1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mmzone.h>
18 #include <linux/bootmem.h>
19 #include <linux/module.h>
20 #include <linux/node.h>
21 #include <linux/cpu.h>
22 #include <linux/ioport.h>
23 #include <linux/irq.h>
24 #include <linux/kexec.h>
25 #include <linux/pci.h>
26 #include <linux/initrd.h>
27 #include <linux/io.h>
28 #include <linux/highmem.h>
29 #include <linux/smp.h>
30 #include <linux/timex.h>
31 #include <asm/setup.h>
32 #include <asm/sections.h>
33 #include <asm/cacheflush.h>
34 #include <asm/pgalloc.h>
35 #include <asm/mmu_context.h>
36 #include <hv/hypervisor.h>
37 #include <arch/interrupts.h>
38 
39 /* <linux/smp.h> doesn't provide this definition. */
40 #ifndef CONFIG_SMP
41 #define setup_max_cpus 1
42 #endif
43 
ABS(int x)44 static inline int ABS(int x) { return x >= 0 ? x : -x; }
45 
46 /* Chip information */
47 char chip_model[64] __write_once;
48 
49 struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
50 EXPORT_SYMBOL(node_data);
51 
52 /* We only create bootmem data on node 0. */
53 static bootmem_data_t __initdata node0_bdata;
54 
55 /* Information on the NUMA nodes that we compute early */
56 unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
57 unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
58 unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
59 unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
60 unsigned long __initdata node_free_pfn[MAX_NUMNODES];
61 
62 static unsigned long __initdata node_percpu[MAX_NUMNODES];
63 
64 #ifdef CONFIG_HIGHMEM
65 /* Page frame index of end of lowmem on each controller. */
66 unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
67 
68 /* Number of pages that can be mapped into lowmem. */
69 static unsigned long __initdata mappable_physpages;
70 #endif
71 
72 /* Data on which physical memory controller corresponds to which NUMA node */
73 int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
74 
75 #ifdef CONFIG_HIGHMEM
76 /* Map information from VAs to PAs */
77 unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
78   __write_once __attribute__((aligned(L2_CACHE_BYTES)));
79 EXPORT_SYMBOL(pbase_map);
80 
81 /* Map information from PAs to VAs */
82 void *vbase_map[NR_PA_HIGHBIT_VALUES]
83   __write_once __attribute__((aligned(L2_CACHE_BYTES)));
84 EXPORT_SYMBOL(vbase_map);
85 #endif
86 
87 /* Node number as a function of the high PA bits */
88 int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
89 EXPORT_SYMBOL(highbits_to_node);
90 
91 static unsigned int __initdata maxmem_pfn = -1U;
92 static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
93 	[0 ... MAX_NUMNODES-1] = -1U
94 };
95 static nodemask_t __initdata isolnodes;
96 
97 #ifdef CONFIG_PCI
98 enum { DEFAULT_PCI_RESERVE_MB = 64 };
99 static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
100 unsigned long __initdata pci_reserve_start_pfn = -1U;
101 unsigned long __initdata pci_reserve_end_pfn = -1U;
102 #endif
103 
setup_maxmem(char * str)104 static int __init setup_maxmem(char *str)
105 {
106 	long maxmem_mb;
107 	if (str == NULL || strict_strtol(str, 0, &maxmem_mb) != 0 ||
108 	    maxmem_mb == 0)
109 		return -EINVAL;
110 
111 	maxmem_pfn = (maxmem_mb >> (HPAGE_SHIFT - 20)) <<
112 		(HPAGE_SHIFT - PAGE_SHIFT);
113 	pr_info("Forcing RAM used to no more than %dMB\n",
114 	       maxmem_pfn >> (20 - PAGE_SHIFT));
115 	return 0;
116 }
117 early_param("maxmem", setup_maxmem);
118 
setup_maxnodemem(char * str)119 static int __init setup_maxnodemem(char *str)
120 {
121 	char *endp;
122 	long maxnodemem_mb, node;
123 
124 	node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
125 	if (node >= MAX_NUMNODES || *endp != ':' ||
126 	    strict_strtol(endp+1, 0, &maxnodemem_mb) != 0)
127 		return -EINVAL;
128 
129 	maxnodemem_pfn[node] = (maxnodemem_mb >> (HPAGE_SHIFT - 20)) <<
130 		(HPAGE_SHIFT - PAGE_SHIFT);
131 	pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
132 	       node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
133 	return 0;
134 }
135 early_param("maxnodemem", setup_maxnodemem);
136 
setup_isolnodes(char * str)137 static int __init setup_isolnodes(char *str)
138 {
139 	char buf[MAX_NUMNODES * 5];
140 	if (str == NULL || nodelist_parse(str, isolnodes) != 0)
141 		return -EINVAL;
142 
143 	nodelist_scnprintf(buf, sizeof(buf), isolnodes);
144 	pr_info("Set isolnodes value to '%s'\n", buf);
145 	return 0;
146 }
147 early_param("isolnodes", setup_isolnodes);
148 
149 #ifdef CONFIG_PCI
setup_pci_reserve(char * str)150 static int __init setup_pci_reserve(char* str)
151 {
152 	unsigned long mb;
153 
154 	if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
155 	    mb > 3 * 1024)
156 		return -EINVAL;
157 
158 	pci_reserve_mb = mb;
159 	pr_info("Reserving %dMB for PCIE root complex mappings\n",
160 	       pci_reserve_mb);
161 	return 0;
162 }
163 early_param("pci_reserve", setup_pci_reserve);
164 #endif
165 
166 #ifndef __tilegx__
167 /*
168  * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
169  * This can be used to increase (or decrease) the vmalloc area.
170  */
parse_vmalloc(char * arg)171 static int __init parse_vmalloc(char *arg)
172 {
173 	if (!arg)
174 		return -EINVAL;
175 
176 	VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
177 
178 	/* See validate_va() for more on this test. */
179 	if ((long)_VMALLOC_START >= 0)
180 		early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
181 			    VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
182 
183 	return 0;
184 }
185 early_param("vmalloc", parse_vmalloc);
186 #endif
187 
188 #ifdef CONFIG_HIGHMEM
189 /*
190  * Determine for each controller where its lowmem is mapped and how much of
191  * it is mapped there.  On controller zero, the first few megabytes are
192  * already mapped in as code at MEM_SV_INTRPT, so in principle we could
193  * start our data mappings higher up, but for now we don't bother, to avoid
194  * additional confusion.
195  *
196  * One question is whether, on systems with more than 768 Mb and
197  * controllers of different sizes, to map in a proportionate amount of
198  * each one, or to try to map the same amount from each controller.
199  * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
200  * respectively, do we map 256MB from each, or do we map 128 MB, 512
201  * MB, and 128 MB respectively?)  For now we use a proportionate
202  * solution like the latter.
203  *
204  * The VA/PA mapping demands that we align our decisions at 16 MB
205  * boundaries so that we can rapidly convert VA to PA.
206  */
setup_pa_va_mapping(void)207 static void *__init setup_pa_va_mapping(void)
208 {
209 	unsigned long curr_pages = 0;
210 	unsigned long vaddr = PAGE_OFFSET;
211 	nodemask_t highonlynodes = isolnodes;
212 	int i, j;
213 
214 	memset(pbase_map, -1, sizeof(pbase_map));
215 	memset(vbase_map, -1, sizeof(vbase_map));
216 
217 	/* Node zero cannot be isolated for LOWMEM purposes. */
218 	node_clear(0, highonlynodes);
219 
220 	/* Count up the number of pages on non-highonlynodes controllers. */
221 	mappable_physpages = 0;
222 	for_each_online_node(i) {
223 		if (!node_isset(i, highonlynodes))
224 			mappable_physpages +=
225 				node_end_pfn[i] - node_start_pfn[i];
226 	}
227 
228 	for_each_online_node(i) {
229 		unsigned long start = node_start_pfn[i];
230 		unsigned long end = node_end_pfn[i];
231 		unsigned long size = end - start;
232 		unsigned long vaddr_end;
233 
234 		if (node_isset(i, highonlynodes)) {
235 			/* Mark this controller as having no lowmem. */
236 			node_lowmem_end_pfn[i] = start;
237 			continue;
238 		}
239 
240 		curr_pages += size;
241 		if (mappable_physpages > MAXMEM_PFN) {
242 			vaddr_end = PAGE_OFFSET +
243 				(((u64)curr_pages * MAXMEM_PFN /
244 				  mappable_physpages)
245 				 << PAGE_SHIFT);
246 		} else {
247 			vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
248 		}
249 		for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
250 			unsigned long this_pfn =
251 				start + (j << HUGETLB_PAGE_ORDER);
252 			pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
253 			if (vbase_map[__pfn_to_highbits(this_pfn)] ==
254 			    (void *)-1)
255 				vbase_map[__pfn_to_highbits(this_pfn)] =
256 					(void *)(vaddr & HPAGE_MASK);
257 		}
258 		node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
259 		BUG_ON(node_lowmem_end_pfn[i] > end);
260 	}
261 
262 	/* Return highest address of any mapped memory. */
263 	return (void *)vaddr;
264 }
265 #endif /* CONFIG_HIGHMEM */
266 
267 /*
268  * Register our most important memory mappings with the debug stub.
269  *
270  * This is up to 4 mappings for lowmem, one mapping per memory
271  * controller, plus one for our text segment.
272  */
store_permanent_mappings(void)273 static void __cpuinit store_permanent_mappings(void)
274 {
275 	int i;
276 
277 	for_each_online_node(i) {
278 		HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
279 #ifdef CONFIG_HIGHMEM
280 		HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
281 #else
282 		HV_PhysAddr high_mapped_pa = node_end_pfn[i];
283 #endif
284 
285 		unsigned long pages = high_mapped_pa - node_start_pfn[i];
286 		HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
287 		hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
288 	}
289 
290 	hv_store_mapping((HV_VirtAddr)_stext,
291 			 (uint32_t)(_einittext - _stext), 0);
292 }
293 
294 /*
295  * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
296  * and node_online_map, doing suitable sanity-checking.
297  * Also set min_low_pfn, max_low_pfn, and max_pfn.
298  */
setup_memory(void)299 static void __init setup_memory(void)
300 {
301 	int i, j;
302 	int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
303 #ifdef CONFIG_HIGHMEM
304 	long highmem_pages;
305 #endif
306 #ifndef __tilegx__
307 	int cap;
308 #endif
309 #if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
310 	long lowmem_pages;
311 #endif
312 
313 	/* We are using a char to hold the cpu_2_node[] mapping */
314 	BUILD_BUG_ON(MAX_NUMNODES > 127);
315 
316 	/* Discover the ranges of memory available to us */
317 	for (i = 0; ; ++i) {
318 		unsigned long start, size, end, highbits;
319 		HV_PhysAddrRange range = hv_inquire_physical(i);
320 		if (range.size == 0)
321 			break;
322 #ifdef CONFIG_FLATMEM
323 		if (i > 0) {
324 			pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
325 			       range.size, range.start + range.size);
326 			continue;
327 		}
328 #endif
329 #ifndef __tilegx__
330 		if ((unsigned long)range.start) {
331 			pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
332 			       range.start, range.start + range.size);
333 			continue;
334 		}
335 #endif
336 		if ((range.start & (HPAGE_SIZE-1)) != 0 ||
337 		    (range.size & (HPAGE_SIZE-1)) != 0) {
338 			unsigned long long start_pa = range.start;
339 			unsigned long long orig_size = range.size;
340 			range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
341 			range.size -= (range.start - start_pa);
342 			range.size &= HPAGE_MASK;
343 			pr_err("Range not hugepage-aligned: %#llx..%#llx:"
344 			       " now %#llx-%#llx\n",
345 			       start_pa, start_pa + orig_size,
346 			       range.start, range.start + range.size);
347 		}
348 		highbits = __pa_to_highbits(range.start);
349 		if (highbits >= NR_PA_HIGHBIT_VALUES) {
350 			pr_err("PA high bits too high: %#llx..%#llx\n",
351 			       range.start, range.start + range.size);
352 			continue;
353 		}
354 		if (highbits_seen[highbits]) {
355 			pr_err("Range overlaps in high bits: %#llx..%#llx\n",
356 			       range.start, range.start + range.size);
357 			continue;
358 		}
359 		highbits_seen[highbits] = 1;
360 		if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
361 			int max_size = maxnodemem_pfn[i];
362 			if (max_size > 0) {
363 				pr_err("Maxnodemem reduced node %d to"
364 				       " %d pages\n", i, max_size);
365 				range.size = PFN_PHYS(max_size);
366 			} else {
367 				pr_err("Maxnodemem disabled node %d\n", i);
368 				continue;
369 			}
370 		}
371 		if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
372 			int max_size = maxmem_pfn - num_physpages;
373 			if (max_size > 0) {
374 				pr_err("Maxmem reduced node %d to %d pages\n",
375 				       i, max_size);
376 				range.size = PFN_PHYS(max_size);
377 			} else {
378 				pr_err("Maxmem disabled node %d\n", i);
379 				continue;
380 			}
381 		}
382 		if (i >= MAX_NUMNODES) {
383 			pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
384 			       i, range.size, range.size + range.start);
385 			continue;
386 		}
387 
388 		start = range.start >> PAGE_SHIFT;
389 		size = range.size >> PAGE_SHIFT;
390 		end = start + size;
391 
392 #ifndef __tilegx__
393 		if (((HV_PhysAddr)end << PAGE_SHIFT) !=
394 		    (range.start + range.size)) {
395 			pr_err("PAs too high to represent: %#llx..%#llx\n",
396 			       range.start, range.start + range.size);
397 			continue;
398 		}
399 #endif
400 #ifdef CONFIG_PCI
401 		/*
402 		 * Blocks that overlap the pci reserved region must
403 		 * have enough space to hold the maximum percpu data
404 		 * region at the top of the range.  If there isn't
405 		 * enough space above the reserved region, just
406 		 * truncate the node.
407 		 */
408 		if (start <= pci_reserve_start_pfn &&
409 		    end > pci_reserve_start_pfn) {
410 			unsigned int per_cpu_size =
411 				__per_cpu_end - __per_cpu_start;
412 			unsigned int percpu_pages =
413 				NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
414 			if (end < pci_reserve_end_pfn + percpu_pages) {
415 				end = pci_reserve_start_pfn;
416 				pr_err("PCI mapping region reduced node %d to"
417 				       " %ld pages\n", i, end - start);
418 			}
419 		}
420 #endif
421 
422 		for (j = __pfn_to_highbits(start);
423 		     j <= __pfn_to_highbits(end - 1); j++)
424 			highbits_to_node[j] = i;
425 
426 		node_start_pfn[i] = start;
427 		node_end_pfn[i] = end;
428 		node_controller[i] = range.controller;
429 		num_physpages += size;
430 		max_pfn = end;
431 
432 		/* Mark node as online */
433 		node_set(i, node_online_map);
434 		node_set(i, node_possible_map);
435 	}
436 
437 #ifndef __tilegx__
438 	/*
439 	 * For 4KB pages, mem_map "struct page" data is 1% of the size
440 	 * of the physical memory, so can be quite big (640 MB for
441 	 * four 16G zones).  These structures must be mapped in
442 	 * lowmem, and since we currently cap out at about 768 MB,
443 	 * it's impractical to try to use this much address space.
444 	 * For now, arbitrarily cap the amount of physical memory
445 	 * we're willing to use at 8 million pages (32GB of 4KB pages).
446 	 */
447 	cap = 8 * 1024 * 1024;  /* 8 million pages */
448 	if (num_physpages > cap) {
449 		int num_nodes = num_online_nodes();
450 		int cap_each = cap / num_nodes;
451 		unsigned long dropped_pages = 0;
452 		for (i = 0; i < num_nodes; ++i) {
453 			int size = node_end_pfn[i] - node_start_pfn[i];
454 			if (size > cap_each) {
455 				dropped_pages += (size - cap_each);
456 				node_end_pfn[i] = node_start_pfn[i] + cap_each;
457 			}
458 		}
459 		num_physpages -= dropped_pages;
460 		pr_warning("Only using %ldMB memory;"
461 		       " ignoring %ldMB.\n",
462 		       num_physpages >> (20 - PAGE_SHIFT),
463 		       dropped_pages >> (20 - PAGE_SHIFT));
464 		pr_warning("Consider using a larger page size.\n");
465 	}
466 #endif
467 
468 	/* Heap starts just above the last loaded address. */
469 	min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
470 
471 #ifdef CONFIG_HIGHMEM
472 	/* Find where we map lowmem from each controller. */
473 	high_memory = setup_pa_va_mapping();
474 
475 	/* Set max_low_pfn based on what node 0 can directly address. */
476 	max_low_pfn = node_lowmem_end_pfn[0];
477 
478 	lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
479 		MAXMEM_PFN : mappable_physpages;
480 	highmem_pages = (long) (num_physpages - lowmem_pages);
481 
482 	pr_notice("%ldMB HIGHMEM available.\n",
483 	       pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
484 	pr_notice("%ldMB LOWMEM available.\n",
485 			pages_to_mb(lowmem_pages));
486 #else
487 	/* Set max_low_pfn based on what node 0 can directly address. */
488 	max_low_pfn = node_end_pfn[0];
489 
490 #ifndef __tilegx__
491 	if (node_end_pfn[0] > MAXMEM_PFN) {
492 		pr_warning("Only using %ldMB LOWMEM.\n",
493 		       MAXMEM>>20);
494 		pr_warning("Use a HIGHMEM enabled kernel.\n");
495 		max_low_pfn = MAXMEM_PFN;
496 		max_pfn = MAXMEM_PFN;
497 		num_physpages = MAXMEM_PFN;
498 		node_end_pfn[0] = MAXMEM_PFN;
499 	} else {
500 		pr_notice("%ldMB memory available.\n",
501 		       pages_to_mb(node_end_pfn[0]));
502 	}
503 	for (i = 1; i < MAX_NUMNODES; ++i) {
504 		node_start_pfn[i] = 0;
505 		node_end_pfn[i] = 0;
506 	}
507 	high_memory = __va(node_end_pfn[0]);
508 #else
509 	lowmem_pages = 0;
510 	for (i = 0; i < MAX_NUMNODES; ++i) {
511 		int pages = node_end_pfn[i] - node_start_pfn[i];
512 		lowmem_pages += pages;
513 		if (pages)
514 			high_memory = pfn_to_kaddr(node_end_pfn[i]);
515 	}
516 	pr_notice("%ldMB memory available.\n",
517 	       pages_to_mb(lowmem_pages));
518 #endif
519 #endif
520 }
521 
setup_bootmem_allocator(void)522 static void __init setup_bootmem_allocator(void)
523 {
524 	unsigned long bootmap_size, first_alloc_pfn, last_alloc_pfn;
525 
526 	/* Provide a node 0 bdata. */
527 	NODE_DATA(0)->bdata = &node0_bdata;
528 
529 #ifdef CONFIG_PCI
530 	/* Don't let boot memory alias the PCI region. */
531 	last_alloc_pfn = min(max_low_pfn, pci_reserve_start_pfn);
532 #else
533 	last_alloc_pfn = max_low_pfn;
534 #endif
535 
536 	/*
537 	 * Initialize the boot-time allocator (with low memory only):
538 	 * The first argument says where to put the bitmap, and the
539 	 * second says where the end of allocatable memory is.
540 	 */
541 	bootmap_size = init_bootmem(min_low_pfn, last_alloc_pfn);
542 
543 	/*
544 	 * Let the bootmem allocator use all the space we've given it
545 	 * except for its own bitmap.
546 	 */
547 	first_alloc_pfn = min_low_pfn + PFN_UP(bootmap_size);
548 	if (first_alloc_pfn >= last_alloc_pfn)
549 		early_panic("Not enough memory on controller 0 for bootmem\n");
550 
551 	free_bootmem(PFN_PHYS(first_alloc_pfn),
552 		     PFN_PHYS(last_alloc_pfn - first_alloc_pfn));
553 
554 #ifdef CONFIG_KEXEC
555 	if (crashk_res.start != crashk_res.end)
556 		reserve_bootmem(crashk_res.start,
557 			crashk_res.end - crashk_res.start + 1, 0);
558 #endif
559 }
560 
alloc_remap(int nid,unsigned long size)561 void *__init alloc_remap(int nid, unsigned long size)
562 {
563 	int pages = node_end_pfn[nid] - node_start_pfn[nid];
564 	void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
565 	BUG_ON(size != pages * sizeof(struct page));
566 	memset(map, 0, size);
567 	return map;
568 }
569 
percpu_size(void)570 static int __init percpu_size(void)
571 {
572 	int size = __per_cpu_end - __per_cpu_start;
573 	size += PERCPU_MODULE_RESERVE;
574 	size += PERCPU_DYNAMIC_EARLY_SIZE;
575 	if (size < PCPU_MIN_UNIT_SIZE)
576 		size = PCPU_MIN_UNIT_SIZE;
577 	size = roundup(size, PAGE_SIZE);
578 
579 	/* In several places we assume the per-cpu data fits on a huge page. */
580 	BUG_ON(kdata_huge && size > HPAGE_SIZE);
581 	return size;
582 }
583 
alloc_bootmem_pfn(int size,unsigned long goal)584 static inline unsigned long alloc_bootmem_pfn(int size, unsigned long goal)
585 {
586 	void *kva = __alloc_bootmem(size, PAGE_SIZE, goal);
587 	unsigned long pfn = kaddr_to_pfn(kva);
588 	BUG_ON(goal && PFN_PHYS(pfn) != goal);
589 	return pfn;
590 }
591 
zone_sizes_init(void)592 static void __init zone_sizes_init(void)
593 {
594 	unsigned long zones_size[MAX_NR_ZONES] = { 0 };
595 	int size = percpu_size();
596 	int num_cpus = smp_height * smp_width;
597 	int i;
598 
599 	for (i = 0; i < num_cpus; ++i)
600 		node_percpu[cpu_to_node(i)] += size;
601 
602 	for_each_online_node(i) {
603 		unsigned long start = node_start_pfn[i];
604 		unsigned long end = node_end_pfn[i];
605 #ifdef CONFIG_HIGHMEM
606 		unsigned long lowmem_end = node_lowmem_end_pfn[i];
607 #else
608 		unsigned long lowmem_end = end;
609 #endif
610 		int memmap_size = (end - start) * sizeof(struct page);
611 		node_free_pfn[i] = start;
612 
613 		/*
614 		 * Set aside pages for per-cpu data and the mem_map array.
615 		 *
616 		 * Since the per-cpu data requires special homecaching,
617 		 * if we are in kdata_huge mode, we put it at the end of
618 		 * the lowmem region.  If we're not in kdata_huge mode,
619 		 * we take the per-cpu pages from the bottom of the
620 		 * controller, since that avoids fragmenting a huge page
621 		 * that users might want.  We always take the memmap
622 		 * from the bottom of the controller, since with
623 		 * kdata_huge that lets it be under a huge TLB entry.
624 		 *
625 		 * If the user has requested isolnodes for a controller,
626 		 * though, there'll be no lowmem, so we just alloc_bootmem
627 		 * the memmap.  There will be no percpu memory either.
628 		 */
629 		if (__pfn_to_highbits(start) == 0) {
630 			/* In low PAs, allocate via bootmem. */
631 			unsigned long goal = 0;
632 			node_memmap_pfn[i] =
633 				alloc_bootmem_pfn(memmap_size, goal);
634 			if (kdata_huge)
635 				goal = PFN_PHYS(lowmem_end) - node_percpu[i];
636 			if (node_percpu[i])
637 				node_percpu_pfn[i] =
638 				    alloc_bootmem_pfn(node_percpu[i], goal);
639 		} else if (cpu_isset(i, isolnodes)) {
640 			node_memmap_pfn[i] = alloc_bootmem_pfn(memmap_size, 0);
641 			BUG_ON(node_percpu[i] != 0);
642 		} else {
643 			/* In high PAs, just reserve some pages. */
644 			node_memmap_pfn[i] = node_free_pfn[i];
645 			node_free_pfn[i] += PFN_UP(memmap_size);
646 			if (!kdata_huge) {
647 				node_percpu_pfn[i] = node_free_pfn[i];
648 				node_free_pfn[i] += PFN_UP(node_percpu[i]);
649 			} else {
650 				node_percpu_pfn[i] =
651 					lowmem_end - PFN_UP(node_percpu[i]);
652 			}
653 		}
654 
655 #ifdef CONFIG_HIGHMEM
656 		if (start > lowmem_end) {
657 			zones_size[ZONE_NORMAL] = 0;
658 			zones_size[ZONE_HIGHMEM] = end - start;
659 		} else {
660 			zones_size[ZONE_NORMAL] = lowmem_end - start;
661 			zones_size[ZONE_HIGHMEM] = end - lowmem_end;
662 		}
663 #else
664 		zones_size[ZONE_NORMAL] = end - start;
665 #endif
666 
667 		/*
668 		 * Everyone shares node 0's bootmem allocator, but
669 		 * we use alloc_remap(), above, to put the actual
670 		 * struct page array on the individual controllers,
671 		 * which is most of the data that we actually care about.
672 		 * We can't place bootmem allocators on the other
673 		 * controllers since the bootmem allocator can only
674 		 * operate on 32-bit physical addresses.
675 		 */
676 		NODE_DATA(i)->bdata = NODE_DATA(0)->bdata;
677 
678 		free_area_init_node(i, zones_size, start, NULL);
679 		printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
680 		       PFN_UP(node_percpu[i]));
681 
682 		/* Track the type of memory on each node */
683 		if (zones_size[ZONE_NORMAL])
684 			node_set_state(i, N_NORMAL_MEMORY);
685 #ifdef CONFIG_HIGHMEM
686 		if (end != start)
687 			node_set_state(i, N_HIGH_MEMORY);
688 #endif
689 
690 		node_set_online(i);
691 	}
692 }
693 
694 #ifdef CONFIG_NUMA
695 
696 /* which logical CPUs are on which nodes */
697 struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
698 EXPORT_SYMBOL(node_2_cpu_mask);
699 
700 /* which node each logical CPU is on */
701 char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
702 EXPORT_SYMBOL(cpu_2_node);
703 
704 /* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
cpu_to_bound_node(int cpu,struct cpumask * unbound_cpus)705 static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
706 {
707 	if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
708 		return -1;
709 	else
710 		return cpu_to_node(cpu);
711 }
712 
713 /* Return number of immediately-adjacent tiles sharing the same NUMA node. */
node_neighbors(int node,int cpu,struct cpumask * unbound_cpus)714 static int __init node_neighbors(int node, int cpu,
715 				 struct cpumask *unbound_cpus)
716 {
717 	int neighbors = 0;
718 	int w = smp_width;
719 	int h = smp_height;
720 	int x = cpu % w;
721 	int y = cpu / w;
722 	if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
723 		++neighbors;
724 	if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
725 		++neighbors;
726 	if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
727 		++neighbors;
728 	if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
729 		++neighbors;
730 	return neighbors;
731 }
732 
setup_numa_mapping(void)733 static void __init setup_numa_mapping(void)
734 {
735 	int distance[MAX_NUMNODES][NR_CPUS];
736 	HV_Coord coord;
737 	int cpu, node, cpus, i, x, y;
738 	int num_nodes = num_online_nodes();
739 	struct cpumask unbound_cpus;
740 	nodemask_t default_nodes;
741 
742 	cpumask_clear(&unbound_cpus);
743 
744 	/* Get set of nodes we will use for defaults */
745 	nodes_andnot(default_nodes, node_online_map, isolnodes);
746 	if (nodes_empty(default_nodes)) {
747 		BUG_ON(!node_isset(0, node_online_map));
748 		pr_err("Forcing NUMA node zero available as a default node\n");
749 		node_set(0, default_nodes);
750 	}
751 
752 	/* Populate the distance[] array */
753 	memset(distance, -1, sizeof(distance));
754 	cpu = 0;
755 	for (coord.y = 0; coord.y < smp_height; ++coord.y) {
756 		for (coord.x = 0; coord.x < smp_width;
757 		     ++coord.x, ++cpu) {
758 			BUG_ON(cpu >= nr_cpu_ids);
759 			if (!cpu_possible(cpu)) {
760 				cpu_2_node[cpu] = -1;
761 				continue;
762 			}
763 			for_each_node_mask(node, default_nodes) {
764 				HV_MemoryControllerInfo info =
765 					hv_inquire_memory_controller(
766 						coord, node_controller[node]);
767 				distance[node][cpu] =
768 					ABS(info.coord.x) + ABS(info.coord.y);
769 			}
770 			cpumask_set_cpu(cpu, &unbound_cpus);
771 		}
772 	}
773 	cpus = cpu;
774 
775 	/*
776 	 * Round-robin through the NUMA nodes until all the cpus are
777 	 * assigned.  We could be more clever here (e.g. create four
778 	 * sorted linked lists on the same set of cpu nodes, and pull
779 	 * off them in round-robin sequence, removing from all four
780 	 * lists each time) but given the relatively small numbers
781 	 * involved, O(n^2) seem OK for a one-time cost.
782 	 */
783 	node = first_node(default_nodes);
784 	while (!cpumask_empty(&unbound_cpus)) {
785 		int best_cpu = -1;
786 		int best_distance = INT_MAX;
787 		for (cpu = 0; cpu < cpus; ++cpu) {
788 			if (cpumask_test_cpu(cpu, &unbound_cpus)) {
789 				/*
790 				 * Compute metric, which is how much
791 				 * closer the cpu is to this memory
792 				 * controller than the others, shifted
793 				 * up, and then the number of
794 				 * neighbors already in the node as an
795 				 * epsilon adjustment to try to keep
796 				 * the nodes compact.
797 				 */
798 				int d = distance[node][cpu] * num_nodes;
799 				for_each_node_mask(i, default_nodes) {
800 					if (i != node)
801 						d -= distance[i][cpu];
802 				}
803 				d *= 8;  /* allow space for epsilon */
804 				d -= node_neighbors(node, cpu, &unbound_cpus);
805 				if (d < best_distance) {
806 					best_cpu = cpu;
807 					best_distance = d;
808 				}
809 			}
810 		}
811 		BUG_ON(best_cpu < 0);
812 		cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
813 		cpu_2_node[best_cpu] = node;
814 		cpumask_clear_cpu(best_cpu, &unbound_cpus);
815 		node = next_node(node, default_nodes);
816 		if (node == MAX_NUMNODES)
817 			node = first_node(default_nodes);
818 	}
819 
820 	/* Print out node assignments and set defaults for disabled cpus */
821 	cpu = 0;
822 	for (y = 0; y < smp_height; ++y) {
823 		printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
824 		for (x = 0; x < smp_width; ++x, ++cpu) {
825 			if (cpu_to_node(cpu) < 0) {
826 				pr_cont(" -");
827 				cpu_2_node[cpu] = first_node(default_nodes);
828 			} else {
829 				pr_cont(" %d", cpu_to_node(cpu));
830 			}
831 		}
832 		pr_cont("\n");
833 	}
834 }
835 
836 static struct cpu cpu_devices[NR_CPUS];
837 
topology_init(void)838 static int __init topology_init(void)
839 {
840 	int i;
841 
842 	for_each_online_node(i)
843 		register_one_node(i);
844 
845 	for (i = 0; i < smp_height * smp_width; ++i)
846 		register_cpu(&cpu_devices[i], i);
847 
848 	return 0;
849 }
850 
851 subsys_initcall(topology_init);
852 
853 #else /* !CONFIG_NUMA */
854 
855 #define setup_numa_mapping() do { } while (0)
856 
857 #endif /* CONFIG_NUMA */
858 
859 /**
860  * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
861  * @boot: Is this the boot cpu?
862  *
863  * Called from setup_arch() on the boot cpu, or online_secondary().
864  */
setup_cpu(int boot)865 void __cpuinit setup_cpu(int boot)
866 {
867 	/* The boot cpu sets up its permanent mappings much earlier. */
868 	if (!boot)
869 		store_permanent_mappings();
870 
871 	/* Allow asynchronous TLB interrupts. */
872 #if CHIP_HAS_TILE_DMA()
873 	arch_local_irq_unmask(INT_DMATLB_MISS);
874 	arch_local_irq_unmask(INT_DMATLB_ACCESS);
875 #endif
876 #if CHIP_HAS_SN_PROC()
877 	arch_local_irq_unmask(INT_SNITLB_MISS);
878 #endif
879 #ifdef __tilegx__
880 	arch_local_irq_unmask(INT_SINGLE_STEP_K);
881 #endif
882 
883 	/*
884 	 * Allow user access to many generic SPRs, like the cycle
885 	 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
886 	 */
887 	__insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
888 
889 #if CHIP_HAS_SN()
890 	/* Static network is not restricted. */
891 	__insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
892 #endif
893 #if CHIP_HAS_SN_PROC()
894 	__insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
895 	__insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
896 #endif
897 
898 	/*
899 	 * Set the MPL for interrupt control 0 & 1 to the corresponding
900 	 * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
901 	 * SPRs, as well as the interrupt mask.
902 	 */
903 	__insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
904 	__insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
905 
906 	/* Initialize IRQ support for this cpu. */
907 	setup_irq_regs();
908 
909 #ifdef CONFIG_HARDWALL
910 	/* Reset the network state on this cpu. */
911 	reset_network_state();
912 #endif
913 }
914 
915 static int __initdata set_initramfs_file;
916 static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
917 
setup_initramfs_file(char * str)918 static int __init setup_initramfs_file(char *str)
919 {
920 	if (str == NULL)
921 		return -EINVAL;
922 	strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
923 	set_initramfs_file = 1;
924 
925 	return 0;
926 }
927 early_param("initramfs_file", setup_initramfs_file);
928 
929 /*
930  * We look for an additional "initramfs.cpio.gz" file in the hvfs.
931  * If there is one, we allocate some memory for it and it will be
932  * unpacked to the initramfs after any built-in initramfs_data.
933  */
load_hv_initrd(void)934 static void __init load_hv_initrd(void)
935 {
936 	HV_FS_StatInfo stat;
937 	int fd, rc;
938 	void *initrd;
939 
940 	fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
941 	if (fd == HV_ENOENT) {
942 		if (set_initramfs_file)
943 			pr_warning("No such hvfs initramfs file '%s'\n",
944 				   initramfs_file);
945 		return;
946 	}
947 	BUG_ON(fd < 0);
948 	stat = hv_fs_fstat(fd);
949 	BUG_ON(stat.size < 0);
950 	if (stat.flags & HV_FS_ISDIR) {
951 		pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
952 			   initramfs_file);
953 		return;
954 	}
955 	initrd = alloc_bootmem_pages(stat.size);
956 	rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
957 	if (rc != stat.size) {
958 		pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
959 		       stat.size, initramfs_file, rc);
960 		free_initrd_mem((unsigned long) initrd, stat.size);
961 		return;
962 	}
963 	initrd_start = (unsigned long) initrd;
964 	initrd_end = initrd_start + stat.size;
965 }
966 
free_initrd_mem(unsigned long begin,unsigned long end)967 void __init free_initrd_mem(unsigned long begin, unsigned long end)
968 {
969 	free_bootmem(__pa(begin), end - begin);
970 }
971 
validate_hv(void)972 static void __init validate_hv(void)
973 {
974 	/*
975 	 * It may already be too late, but let's check our built-in
976 	 * configuration against what the hypervisor is providing.
977 	 */
978 	unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
979 	int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
980 	int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
981 	HV_ASIDRange asid_range;
982 
983 #ifndef CONFIG_SMP
984 	HV_Topology topology = hv_inquire_topology();
985 	BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
986 	if (topology.width != 1 || topology.height != 1) {
987 		pr_warning("Warning: booting UP kernel on %dx%d grid;"
988 			   " will ignore all but first tile.\n",
989 			   topology.width, topology.height);
990 	}
991 #endif
992 
993 	if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
994 		early_panic("Hypervisor glue size %ld is too big!\n",
995 			    glue_size);
996 	if (hv_page_size != PAGE_SIZE)
997 		early_panic("Hypervisor page size %#x != our %#lx\n",
998 			    hv_page_size, PAGE_SIZE);
999 	if (hv_hpage_size != HPAGE_SIZE)
1000 		early_panic("Hypervisor huge page size %#x != our %#lx\n",
1001 			    hv_hpage_size, HPAGE_SIZE);
1002 
1003 #ifdef CONFIG_SMP
1004 	/*
1005 	 * Some hypervisor APIs take a pointer to a bitmap array
1006 	 * whose size is at least the number of cpus on the chip.
1007 	 * We use a struct cpumask for this, so it must be big enough.
1008 	 */
1009 	if ((smp_height * smp_width) > nr_cpu_ids)
1010 		early_panic("Hypervisor %d x %d grid too big for Linux"
1011 			    " NR_CPUS %d\n", smp_height, smp_width,
1012 			    nr_cpu_ids);
1013 #endif
1014 
1015 	/*
1016 	 * Check that we're using allowed ASIDs, and initialize the
1017 	 * various asid variables to their appropriate initial states.
1018 	 */
1019 	asid_range = hv_inquire_asid(0);
1020 	__get_cpu_var(current_asid) = min_asid = asid_range.start;
1021 	max_asid = asid_range.start + asid_range.size - 1;
1022 
1023 	if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1024 		       sizeof(chip_model)) < 0) {
1025 		pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1026 		strlcpy(chip_model, "unknown", sizeof(chip_model));
1027 	}
1028 }
1029 
validate_va(void)1030 static void __init validate_va(void)
1031 {
1032 #ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
1033 	/*
1034 	 * Similarly, make sure we're only using allowed VAs.
1035 	 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
1036 	 * and 0 .. KERNEL_HIGH_VADDR.
1037 	 * In addition, make sure we CAN'T use the end of memory, since
1038 	 * we use the last chunk of each pgd for the pgd_list.
1039 	 */
1040 	int i, user_kernel_ok = 0;
1041 	unsigned long max_va = 0;
1042 	unsigned long list_va =
1043 		((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1044 
1045 	for (i = 0; ; ++i) {
1046 		HV_VirtAddrRange range = hv_inquire_virtual(i);
1047 		if (range.size == 0)
1048 			break;
1049 		if (range.start <= MEM_USER_INTRPT &&
1050 		    range.start + range.size >= MEM_HV_INTRPT)
1051 			user_kernel_ok = 1;
1052 		if (range.start == 0)
1053 			max_va = range.size;
1054 		BUG_ON(range.start + range.size > list_va);
1055 	}
1056 	if (!user_kernel_ok)
1057 		early_panic("Hypervisor not configured for user/kernel VAs\n");
1058 	if (max_va == 0)
1059 		early_panic("Hypervisor not configured for low VAs\n");
1060 	if (max_va < KERNEL_HIGH_VADDR)
1061 		early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1062 			    max_va, KERNEL_HIGH_VADDR);
1063 
1064 	/* Kernel PCs must have their high bit set; see intvec.S. */
1065 	if ((long)VMALLOC_START >= 0)
1066 		early_panic(
1067 			"Linux VMALLOC region below the 2GB line (%#lx)!\n"
1068 			"Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
1069 			"or smaller VMALLOC_RESERVE.\n",
1070 			VMALLOC_START);
1071 #endif
1072 }
1073 
1074 /*
1075  * cpu_lotar_map lists all the cpus that are valid for the supervisor
1076  * to cache data on at a page level, i.e. what cpus can be placed in
1077  * the LOTAR field of a PTE.  It is equivalent to the set of possible
1078  * cpus plus any other cpus that are willing to share their cache.
1079  * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1080  */
1081 struct cpumask __write_once cpu_lotar_map;
1082 EXPORT_SYMBOL(cpu_lotar_map);
1083 
1084 #if CHIP_HAS_CBOX_HOME_MAP()
1085 /*
1086  * hash_for_home_map lists all the tiles that hash-for-home data
1087  * will be cached on.  Note that this may includes tiles that are not
1088  * valid for this supervisor to use otherwise (e.g. if a hypervisor
1089  * device is being shared between multiple supervisors).
1090  * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1091  */
1092 struct cpumask hash_for_home_map;
1093 EXPORT_SYMBOL(hash_for_home_map);
1094 #endif
1095 
1096 /*
1097  * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1098  * flush on our behalf.  It is set to cpu_possible_map OR'ed with
1099  * hash_for_home_map, and it is what should be passed to
1100  * hv_flush_remote() to flush all caches.  Note that if there are
1101  * dedicated hypervisor driver tiles that have authorized use of their
1102  * cache, those tiles will only appear in cpu_lotar_map, NOT in
1103  * cpu_cacheable_map, as they are a special case.
1104  */
1105 struct cpumask __write_once cpu_cacheable_map;
1106 EXPORT_SYMBOL(cpu_cacheable_map);
1107 
1108 static __initdata struct cpumask disabled_map;
1109 
disabled_cpus(char * str)1110 static int __init disabled_cpus(char *str)
1111 {
1112 	int boot_cpu = smp_processor_id();
1113 
1114 	if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1115 		return -EINVAL;
1116 	if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1117 		pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1118 		cpumask_clear_cpu(boot_cpu, &disabled_map);
1119 	}
1120 	return 0;
1121 }
1122 
1123 early_param("disabled_cpus", disabled_cpus);
1124 
print_disabled_cpus(void)1125 void __init print_disabled_cpus(void)
1126 {
1127 	if (!cpumask_empty(&disabled_map)) {
1128 		char buf[100];
1129 		cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1130 		pr_info("CPUs not available for Linux: %s\n", buf);
1131 	}
1132 }
1133 
setup_cpu_maps(void)1134 static void __init setup_cpu_maps(void)
1135 {
1136 	struct cpumask hv_disabled_map, cpu_possible_init;
1137 	int boot_cpu = smp_processor_id();
1138 	int cpus, i, rc;
1139 
1140 	/* Learn which cpus are allowed by the hypervisor. */
1141 	rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1142 			      (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1143 			      sizeof(cpu_cacheable_map));
1144 	if (rc < 0)
1145 		early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1146 	if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1147 		early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1148 
1149 	/* Compute the cpus disabled by the hvconfig file. */
1150 	cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1151 
1152 	/* Include them with the cpus disabled by "disabled_cpus". */
1153 	cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1154 
1155 	/*
1156 	 * Disable every cpu after "setup_max_cpus".  But don't mark
1157 	 * as disabled the cpus that are outside of our initial rectangle,
1158 	 * since that turns out to be confusing.
1159 	 */
1160 	cpus = 1;                          /* this cpu */
1161 	cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
1162 	for (i = 0; cpus < setup_max_cpus; ++i)
1163 		if (!cpumask_test_cpu(i, &disabled_map))
1164 			++cpus;
1165 	for (; i < smp_height * smp_width; ++i)
1166 		cpumask_set_cpu(i, &disabled_map);
1167 	cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1168 	for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1169 		cpumask_clear_cpu(i, &disabled_map);
1170 
1171 	/*
1172 	 * Setup cpu_possible map as every cpu allocated to us, minus
1173 	 * the results of any "disabled_cpus" settings.
1174 	 */
1175 	cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1176 	init_cpu_possible(&cpu_possible_init);
1177 
1178 	/* Learn which cpus are valid for LOTAR caching. */
1179 	rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1180 			      (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1181 			      sizeof(cpu_lotar_map));
1182 	if (rc < 0) {
1183 		pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1184 		cpu_lotar_map = cpu_possible_map;
1185 	}
1186 
1187 #if CHIP_HAS_CBOX_HOME_MAP()
1188 	/* Retrieve set of CPUs used for hash-for-home caching */
1189 	rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1190 			      (HV_VirtAddr) hash_for_home_map.bits,
1191 			      sizeof(hash_for_home_map));
1192 	if (rc < 0)
1193 		early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1194 	cpumask_or(&cpu_cacheable_map, &cpu_possible_map, &hash_for_home_map);
1195 #else
1196 	cpu_cacheable_map = cpu_possible_map;
1197 #endif
1198 }
1199 
1200 
dataplane(char * str)1201 static int __init dataplane(char *str)
1202 {
1203 	pr_warning("WARNING: dataplane support disabled in this kernel\n");
1204 	return 0;
1205 }
1206 
1207 early_param("dataplane", dataplane);
1208 
1209 #ifdef CONFIG_CMDLINE_BOOL
1210 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1211 #endif
1212 
setup_arch(char ** cmdline_p)1213 void __init setup_arch(char **cmdline_p)
1214 {
1215 	int len;
1216 
1217 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1218 	len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1219 				  COMMAND_LINE_SIZE);
1220 	if (boot_command_line[0])
1221 		pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1222 			   boot_command_line);
1223 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1224 #else
1225 	char *hv_cmdline;
1226 #if defined(CONFIG_CMDLINE_BOOL)
1227 	if (builtin_cmdline[0]) {
1228 		int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1229 					  COMMAND_LINE_SIZE);
1230 		if (builtin_len < COMMAND_LINE_SIZE-1)
1231 			boot_command_line[builtin_len++] = ' ';
1232 		hv_cmdline = &boot_command_line[builtin_len];
1233 		len = COMMAND_LINE_SIZE - builtin_len;
1234 	} else
1235 #endif
1236 	{
1237 		hv_cmdline = boot_command_line;
1238 		len = COMMAND_LINE_SIZE;
1239 	}
1240 	len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1241 	if (len < 0 || len > COMMAND_LINE_SIZE)
1242 		early_panic("hv_get_command_line failed: %d\n", len);
1243 #endif
1244 
1245 	*cmdline_p = boot_command_line;
1246 
1247 	/* Set disabled_map and setup_max_cpus very early */
1248 	parse_early_param();
1249 
1250 	/* Make sure the kernel is compatible with the hypervisor. */
1251 	validate_hv();
1252 	validate_va();
1253 
1254 	setup_cpu_maps();
1255 
1256 
1257 #ifdef CONFIG_PCI
1258 	/*
1259 	 * Initialize the PCI structures.  This is done before memory
1260 	 * setup so that we know whether or not a pci_reserve region
1261 	 * is necessary.
1262 	 */
1263 	if (tile_pci_init() == 0)
1264 		pci_reserve_mb = 0;
1265 
1266 	/* PCI systems reserve a region just below 4GB for mapping iomem. */
1267 	pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
1268 	pci_reserve_start_pfn = pci_reserve_end_pfn -
1269 		(pci_reserve_mb << (20 - PAGE_SHIFT));
1270 #endif
1271 
1272 	init_mm.start_code = (unsigned long) _text;
1273 	init_mm.end_code = (unsigned long) _etext;
1274 	init_mm.end_data = (unsigned long) _edata;
1275 	init_mm.brk = (unsigned long) _end;
1276 
1277 	setup_memory();
1278 	store_permanent_mappings();
1279 	setup_bootmem_allocator();
1280 
1281 	/*
1282 	 * NOTE: before this point _nobody_ is allowed to allocate
1283 	 * any memory using the bootmem allocator.
1284 	 */
1285 
1286 	paging_init();
1287 	setup_numa_mapping();
1288 	zone_sizes_init();
1289 	set_page_homes();
1290 	setup_cpu(1);
1291 	setup_clock();
1292 	load_hv_initrd();
1293 }
1294 
1295 
1296 /*
1297  * Set up per-cpu memory.
1298  */
1299 
1300 unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1301 EXPORT_SYMBOL(__per_cpu_offset);
1302 
1303 static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1304 static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1305 
1306 /*
1307  * As the percpu code allocates pages, we return the pages from the
1308  * end of the node for the specified cpu.
1309  */
pcpu_fc_alloc(unsigned int cpu,size_t size,size_t align)1310 static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1311 {
1312 	int nid = cpu_to_node(cpu);
1313 	unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1314 
1315 	BUG_ON(size % PAGE_SIZE != 0);
1316 	pfn_offset[nid] += size / PAGE_SIZE;
1317 	BUG_ON(node_percpu[nid] < size);
1318 	node_percpu[nid] -= size;
1319 	if (percpu_pfn[cpu] == 0)
1320 		percpu_pfn[cpu] = pfn;
1321 	return pfn_to_kaddr(pfn);
1322 }
1323 
1324 /*
1325  * Pages reserved for percpu memory are not freeable, and in any case we are
1326  * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1327  */
pcpu_fc_free(void * ptr,size_t size)1328 static void __init pcpu_fc_free(void *ptr, size_t size)
1329 {
1330 }
1331 
1332 /*
1333  * Set up vmalloc page tables using bootmem for the percpu code.
1334  */
pcpu_fc_populate_pte(unsigned long addr)1335 static void __init pcpu_fc_populate_pte(unsigned long addr)
1336 {
1337 	pgd_t *pgd;
1338 	pud_t *pud;
1339 	pmd_t *pmd;
1340 	pte_t *pte;
1341 
1342 	BUG_ON(pgd_addr_invalid(addr));
1343 	if (addr < VMALLOC_START || addr >= VMALLOC_END)
1344 		panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1345 		      " try increasing CONFIG_VMALLOC_RESERVE\n",
1346 		      addr, VMALLOC_START, VMALLOC_END);
1347 
1348 	pgd = swapper_pg_dir + pgd_index(addr);
1349 	pud = pud_offset(pgd, addr);
1350 	BUG_ON(!pud_present(*pud));
1351 	pmd = pmd_offset(pud, addr);
1352 	if (pmd_present(*pmd)) {
1353 		BUG_ON(pmd_huge_page(*pmd));
1354 	} else {
1355 		pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1356 				      HV_PAGE_TABLE_ALIGN, 0);
1357 		pmd_populate_kernel(&init_mm, pmd, pte);
1358 	}
1359 }
1360 
setup_per_cpu_areas(void)1361 void __init setup_per_cpu_areas(void)
1362 {
1363 	struct page *pg;
1364 	unsigned long delta, pfn, lowmem_va;
1365 	unsigned long size = percpu_size();
1366 	char *ptr;
1367 	int rc, cpu, i;
1368 
1369 	rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1370 				   pcpu_fc_free, pcpu_fc_populate_pte);
1371 	if (rc < 0)
1372 		panic("Cannot initialize percpu area (err=%d)", rc);
1373 
1374 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1375 	for_each_possible_cpu(cpu) {
1376 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1377 
1378 		/* finv the copy out of cache so we can change homecache */
1379 		ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1380 		__finv_buffer(ptr, size);
1381 		pfn = percpu_pfn[cpu];
1382 
1383 		/* Rewrite the page tables to cache on that cpu */
1384 		pg = pfn_to_page(pfn);
1385 		for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1386 
1387 			/* Update the vmalloc mapping and page home. */
1388 			pte_t *ptep =
1389 				virt_to_pte(NULL, (unsigned long)ptr + i);
1390 			pte_t pte = *ptep;
1391 			BUG_ON(pfn != pte_pfn(pte));
1392 			pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1393 			pte = set_remote_cache_cpu(pte, cpu);
1394 			set_pte(ptep, pte);
1395 
1396 			/* Update the lowmem mapping for consistency. */
1397 			lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1398 			ptep = virt_to_pte(NULL, lowmem_va);
1399 			if (pte_huge(*ptep)) {
1400 				printk(KERN_DEBUG "early shatter of huge page"
1401 				       " at %#lx\n", lowmem_va);
1402 				shatter_pmd((pmd_t *)ptep);
1403 				ptep = virt_to_pte(NULL, lowmem_va);
1404 				BUG_ON(pte_huge(*ptep));
1405 			}
1406 			BUG_ON(pfn != pte_pfn(*ptep));
1407 			set_pte(ptep, pte);
1408 		}
1409 	}
1410 
1411 	/* Set our thread pointer appropriately. */
1412 	set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1413 
1414 	/* Make sure the finv's have completed. */
1415 	mb_incoherent();
1416 
1417 	/* Flush the TLB so we reference it properly from here on out. */
1418 	local_flush_tlb_all();
1419 }
1420 
1421 static struct resource data_resource = {
1422 	.name	= "Kernel data",
1423 	.start	= 0,
1424 	.end	= 0,
1425 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1426 };
1427 
1428 static struct resource code_resource = {
1429 	.name	= "Kernel code",
1430 	.start	= 0,
1431 	.end	= 0,
1432 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1433 };
1434 
1435 /*
1436  * We reserve all resources above 4GB so that PCI won't try to put
1437  * mappings above 4GB; the standard allows that for some devices but
1438  * the probing code trunates values to 32 bits.
1439  */
1440 #ifdef CONFIG_PCI
1441 static struct resource* __init
insert_non_bus_resource(void)1442 insert_non_bus_resource(void)
1443 {
1444 	struct resource *res =
1445 		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1446 	res->name = "Non-Bus Physical Address Space";
1447 	res->start = (1ULL << 32);
1448 	res->end = -1LL;
1449 	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1450 	if (insert_resource(&iomem_resource, res)) {
1451 		kfree(res);
1452 		return NULL;
1453 	}
1454 	return res;
1455 }
1456 #endif
1457 
1458 static struct resource* __init
insert_ram_resource(u64 start_pfn,u64 end_pfn)1459 insert_ram_resource(u64 start_pfn, u64 end_pfn)
1460 {
1461 	struct resource *res =
1462 		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1463 	res->name = "System RAM";
1464 	res->start = start_pfn << PAGE_SHIFT;
1465 	res->end = (end_pfn << PAGE_SHIFT) - 1;
1466 	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1467 	if (insert_resource(&iomem_resource, res)) {
1468 		kfree(res);
1469 		return NULL;
1470 	}
1471 	return res;
1472 }
1473 
1474 /*
1475  * Request address space for all standard resources
1476  *
1477  * If the system includes PCI root complex drivers, we need to create
1478  * a window just below 4GB where PCI BARs can be mapped.
1479  */
request_standard_resources(void)1480 static int __init request_standard_resources(void)
1481 {
1482 	int i;
1483 	enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
1484 
1485 	iomem_resource.end = -1LL;
1486 #ifdef CONFIG_PCI
1487 	insert_non_bus_resource();
1488 #endif
1489 
1490 	for_each_online_node(i) {
1491 		u64 start_pfn = node_start_pfn[i];
1492 		u64 end_pfn = node_end_pfn[i];
1493 
1494 #ifdef CONFIG_PCI
1495 		if (start_pfn <= pci_reserve_start_pfn &&
1496 		    end_pfn > pci_reserve_start_pfn) {
1497 			if (end_pfn > pci_reserve_end_pfn)
1498 				insert_ram_resource(pci_reserve_end_pfn,
1499 						     end_pfn);
1500 			end_pfn = pci_reserve_start_pfn;
1501 		}
1502 #endif
1503 		insert_ram_resource(start_pfn, end_pfn);
1504 	}
1505 
1506 	code_resource.start = __pa(_text - CODE_DELTA);
1507 	code_resource.end = __pa(_etext - CODE_DELTA)-1;
1508 	data_resource.start = __pa(_sdata);
1509 	data_resource.end = __pa(_end)-1;
1510 
1511 	insert_resource(&iomem_resource, &code_resource);
1512 	insert_resource(&iomem_resource, &data_resource);
1513 
1514 #ifdef CONFIG_KEXEC
1515 	insert_resource(&iomem_resource, &crashk_res);
1516 #endif
1517 
1518 	return 0;
1519 }
1520 
1521 subsys_initcall(request_standard_resources);
1522