  * but this is what x86 does and we need to do the same, so that
52  * things like cpuidle get called in the same way.
53  */
cpu_idle(void)54 void cpu_idle(void)
55 {
56 	/* endless idle loop with no priority at all */
57 	while (1) {
58 		tick_nohz_stop_sched_tick(1);
59 		while (!need_resched()) {
60 			local_irq_disable();
61 			stop_critical_timings();
62 			cpu_do_idle();
63 			local_irq_enable();
64 			start_critical_timings();
65 		}
66 		tick_nohz_restart_sched_tick();
67 		preempt_enable_no_resched();
68 		schedule();
69 		preempt_disable();
70 	}
71 }
72 
73 static char reboot_mode = 'h';
74 
reboot_setup(char * str)75 int __init reboot_setup(char *str)
76 {
77 	reboot_mode = str[0];
78 	return 1;
79 }
80 
81 __setup("reboot=", reboot_setup);
82 
machine_halt(void)83 void machine_halt(void)
84 {
85 	gpio_set_value(GPO_SOFT_OFF, 0);
86 }
87 
88 /*
89  * Function pointers to optional machine specific functions
90  */
91 void (*pm_power_off)(void) = NULL;
92 
machine_power_off(void)93 void machine_power_off(void)
94 {
95 	if (pm_power_off)
96 		pm_power_off();
97 	machine_halt();
98 }
99 
machine_restart(char * cmd)100 void machine_restart(char *cmd)
101 {
102 	/* Disable interrupts first */
103 	local_irq_disable();
104 
105 	/*
106 	 * Tell the mm system that we are going to reboot -
107 	 * we may need it to insert some 1:1 mappings so that
108 	 * soft boot works.
109 	 */
110 	setup_mm_for_reboot(reboot_mode);
111 
112 	/* Clean and invalidate caches */
113 	flush_cache_all();
114 
115 	/* Turn off caching */
116 	cpu_proc_fin();
117 
118 	/* Push out any further dirty data, and ensure cache is empty */
119 	flush_cache_all();
120 
121 	/*
122 	 * Now handle reboot code.
123 	 */
124 	if (reboot_mode == 's') {
125 		/* Jump into ROM at address 0xffff0000 */
126 		cpu_reset(VECTORS_BASE);
127 	} else {
128 		writel(0x00002001, PM_PLLSYSCFG); /* cpu clk = 250M */
129 		writel(0x00100800, PM_PLLDDRCFG); /* ddr clk =  44M */
130 		writel(0x00002001, PM_PLLVGACFG); /* vga clk = 250M */
131 
132 		/* Use on-chip reset capability */
133 		/* following instructions must be in one icache line */
134 		__asm__ __volatile__(
135 			"	.align 5\n\t"
136 			"	stw	%1, [%0]\n\t"
137 			"201:	ldw	r0, [%0]\n\t"
138 			"	cmpsub.a	r0, #0\n\t"
139 			"	bne	201b\n\t"
140 			"	stw	%3, [%2]\n\t"
141 			"	nop; nop; nop\n\t"
142 			/* prefetch 3 instructions at most */
143 			:
144 			: "r" (PM_PMCR),
145 			  "r" (PM_PMCR_CFBSYS | PM_PMCR_CFBDDR
146 				| PM_PMCR_CFBVGA),
147 			  "r" (RESETC_SWRR),
148 			  "r" (RESETC_SWRR_SRB)
149 			: "r0", "memory");
150 	}
151 
152 	/*
153 	 * Whoops - the architecture was unable to reboot.
154 	 * Tell the user!
155 	 */
156 	mdelay(1000);
157 	printk(KERN_EMERG "Reboot failed -- System halted\n");
158 	do { } while (1);
159 }
160 
__show_regs(struct pt_regs * regs)161 void __show_regs(struct pt_regs *regs)
162 {
163 	unsigned long flags;
164 	char buf[64];
165 
166 	printk(KERN_DEFAULT "CPU: %d    %s  (%s %.*s)\n",
167 		raw_smp_processor_id(), print_tainted(),
168 		init_utsname()->release,
169 		(int)strcspn(init_utsname()->version, " "),
170 		init_utsname()->version);
171 	print_symbol("PC is at %s\n", instruction_pointer(regs));
172 	print_symbol("LR is at %s\n", regs->UCreg_lr);
173 	printk(KERN_DEFAULT "pc : [<%08lx>]    lr : [<%08lx>]    psr: %08lx\n"
174 	       "sp : %08lx  ip : %08lx  fp : %08lx\n",
175 		regs->UCreg_pc, regs->UCreg_lr, regs->UCreg_asr,
176 		regs->UCreg_sp, regs->UCreg_ip, regs->UCreg_fp);
177 	printk(KERN_DEFAULT "r26: %08lx  r25: %08lx  r24: %08lx\n",
178 		regs->UCreg_26, regs->UCreg_25,
179 		regs->UCreg_24);
180 	printk(KERN_DEFAULT "r23: %08lx  r22: %08lx  r21: %08lx  r20: %08lx\n",
181 		regs->UCreg_23, regs->UCreg_22,
182 		regs->UCreg_21, regs->UCreg_20);
183 	printk(KERN_DEFAULT "r19: %08lx  r18: %08lx  r17: %08lx  r16: %08lx\n",
184 		regs->UCreg_19, regs->UCreg_18,
185 		regs->UCreg_17, regs->UCreg_16);
186 	printk(KERN_DEFAULT "r15: %08lx  r14: %08lx  r13: %08lx  r12: %08lx\n",
187 		regs->UCreg_15, regs->UCreg_14,
188 		regs->UCreg_13, regs->UCreg_12);
189 	printk(KERN_DEFAULT "r11: %08lx  r10: %08lx  r9 : %08lx  r8 : %08lx\n",
190 		regs->UCreg_11, regs->UCreg_10,
191 		regs->UCreg_09, regs->UCreg_08);
192 	printk(KERN_DEFAULT "r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
193 		regs->UCreg_07, regs->UCreg_06,
194 		regs->UCreg_05, regs->UCreg_04);
195 	printk(KERN_DEFAULT "r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
196 		regs->UCreg_03, regs->UCreg_02,
197 		regs->UCreg_01, regs->UCreg_00);
198 
199 	flags = regs->UCreg_asr;
200 	buf[0] = flags & PSR_S_BIT ? 'S' : 's';
201 	buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
202 	buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
203 	buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
204 	buf[4] = '\0';
205 
206 	printk(KERN_DEFAULT "Flags: %s  INTR o%s  REAL o%s  Mode %s  Segment %s\n",
207 		buf, interrupts_enabled(regs) ? "n" : "ff",
208 		fast_interrupts_enabled(regs) ? "n" : "ff",
209 		processor_modes[processor_mode(regs)],
210 		segment_eq(get_fs(), get_ds()) ? "kernel" : "user");
211 	{
212 		unsigned int ctrl;
213 
214 		buf[0] = '\0';
215 		{
216 			unsigned int transbase;
217 			asm("movc %0, p0.c2, #0\n"
218 			    : "=r" (transbase));
219 			snprintf(buf, sizeof(buf), "  Table: %08x", transbase);
220 		}
221 		asm("movc %0, p0.c1, #0\n" : "=r" (ctrl));
222 
223 		printk(KERN_DEFAULT "Control: %08x%s\n", ctrl, buf);
224 	}
225 }
226 
show_regs(struct pt_regs * regs)227 void show_regs(struct pt_regs *regs)
228 {
229 	printk(KERN_DEFAULT "\n");
230 	printk(KERN_DEFAULT "Pid: %d, comm: %20s\n",
231 			task_pid_nr(current), current->comm);
232 	__show_regs(regs);
233 	__backtrace();
234 }
235 
236 /*
237  * Free current thread data structures etc..
238  */
exit_thread(void)239 void exit_thread(void)
240 {
241 }
242 
flush_thread(void)243 void flush_thread(void)
244 {
245 	struct thread_info *thread = current_thread_info();
246 	struct task_struct *tsk = current;
247 
248 	memset(thread->used_cp, 0, sizeof(thread->used_cp));
249 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
250 #ifdef CONFIG_UNICORE_FPU_F64
251 	memset(&thread->fpstate, 0, sizeof(struct fp_state));
252 #endif
253 }
254 
release_thread(struct task_struct * dead_task)255 void release_thread(struct task_struct *dead_task)
256 {
257 }
258 
259 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
260 
261 int
copy_thread(unsigned long clone_flags,unsigned long stack_start,unsigned long stk_sz,struct task_struct * p,struct pt_regs * regs)262 copy_thread(unsigned long clone_flags, unsigned long stack_start,
263 	    unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
264 {
265 	struct thread_info *thread = task_thread_info(p);
266 	struct pt_regs *childregs = task_pt_regs(p);
267 
268 	*childregs = *regs;
269 	childregs->UCreg_00 = 0;
270 	childregs->UCreg_sp = stack_start;
271 
272 	memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
273 	thread->cpu_context.sp = (unsigned long)childregs;
274 	thread->cpu_context.pc = (unsigned long)ret_from_fork;
275 
276 	if (clone_flags & CLONE_SETTLS)
277 		childregs->UCreg_16 = regs->UCreg_03;
278 
279 	return 0;
280 }
281 
282 /*
283  * Fill in the task's elfregs structure for a core dump.
284  */
dump_task_regs(struct task_struct * t,elf_gregset_t * elfregs)285 int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
286 {
287 	elf_core_copy_regs(elfregs, task_pt_regs(t));
288 	return 1;
289 }
290 
291 /*
292  * fill in the fpe structure for a core dump...
293  */
dump_fpu(struct pt_regs * regs,elf_fpregset_t * fp)294 int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fp)
295 {
296 	struct thread_info *thread = current_thread_info();
297 	int used_math = thread->used_cp[1] | thread->used_cp[2];
298 
299 #ifdef CONFIG_UNICORE_FPU_F64
300 	if (used_math)
301 		memcpy(fp, &thread->fpstate, sizeof(*fp));
302 #endif
303 	return used_math != 0;
304 }
305 EXPORT_SYMBOL(dump_fpu);
306 
307 /*
308  * Shuffle the argument into the correct register before calling the
309  * thread function.  r1 is the thread argument, r2 is the pointer to
310  * the thread function, and r3 points to the exit function.
311  */
312 asm(".pushsection .text\n"
313 "	.align\n"
314 "	.type	kernel_thread_helper, #function\n"
315 "kernel_thread_helper:\n"
316 "	mov.a	asr, r7\n"
317 "	mov	r0, r4\n"
318 "	mov	lr, r6\n"
319 "	mov	pc, r5\n"
320 "	.size	kernel_thread_helper, . - kernel_thread_helper\n"
321 "	.popsection");
322 
323 /*
324  * Create a kernel thread.
325  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)326 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
327 {
328 	struct pt_regs regs;
329 
330 	memset(&regs, 0, sizeof(regs));
331 
332 	regs.UCreg_04 = (unsigned long)arg;
333 	regs.UCreg_05 = (unsigned long)fn;
334 	regs.UCreg_06 = (unsigned long)do_exit;
335 	regs.UCreg_07 = PRIV_MODE;
336 	regs.UCreg_pc = (unsigned long)kernel_thread_helper;
337 	regs.UCreg_asr = regs.UCreg_07 | PSR_I_BIT;
338 
339 	return do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
340 }
341 EXPORT_SYMBOL(kernel_thread);
342 
get_wchan(struct task_struct * p)343 unsigned long get_wchan(struct task_struct *p)
344 {
345 	struct stackframe frame;
346 	int count = 0;
347 	if (!p || p == current || p->state == TASK_RUNNING)
348 		return 0;
349 
350 	frame.fp = thread_saved_fp(p);
351 	frame.sp = thread_saved_sp(p);
352 	frame.lr = 0;			/* recovered from the stack */
353 	frame.pc = thread_saved_pc(p);
354 	do {
355 		int ret = unwind_frame(&frame);
356 		if (ret < 0)
357 			return 0;
358 		if (!in_sched_functions(frame.pc))
359 			return frame.pc;
360 	} while ((count++) < 16);
361 	return 0;
362 }
363 
arch_randomize_brk(struct mm_struct * mm)364 unsigned long arch_randomize_brk(struct mm_struct *mm)
365 {
366 	unsigned long range_end = mm->brk + 0x02000000;
367 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
368 }
369 
370 /*
371  * The vectors page is always readable from user space for the
372  * atomic helpers and the signal restart code.  Let's declare a mapping
373  * for it so it is visible through ptrace and /proc/<pid>/mem.
374  */
375 
vectors_user_mapping(void)376 int vectors_user_mapping(void)
377 {
378 	struct mm_struct *mm = current->mm;
379 	return install_special_mapping(mm, 0xffff0000, PAGE_SIZE,
380 				       VM_READ | VM_EXEC |
381 				       VM_MAYREAD | VM_MAYEXEC |
382 				       VM_ALWAYSDUMP | VM_RESERVED,
383 				       NULL);
384 }
385 
arch_vma_name(struct vm_area_struct * vma)386 const char *arch_vma_name(struct vm_area_struct *vma)
387 {
388 	return (vma->vm_start == 0xffff0000) ? "[vectors]" : NULL;
389 }
390