1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * This code maintains the "home" for each page in the system.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/spinlock.h>
20 #include <linux/list.h>
21 #include <linux/bootmem.h>
22 #include <linux/rmap.h>
23 #include <linux/pagemap.h>
24 #include <linux/mutex.h>
25 #include <linux/interrupt.h>
26 #include <linux/sysctl.h>
27 #include <linux/pagevec.h>
28 #include <linux/ptrace.h>
29 #include <linux/timex.h>
30 #include <linux/cache.h>
31 #include <linux/smp.h>
32 #include <linux/module.h>
33 
34 #include <asm/page.h>
35 #include <asm/sections.h>
36 #include <asm/tlbflush.h>
37 #include <asm/pgalloc.h>
38 #include <asm/homecache.h>
39 
40 #include <arch/sim.h>
41 
42 #include "migrate.h"
43 
44 
45 #if CHIP_HAS_COHERENT_LOCAL_CACHE()
46 
47 /*
48  * The noallocl2 option suppresses all use of the L2 cache to cache
49  * locally from a remote home.  There's no point in using it if we
50  * don't have coherent local caching, though.
51  */
52 static int __write_once noallocl2;
set_noallocl2(char * str)53 static int __init set_noallocl2(char *str)
54 {
55 	noallocl2 = 1;
56 	return 0;
57 }
58 early_param("noallocl2", set_noallocl2);
59 
60 #else
61 
62 #define noallocl2 0
63 
64 #endif
65 
66 /* Provide no-op versions of these routines to keep flush_remote() cleaner. */
67 #define mark_caches_evicted_start() 0
68 #define mark_caches_evicted_finish(mask, timestamp) do {} while (0)
69 
70 
71 /*
72  * Update the irq_stat for cpus that we are going to interrupt
73  * with TLB or cache flushes.  Also handle removing dataplane cpus
74  * from the TLB flush set, and setting dataplane_tlb_state instead.
75  */
hv_flush_update(const struct cpumask * cache_cpumask,struct cpumask * tlb_cpumask,unsigned long tlb_va,unsigned long tlb_length,HV_Remote_ASID * asids,int asidcount)76 static void hv_flush_update(const struct cpumask *cache_cpumask,
77 			    struct cpumask *tlb_cpumask,
78 			    unsigned long tlb_va, unsigned long tlb_length,
79 			    HV_Remote_ASID *asids, int asidcount)
80 {
81 	struct cpumask mask;
82 	int i, cpu;
83 
84 	cpumask_clear(&mask);
85 	if (cache_cpumask)
86 		cpumask_or(&mask, &mask, cache_cpumask);
87 	if (tlb_cpumask && tlb_length) {
88 		cpumask_or(&mask, &mask, tlb_cpumask);
89 	}
90 
91 	for (i = 0; i < asidcount; ++i)
92 		cpumask_set_cpu(asids[i].y * smp_width + asids[i].x, &mask);
93 
94 	/*
95 	 * Don't bother to update atomically; losing a count
96 	 * here is not that critical.
97 	 */
98 	for_each_cpu(cpu, &mask)
99 		++per_cpu(irq_stat, cpu).irq_hv_flush_count;
100 }
101 
102 /*
103  * This wrapper function around hv_flush_remote() does several things:
104  *
105  *  - Provides a return value error-checking panic path, since
106  *    there's never any good reason for hv_flush_remote() to fail.
107  *  - Accepts a 32-bit PFN rather than a 64-bit PA, which generally
108  *    is the type that Linux wants to pass around anyway.
109  *  - Centralizes the mark_caches_evicted() handling.
110  *  - Canonicalizes that lengths of zero make cpumasks NULL.
111  *  - Handles deferring TLB flushes for dataplane tiles.
112  *  - Tracks remote interrupts in the per-cpu irq_cpustat_t.
113  *
114  * Note that we have to wait until the cache flush completes before
115  * updating the per-cpu last_cache_flush word, since otherwise another
116  * concurrent flush can race, conclude the flush has already
117  * completed, and start to use the page while it's still dirty
118  * remotely (running concurrently with the actual evict, presumably).
119  */
flush_remote(unsigned long cache_pfn,unsigned long cache_control,const struct cpumask * cache_cpumask_orig,HV_VirtAddr tlb_va,unsigned long tlb_length,unsigned long tlb_pgsize,const struct cpumask * tlb_cpumask_orig,HV_Remote_ASID * asids,int asidcount)120 void flush_remote(unsigned long cache_pfn, unsigned long cache_control,
121 		  const struct cpumask *cache_cpumask_orig,
122 		  HV_VirtAddr tlb_va, unsigned long tlb_length,
123 		  unsigned long tlb_pgsize,
124 		  const struct cpumask *tlb_cpumask_orig,
125 		  HV_Remote_ASID *asids, int asidcount)
126 {
127 	int rc;
128 	int timestamp = 0;  /* happy compiler */
129 	struct cpumask cache_cpumask_copy, tlb_cpumask_copy;
130 	struct cpumask *cache_cpumask, *tlb_cpumask;
131 	HV_PhysAddr cache_pa;
132 	char cache_buf[NR_CPUS*5], tlb_buf[NR_CPUS*5];
133 
134 	mb();   /* provided just to simplify "magic hypervisor" mode */
135 
136 	/*
137 	 * Canonicalize and copy the cpumasks.
138 	 */
139 	if (cache_cpumask_orig && cache_control) {
140 		cpumask_copy(&cache_cpumask_copy, cache_cpumask_orig);
141 		cache_cpumask = &cache_cpumask_copy;
142 	} else {
143 		cpumask_clear(&cache_cpumask_copy);
144 		cache_cpumask = NULL;
145 	}
146 	if (cache_cpumask == NULL)
147 		cache_control = 0;
148 	if (tlb_cpumask_orig && tlb_length) {
149 		cpumask_copy(&tlb_cpumask_copy, tlb_cpumask_orig);
150 		tlb_cpumask = &tlb_cpumask_copy;
151 	} else {
152 		cpumask_clear(&tlb_cpumask_copy);
153 		tlb_cpumask = NULL;
154 	}
155 
156 	hv_flush_update(cache_cpumask, tlb_cpumask, tlb_va, tlb_length,
157 			asids, asidcount);
158 	cache_pa = (HV_PhysAddr)cache_pfn << PAGE_SHIFT;
159 	if (cache_control & HV_FLUSH_EVICT_L2)
160 		timestamp = mark_caches_evicted_start();
161 	rc = hv_flush_remote(cache_pa, cache_control,
162 			     cpumask_bits(cache_cpumask),
163 			     tlb_va, tlb_length, tlb_pgsize,
164 			     cpumask_bits(tlb_cpumask),
165 			     asids, asidcount);
166 	if (cache_control & HV_FLUSH_EVICT_L2)
167 		mark_caches_evicted_finish(cache_cpumask, timestamp);
168 	if (rc == 0)
169 		return;
170 	cpumask_scnprintf(cache_buf, sizeof(cache_buf), &cache_cpumask_copy);
171 	cpumask_scnprintf(tlb_buf, sizeof(tlb_buf), &tlb_cpumask_copy);
172 
173 	pr_err("hv_flush_remote(%#llx, %#lx, %p [%s],"
174 	       " %#lx, %#lx, %#lx, %p [%s], %p, %d) = %d\n",
175 	       cache_pa, cache_control, cache_cpumask, cache_buf,
176 	       (unsigned long)tlb_va, tlb_length, tlb_pgsize,
177 	       tlb_cpumask, tlb_buf,
178 	       asids, asidcount, rc);
179 	panic("Unsafe to continue.");
180 }
181 
flush_remote_page(struct page * page,int order)182 void flush_remote_page(struct page *page, int order)
183 {
184 	int i, pages = (1 << order);
185 	for (i = 0; i < pages; ++i, ++page) {
186 		void *p = kmap_atomic(page);
187 		int hfh = 0;
188 		int home = page_home(page);
189 #if CHIP_HAS_CBOX_HOME_MAP()
190 		if (home == PAGE_HOME_HASH)
191 			hfh = 1;
192 		else
193 #endif
194 			BUG_ON(home < 0 || home >= NR_CPUS);
195 		finv_buffer_remote(p, PAGE_SIZE, hfh);
196 		kunmap_atomic(p);
197 	}
198 }
199 
homecache_evict(const struct cpumask * mask)200 void homecache_evict(const struct cpumask *mask)
201 {
202 	flush_remote(0, HV_FLUSH_EVICT_L2, mask, 0, 0, 0, NULL, NULL, 0);
203 }
204 
205 /*
206  * Return a mask of the cpus whose caches currently own these pages.
207  * The return value is whether the pages are all coherently cached
208  * (i.e. none are immutable, incoherent, or uncached).
209  */
homecache_mask(struct page * page,int pages,struct cpumask * home_mask)210 static int homecache_mask(struct page *page, int pages,
211 			  struct cpumask *home_mask)
212 {
213 	int i;
214 	int cached_coherently = 1;
215 	cpumask_clear(home_mask);
216 	for (i = 0; i < pages; ++i) {
217 		int home = page_home(&page[i]);
218 		if (home == PAGE_HOME_IMMUTABLE ||
219 		    home == PAGE_HOME_INCOHERENT) {
220 			cpumask_copy(home_mask, cpu_possible_mask);
221 			return 0;
222 		}
223 #if CHIP_HAS_CBOX_HOME_MAP()
224 		if (home == PAGE_HOME_HASH) {
225 			cpumask_or(home_mask, home_mask, &hash_for_home_map);
226 			continue;
227 		}
228 #endif
229 		if (home == PAGE_HOME_UNCACHED) {
230 			cached_coherently = 0;
231 			continue;
232 		}
233 		BUG_ON(home < 0 || home >= NR_CPUS);
234 		cpumask_set_cpu(home, home_mask);
235 	}
236 	return cached_coherently;
237 }
238 
239 /*
240  * Return the passed length, or zero if it's long enough that we
241  * believe we should evict the whole L2 cache.
242  */
cache_flush_length(unsigned long length)243 static unsigned long cache_flush_length(unsigned long length)
244 {
245 	return (length >= CHIP_L2_CACHE_SIZE()) ? HV_FLUSH_EVICT_L2 : length;
246 }
247 
248 /* Flush a page out of whatever cache(s) it is in. */
homecache_flush_cache(struct page * page,int order)249 void homecache_flush_cache(struct page *page, int order)
250 {
251 	int pages = 1 << order;
252 	int length = cache_flush_length(pages * PAGE_SIZE);
253 	unsigned long pfn = page_to_pfn(page);
254 	struct cpumask home_mask;
255 
256 	homecache_mask(page, pages, &home_mask);
257 	flush_remote(pfn, length, &home_mask, 0, 0, 0, NULL, NULL, 0);
258 	sim_validate_lines_evicted(PFN_PHYS(pfn), pages * PAGE_SIZE);
259 }
260 
261 
262 /* Report the home corresponding to a given PTE. */
pte_to_home(pte_t pte)263 static int pte_to_home(pte_t pte)
264 {
265 	if (hv_pte_get_nc(pte))
266 		return PAGE_HOME_IMMUTABLE;
267 	switch (hv_pte_get_mode(pte)) {
268 	case HV_PTE_MODE_CACHE_TILE_L3:
269 		return get_remote_cache_cpu(pte);
270 	case HV_PTE_MODE_CACHE_NO_L3:
271 		return PAGE_HOME_INCOHERENT;
272 	case HV_PTE_MODE_UNCACHED:
273 		return PAGE_HOME_UNCACHED;
274 #if CHIP_HAS_CBOX_HOME_MAP()
275 	case HV_PTE_MODE_CACHE_HASH_L3:
276 		return PAGE_HOME_HASH;
277 #endif
278 	}
279 	panic("Bad PTE %#llx\n", pte.val);
280 }
281 
282 /* Update the home of a PTE if necessary (can also be used for a pgprot_t). */
pte_set_home(pte_t pte,int home)283 pte_t pte_set_home(pte_t pte, int home)
284 {
285 	/* Check for non-linear file mapping "PTEs" and pass them through. */
286 	if (pte_file(pte))
287 		return pte;
288 
289 #if CHIP_HAS_MMIO()
290 	/* Check for MMIO mappings and pass them through. */
291 	if (hv_pte_get_mode(pte) == HV_PTE_MODE_MMIO)
292 		return pte;
293 #endif
294 
295 
296 	/*
297 	 * Only immutable pages get NC mappings.  If we have a
298 	 * non-coherent PTE, but the underlying page is not
299 	 * immutable, it's likely the result of a forced
300 	 * caching setting running up against ptrace setting
301 	 * the page to be writable underneath.  In this case,
302 	 * just keep the PTE coherent.
303 	 */
304 	if (hv_pte_get_nc(pte) && home != PAGE_HOME_IMMUTABLE) {
305 		pte = hv_pte_clear_nc(pte);
306 		pr_err("non-immutable page incoherently referenced: %#llx\n",
307 		       pte.val);
308 	}
309 
310 	switch (home) {
311 
312 	case PAGE_HOME_UNCACHED:
313 		pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED);
314 		break;
315 
316 	case PAGE_HOME_INCOHERENT:
317 		pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3);
318 		break;
319 
320 	case PAGE_HOME_IMMUTABLE:
321 		/*
322 		 * We could home this page anywhere, since it's immutable,
323 		 * but by default just home it to follow "hash_default".
324 		 */
325 		BUG_ON(hv_pte_get_writable(pte));
326 		if (pte_get_forcecache(pte)) {
327 			/* Upgrade "force any cpu" to "No L3" for immutable. */
328 			if (hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_TILE_L3
329 			    && pte_get_anyhome(pte)) {
330 				pte = hv_pte_set_mode(pte,
331 						      HV_PTE_MODE_CACHE_NO_L3);
332 			}
333 		} else
334 #if CHIP_HAS_CBOX_HOME_MAP()
335 		if (hash_default)
336 			pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3);
337 		else
338 #endif
339 			pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3);
340 		pte = hv_pte_set_nc(pte);
341 		break;
342 
343 #if CHIP_HAS_CBOX_HOME_MAP()
344 	case PAGE_HOME_HASH:
345 		pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3);
346 		break;
347 #endif
348 
349 	default:
350 		BUG_ON(home < 0 || home >= NR_CPUS ||
351 		       !cpu_is_valid_lotar(home));
352 		pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
353 		pte = set_remote_cache_cpu(pte, home);
354 		break;
355 	}
356 
357 #if CHIP_HAS_NC_AND_NOALLOC_BITS()
358 	if (noallocl2)
359 		pte = hv_pte_set_no_alloc_l2(pte);
360 
361 	/* Simplify "no local and no l3" to "uncached" */
362 	if (hv_pte_get_no_alloc_l2(pte) && hv_pte_get_no_alloc_l1(pte) &&
363 	    hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_NO_L3) {
364 		pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED);
365 	}
366 #endif
367 
368 	/* Checking this case here gives a better panic than from the hv. */
369 	BUG_ON(hv_pte_get_mode(pte) == 0);
370 
371 	return pte;
372 }
373 EXPORT_SYMBOL(pte_set_home);
374 
375 /*
376  * The routines in this section are the "static" versions of the normal
377  * dynamic homecaching routines; they just set the home cache
378  * of a kernel page once, and require a full-chip cache/TLB flush,
379  * so they're not suitable for anything but infrequent use.
380  */
381 
382 #if CHIP_HAS_CBOX_HOME_MAP()
initial_page_home(void)383 static inline int initial_page_home(void) { return PAGE_HOME_HASH; }
384 #else
initial_page_home(void)385 static inline int initial_page_home(void) { return 0; }
386 #endif
387 
page_home(struct page * page)388 int page_home(struct page *page)
389 {
390 	if (PageHighMem(page)) {
391 		return initial_page_home();
392 	} else {
393 		unsigned long kva = (unsigned long)page_address(page);
394 		return pte_to_home(*virt_to_pte(NULL, kva));
395 	}
396 }
397 
homecache_change_page_home(struct page * page,int order,int home)398 void homecache_change_page_home(struct page *page, int order, int home)
399 {
400 	int i, pages = (1 << order);
401 	unsigned long kva;
402 
403 	BUG_ON(PageHighMem(page));
404 	BUG_ON(page_count(page) > 1);
405 	BUG_ON(page_mapcount(page) != 0);
406 	kva = (unsigned long) page_address(page);
407 	flush_remote(0, HV_FLUSH_EVICT_L2, &cpu_cacheable_map,
408 		     kva, pages * PAGE_SIZE, PAGE_SIZE, cpu_online_mask,
409 		     NULL, 0);
410 
411 	for (i = 0; i < pages; ++i, kva += PAGE_SIZE) {
412 		pte_t *ptep = virt_to_pte(NULL, kva);
413 		pte_t pteval = *ptep;
414 		BUG_ON(!pte_present(pteval) || pte_huge(pteval));
415 		__set_pte(ptep, pte_set_home(pteval, home));
416 	}
417 }
418 
homecache_alloc_pages(gfp_t gfp_mask,unsigned int order,int home)419 struct page *homecache_alloc_pages(gfp_t gfp_mask,
420 				   unsigned int order, int home)
421 {
422 	struct page *page;
423 	BUG_ON(gfp_mask & __GFP_HIGHMEM);   /* must be lowmem */
424 	page = alloc_pages(gfp_mask, order);
425 	if (page)
426 		homecache_change_page_home(page, order, home);
427 	return page;
428 }
429 EXPORT_SYMBOL(homecache_alloc_pages);
430 
homecache_alloc_pages_node(int nid,gfp_t gfp_mask,unsigned int order,int home)431 struct page *homecache_alloc_pages_node(int nid, gfp_t gfp_mask,
432 					unsigned int order, int home)
433 {
434 	struct page *page;
435 	BUG_ON(gfp_mask & __GFP_HIGHMEM);   /* must be lowmem */
436 	page = alloc_pages_node(nid, gfp_mask, order);
437 	if (page)
438 		homecache_change_page_home(page, order, home);
439 	return page;
440 }
441 
homecache_free_pages(unsigned long addr,unsigned int order)442 void homecache_free_pages(unsigned long addr, unsigned int order)
443 {
444 	struct page *page;
445 
446 	if (addr == 0)
447 		return;
448 
449 	VM_BUG_ON(!virt_addr_valid((void *)addr));
450 	page = virt_to_page((void *)addr);
451 	if (put_page_testzero(page)) {
452 		int pages = (1 << order);
453 		homecache_change_page_home(page, order, initial_page_home());
454 		while (pages--)
455 			__free_page(page++);
456 	}
457 }
458