1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29 
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/irq.h>
52 
53 #include "init_64.h"
54 
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
56 
57 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
58  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60  */
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62 
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65  * Space is allocated for this right after the trap table
66  * in arch/sparc64/kernel/head.S
67  */
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
70 
71 #define MAX_BANKS	32
72 
73 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
74 static int pavail_ents __devinitdata;
75 
cmp_p64(const void * a,const void * b)76 static int cmp_p64(const void *a, const void *b)
77 {
78 	const struct linux_prom64_registers *x = a, *y = b;
79 
80 	if (x->phys_addr > y->phys_addr)
81 		return 1;
82 	if (x->phys_addr < y->phys_addr)
83 		return -1;
84 	return 0;
85 }
86 
read_obp_memory(const char * property,struct linux_prom64_registers * regs,int * num_ents)87 static void __init read_obp_memory(const char *property,
88 				   struct linux_prom64_registers *regs,
89 				   int *num_ents)
90 {
91 	phandle node = prom_finddevice("/memory");
92 	int prop_size = prom_getproplen(node, property);
93 	int ents, ret, i;
94 
95 	ents = prop_size / sizeof(struct linux_prom64_registers);
96 	if (ents > MAX_BANKS) {
97 		prom_printf("The machine has more %s property entries than "
98 			    "this kernel can support (%d).\n",
99 			    property, MAX_BANKS);
100 		prom_halt();
101 	}
102 
103 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
104 	if (ret == -1) {
105 		prom_printf("Couldn't get %s property from /memory.\n");
106 		prom_halt();
107 	}
108 
109 	/* Sanitize what we got from the firmware, by page aligning
110 	 * everything.
111 	 */
112 	for (i = 0; i < ents; i++) {
113 		unsigned long base, size;
114 
115 		base = regs[i].phys_addr;
116 		size = regs[i].reg_size;
117 
118 		size &= PAGE_MASK;
119 		if (base & ~PAGE_MASK) {
120 			unsigned long new_base = PAGE_ALIGN(base);
121 
122 			size -= new_base - base;
123 			if ((long) size < 0L)
124 				size = 0UL;
125 			base = new_base;
126 		}
127 		if (size == 0UL) {
128 			/* If it is empty, simply get rid of it.
129 			 * This simplifies the logic of the other
130 			 * functions that process these arrays.
131 			 */
132 			memmove(&regs[i], &regs[i + 1],
133 				(ents - i - 1) * sizeof(regs[0]));
134 			i--;
135 			ents--;
136 			continue;
137 		}
138 		regs[i].phys_addr = base;
139 		regs[i].reg_size = size;
140 	}
141 
142 	*num_ents = ents;
143 
144 	sort(regs, ents, sizeof(struct linux_prom64_registers),
145 	     cmp_p64, NULL);
146 }
147 
148 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
149 					sizeof(unsigned long)];
150 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
151 
152 /* Kernel physical address base and size in bytes.  */
153 unsigned long kern_base __read_mostly;
154 unsigned long kern_size __read_mostly;
155 
156 /* Initial ramdisk setup */
157 extern unsigned long sparc_ramdisk_image64;
158 extern unsigned int sparc_ramdisk_image;
159 extern unsigned int sparc_ramdisk_size;
160 
161 struct page *mem_map_zero __read_mostly;
162 EXPORT_SYMBOL(mem_map_zero);
163 
164 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
165 
166 unsigned long sparc64_kern_pri_context __read_mostly;
167 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
168 unsigned long sparc64_kern_sec_context __read_mostly;
169 
170 int num_kernel_image_mappings;
171 
172 #ifdef CONFIG_DEBUG_DCFLUSH
173 atomic_t dcpage_flushes = ATOMIC_INIT(0);
174 #ifdef CONFIG_SMP
175 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
176 #endif
177 #endif
178 
flush_dcache_page_impl(struct page * page)179 inline void flush_dcache_page_impl(struct page *page)
180 {
181 	BUG_ON(tlb_type == hypervisor);
182 #ifdef CONFIG_DEBUG_DCFLUSH
183 	atomic_inc(&dcpage_flushes);
184 #endif
185 
186 #ifdef DCACHE_ALIASING_POSSIBLE
187 	__flush_dcache_page(page_address(page),
188 			    ((tlb_type == spitfire) &&
189 			     page_mapping(page) != NULL));
190 #else
191 	if (page_mapping(page) != NULL &&
192 	    tlb_type == spitfire)
193 		__flush_icache_page(__pa(page_address(page)));
194 #endif
195 }
196 
197 #define PG_dcache_dirty		PG_arch_1
198 #define PG_dcache_cpu_shift	32UL
199 #define PG_dcache_cpu_mask	\
200 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
201 
202 #define dcache_dirty_cpu(page) \
203 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
204 
set_dcache_dirty(struct page * page,int this_cpu)205 static inline void set_dcache_dirty(struct page *page, int this_cpu)
206 {
207 	unsigned long mask = this_cpu;
208 	unsigned long non_cpu_bits;
209 
210 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
211 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
212 
213 	__asm__ __volatile__("1:\n\t"
214 			     "ldx	[%2], %%g7\n\t"
215 			     "and	%%g7, %1, %%g1\n\t"
216 			     "or	%%g1, %0, %%g1\n\t"
217 			     "casx	[%2], %%g7, %%g1\n\t"
218 			     "cmp	%%g7, %%g1\n\t"
219 			     "bne,pn	%%xcc, 1b\n\t"
220 			     " nop"
221 			     : /* no outputs */
222 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
223 			     : "g1", "g7");
224 }
225 
clear_dcache_dirty_cpu(struct page * page,unsigned long cpu)226 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
227 {
228 	unsigned long mask = (1UL << PG_dcache_dirty);
229 
230 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
231 			     "1:\n\t"
232 			     "ldx	[%2], %%g7\n\t"
233 			     "srlx	%%g7, %4, %%g1\n\t"
234 			     "and	%%g1, %3, %%g1\n\t"
235 			     "cmp	%%g1, %0\n\t"
236 			     "bne,pn	%%icc, 2f\n\t"
237 			     " andn	%%g7, %1, %%g1\n\t"
238 			     "casx	[%2], %%g7, %%g1\n\t"
239 			     "cmp	%%g7, %%g1\n\t"
240 			     "bne,pn	%%xcc, 1b\n\t"
241 			     " nop\n"
242 			     "2:"
243 			     : /* no outputs */
244 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
245 			       "i" (PG_dcache_cpu_mask),
246 			       "i" (PG_dcache_cpu_shift)
247 			     : "g1", "g7");
248 }
249 
tsb_insert(struct tsb * ent,unsigned long tag,unsigned long pte)250 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
251 {
252 	unsigned long tsb_addr = (unsigned long) ent;
253 
254 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
255 		tsb_addr = __pa(tsb_addr);
256 
257 	__tsb_insert(tsb_addr, tag, pte);
258 }
259 
260 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
261 unsigned long _PAGE_SZBITS __read_mostly;
262 
flush_dcache(unsigned long pfn)263 static void flush_dcache(unsigned long pfn)
264 {
265 	struct page *page;
266 
267 	page = pfn_to_page(pfn);
268 	if (page) {
269 		unsigned long pg_flags;
270 
271 		pg_flags = page->flags;
272 		if (pg_flags & (1UL << PG_dcache_dirty)) {
273 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
274 				   PG_dcache_cpu_mask);
275 			int this_cpu = get_cpu();
276 
277 			/* This is just to optimize away some function calls
278 			 * in the SMP case.
279 			 */
280 			if (cpu == this_cpu)
281 				flush_dcache_page_impl(page);
282 			else
283 				smp_flush_dcache_page_impl(page, cpu);
284 
285 			clear_dcache_dirty_cpu(page, cpu);
286 
287 			put_cpu();
288 		}
289 	}
290 }
291 
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)292 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
293 {
294 	struct mm_struct *mm;
295 	struct tsb *tsb;
296 	unsigned long tag, flags;
297 	unsigned long tsb_index, tsb_hash_shift;
298 	pte_t pte = *ptep;
299 
300 	if (tlb_type != hypervisor) {
301 		unsigned long pfn = pte_pfn(pte);
302 
303 		if (pfn_valid(pfn))
304 			flush_dcache(pfn);
305 	}
306 
307 	mm = vma->vm_mm;
308 
309 	tsb_index = MM_TSB_BASE;
310 	tsb_hash_shift = PAGE_SHIFT;
311 
312 	spin_lock_irqsave(&mm->context.lock, flags);
313 
314 #ifdef CONFIG_HUGETLB_PAGE
315 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
316 		if ((tlb_type == hypervisor &&
317 		     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
318 		    (tlb_type != hypervisor &&
319 		     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
320 			tsb_index = MM_TSB_HUGE;
321 			tsb_hash_shift = HPAGE_SHIFT;
322 		}
323 	}
324 #endif
325 
326 	tsb = mm->context.tsb_block[tsb_index].tsb;
327 	tsb += ((address >> tsb_hash_shift) &
328 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
329 	tag = (address >> 22UL);
330 	tsb_insert(tsb, tag, pte_val(pte));
331 
332 	spin_unlock_irqrestore(&mm->context.lock, flags);
333 }
334 
flush_dcache_page(struct page * page)335 void flush_dcache_page(struct page *page)
336 {
337 	struct address_space *mapping;
338 	int this_cpu;
339 
340 	if (tlb_type == hypervisor)
341 		return;
342 
343 	/* Do not bother with the expensive D-cache flush if it
344 	 * is merely the zero page.  The 'bigcore' testcase in GDB
345 	 * causes this case to run millions of times.
346 	 */
347 	if (page == ZERO_PAGE(0))
348 		return;
349 
350 	this_cpu = get_cpu();
351 
352 	mapping = page_mapping(page);
353 	if (mapping && !mapping_mapped(mapping)) {
354 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
355 		if (dirty) {
356 			int dirty_cpu = dcache_dirty_cpu(page);
357 
358 			if (dirty_cpu == this_cpu)
359 				goto out;
360 			smp_flush_dcache_page_impl(page, dirty_cpu);
361 		}
362 		set_dcache_dirty(page, this_cpu);
363 	} else {
364 		/* We could delay the flush for the !page_mapping
365 		 * case too.  But that case is for exec env/arg
366 		 * pages and those are %99 certainly going to get
367 		 * faulted into the tlb (and thus flushed) anyways.
368 		 */
369 		flush_dcache_page_impl(page);
370 	}
371 
372 out:
373 	put_cpu();
374 }
375 EXPORT_SYMBOL(flush_dcache_page);
376 
flush_icache_range(unsigned long start,unsigned long end)377 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
378 {
379 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
380 	if (tlb_type == spitfire) {
381 		unsigned long kaddr;
382 
383 		/* This code only runs on Spitfire cpus so this is
384 		 * why we can assume _PAGE_PADDR_4U.
385 		 */
386 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
387 			unsigned long paddr, mask = _PAGE_PADDR_4U;
388 
389 			if (kaddr >= PAGE_OFFSET)
390 				paddr = kaddr & mask;
391 			else {
392 				pgd_t *pgdp = pgd_offset_k(kaddr);
393 				pud_t *pudp = pud_offset(pgdp, kaddr);
394 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
395 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
396 
397 				paddr = pte_val(*ptep) & mask;
398 			}
399 			__flush_icache_page(paddr);
400 		}
401 	}
402 }
403 EXPORT_SYMBOL(flush_icache_range);
404 
mmu_info(struct seq_file * m)405 void mmu_info(struct seq_file *m)
406 {
407 	if (tlb_type == cheetah)
408 		seq_printf(m, "MMU Type\t: Cheetah\n");
409 	else if (tlb_type == cheetah_plus)
410 		seq_printf(m, "MMU Type\t: Cheetah+\n");
411 	else if (tlb_type == spitfire)
412 		seq_printf(m, "MMU Type\t: Spitfire\n");
413 	else if (tlb_type == hypervisor)
414 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
415 	else
416 		seq_printf(m, "MMU Type\t: ???\n");
417 
418 #ifdef CONFIG_DEBUG_DCFLUSH
419 	seq_printf(m, "DCPageFlushes\t: %d\n",
420 		   atomic_read(&dcpage_flushes));
421 #ifdef CONFIG_SMP
422 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
423 		   atomic_read(&dcpage_flushes_xcall));
424 #endif /* CONFIG_SMP */
425 #endif /* CONFIG_DEBUG_DCFLUSH */
426 }
427 
428 struct linux_prom_translation prom_trans[512] __read_mostly;
429 unsigned int prom_trans_ents __read_mostly;
430 
431 unsigned long kern_locked_tte_data;
432 
433 /* The obp translations are saved based on 8k pagesize, since obp can
434  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
435  * HI_OBP_ADDRESS range are handled in ktlb.S.
436  */
in_obp_range(unsigned long vaddr)437 static inline int in_obp_range(unsigned long vaddr)
438 {
439 	return (vaddr >= LOW_OBP_ADDRESS &&
440 		vaddr < HI_OBP_ADDRESS);
441 }
442 
cmp_ptrans(const void * a,const void * b)443 static int cmp_ptrans(const void *a, const void *b)
444 {
445 	const struct linux_prom_translation *x = a, *y = b;
446 
447 	if (x->virt > y->virt)
448 		return 1;
449 	if (x->virt < y->virt)
450 		return -1;
451 	return 0;
452 }
453 
454 /* Read OBP translations property into 'prom_trans[]'.  */
read_obp_translations(void)455 static void __init read_obp_translations(void)
456 {
457 	int n, node, ents, first, last, i;
458 
459 	node = prom_finddevice("/virtual-memory");
460 	n = prom_getproplen(node, "translations");
461 	if (unlikely(n == 0 || n == -1)) {
462 		prom_printf("prom_mappings: Couldn't get size.\n");
463 		prom_halt();
464 	}
465 	if (unlikely(n > sizeof(prom_trans))) {
466 		prom_printf("prom_mappings: Size %Zd is too big.\n", n);
467 		prom_halt();
468 	}
469 
470 	if ((n = prom_getproperty(node, "translations",
471 				  (char *)&prom_trans[0],
472 				  sizeof(prom_trans))) == -1) {
473 		prom_printf("prom_mappings: Couldn't get property.\n");
474 		prom_halt();
475 	}
476 
477 	n = n / sizeof(struct linux_prom_translation);
478 
479 	ents = n;
480 
481 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
482 	     cmp_ptrans, NULL);
483 
484 	/* Now kick out all the non-OBP entries.  */
485 	for (i = 0; i < ents; i++) {
486 		if (in_obp_range(prom_trans[i].virt))
487 			break;
488 	}
489 	first = i;
490 	for (; i < ents; i++) {
491 		if (!in_obp_range(prom_trans[i].virt))
492 			break;
493 	}
494 	last = i;
495 
496 	for (i = 0; i < (last - first); i++) {
497 		struct linux_prom_translation *src = &prom_trans[i + first];
498 		struct linux_prom_translation *dest = &prom_trans[i];
499 
500 		*dest = *src;
501 	}
502 	for (; i < ents; i++) {
503 		struct linux_prom_translation *dest = &prom_trans[i];
504 		dest->virt = dest->size = dest->data = 0x0UL;
505 	}
506 
507 	prom_trans_ents = last - first;
508 
509 	if (tlb_type == spitfire) {
510 		/* Clear diag TTE bits. */
511 		for (i = 0; i < prom_trans_ents; i++)
512 			prom_trans[i].data &= ~0x0003fe0000000000UL;
513 	}
514 }
515 
hypervisor_tlb_lock(unsigned long vaddr,unsigned long pte,unsigned long mmu)516 static void __init hypervisor_tlb_lock(unsigned long vaddr,
517 				       unsigned long pte,
518 				       unsigned long mmu)
519 {
520 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
521 
522 	if (ret != 0) {
523 		prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
524 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
525 		prom_halt();
526 	}
527 }
528 
529 static unsigned long kern_large_tte(unsigned long paddr);
530 
remap_kernel(void)531 static void __init remap_kernel(void)
532 {
533 	unsigned long phys_page, tte_vaddr, tte_data;
534 	int i, tlb_ent = sparc64_highest_locked_tlbent();
535 
536 	tte_vaddr = (unsigned long) KERNBASE;
537 	phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
538 	tte_data = kern_large_tte(phys_page);
539 
540 	kern_locked_tte_data = tte_data;
541 
542 	/* Now lock us into the TLBs via Hypervisor or OBP. */
543 	if (tlb_type == hypervisor) {
544 		for (i = 0; i < num_kernel_image_mappings; i++) {
545 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
546 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
547 			tte_vaddr += 0x400000;
548 			tte_data += 0x400000;
549 		}
550 	} else {
551 		for (i = 0; i < num_kernel_image_mappings; i++) {
552 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
553 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
554 			tte_vaddr += 0x400000;
555 			tte_data += 0x400000;
556 		}
557 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
558 	}
559 	if (tlb_type == cheetah_plus) {
560 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
561 					    CTX_CHEETAH_PLUS_NUC);
562 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
563 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
564 	}
565 }
566 
567 
inherit_prom_mappings(void)568 static void __init inherit_prom_mappings(void)
569 {
570 	/* Now fixup OBP's idea about where we really are mapped. */
571 	printk("Remapping the kernel... ");
572 	remap_kernel();
573 	printk("done.\n");
574 }
575 
prom_world(int enter)576 void prom_world(int enter)
577 {
578 	if (!enter)
579 		set_fs((mm_segment_t) { get_thread_current_ds() });
580 
581 	__asm__ __volatile__("flushw");
582 }
583 
__flush_dcache_range(unsigned long start,unsigned long end)584 void __flush_dcache_range(unsigned long start, unsigned long end)
585 {
586 	unsigned long va;
587 
588 	if (tlb_type == spitfire) {
589 		int n = 0;
590 
591 		for (va = start; va < end; va += 32) {
592 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
593 			if (++n >= 512)
594 				break;
595 		}
596 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
597 		start = __pa(start);
598 		end = __pa(end);
599 		for (va = start; va < end; va += 32)
600 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
601 					     "membar #Sync"
602 					     : /* no outputs */
603 					     : "r" (va),
604 					       "i" (ASI_DCACHE_INVALIDATE));
605 	}
606 }
607 EXPORT_SYMBOL(__flush_dcache_range);
608 
609 /* get_new_mmu_context() uses "cache + 1".  */
610 DEFINE_SPINLOCK(ctx_alloc_lock);
611 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
612 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
613 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
614 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
615 
616 /* Caller does TLB context flushing on local CPU if necessary.
617  * The caller also ensures that CTX_VALID(mm->context) is false.
618  *
619  * We must be careful about boundary cases so that we never
620  * let the user have CTX 0 (nucleus) or we ever use a CTX
621  * version of zero (and thus NO_CONTEXT would not be caught
622  * by version mis-match tests in mmu_context.h).
623  *
624  * Always invoked with interrupts disabled.
625  */
get_new_mmu_context(struct mm_struct * mm)626 void get_new_mmu_context(struct mm_struct *mm)
627 {
628 	unsigned long ctx, new_ctx;
629 	unsigned long orig_pgsz_bits;
630 	unsigned long flags;
631 	int new_version;
632 
633 	spin_lock_irqsave(&ctx_alloc_lock, flags);
634 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
635 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
636 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
637 	new_version = 0;
638 	if (new_ctx >= (1 << CTX_NR_BITS)) {
639 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
640 		if (new_ctx >= ctx) {
641 			int i;
642 			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
643 				CTX_FIRST_VERSION;
644 			if (new_ctx == 1)
645 				new_ctx = CTX_FIRST_VERSION;
646 
647 			/* Don't call memset, for 16 entries that's just
648 			 * plain silly...
649 			 */
650 			mmu_context_bmap[0] = 3;
651 			mmu_context_bmap[1] = 0;
652 			mmu_context_bmap[2] = 0;
653 			mmu_context_bmap[3] = 0;
654 			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
655 				mmu_context_bmap[i + 0] = 0;
656 				mmu_context_bmap[i + 1] = 0;
657 				mmu_context_bmap[i + 2] = 0;
658 				mmu_context_bmap[i + 3] = 0;
659 			}
660 			new_version = 1;
661 			goto out;
662 		}
663 	}
664 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
665 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
666 out:
667 	tlb_context_cache = new_ctx;
668 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
669 	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
670 
671 	if (unlikely(new_version))
672 		smp_new_mmu_context_version();
673 }
674 
675 static int numa_enabled = 1;
676 static int numa_debug;
677 
early_numa(char * p)678 static int __init early_numa(char *p)
679 {
680 	if (!p)
681 		return 0;
682 
683 	if (strstr(p, "off"))
684 		numa_enabled = 0;
685 
686 	if (strstr(p, "debug"))
687 		numa_debug = 1;
688 
689 	return 0;
690 }
691 early_param("numa", early_numa);
692 
693 #define numadbg(f, a...) \
694 do {	if (numa_debug) \
695 		printk(KERN_INFO f, ## a); \
696 } while (0)
697 
find_ramdisk(unsigned long phys_base)698 static void __init find_ramdisk(unsigned long phys_base)
699 {
700 #ifdef CONFIG_BLK_DEV_INITRD
701 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
702 		unsigned long ramdisk_image;
703 
704 		/* Older versions of the bootloader only supported a
705 		 * 32-bit physical address for the ramdisk image
706 		 * location, stored at sparc_ramdisk_image.  Newer
707 		 * SILO versions set sparc_ramdisk_image to zero and
708 		 * provide a full 64-bit physical address at
709 		 * sparc_ramdisk_image64.
710 		 */
711 		ramdisk_image = sparc_ramdisk_image;
712 		if (!ramdisk_image)
713 			ramdisk_image = sparc_ramdisk_image64;
714 
715 		/* Another bootloader quirk.  The bootloader normalizes
716 		 * the physical address to KERNBASE, so we have to
717 		 * factor that back out and add in the lowest valid
718 		 * physical page address to get the true physical address.
719 		 */
720 		ramdisk_image -= KERNBASE;
721 		ramdisk_image += phys_base;
722 
723 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
724 			ramdisk_image, sparc_ramdisk_size);
725 
726 		initrd_start = ramdisk_image;
727 		initrd_end = ramdisk_image + sparc_ramdisk_size;
728 
729 		memblock_reserve(initrd_start, sparc_ramdisk_size);
730 
731 		initrd_start += PAGE_OFFSET;
732 		initrd_end += PAGE_OFFSET;
733 	}
734 #endif
735 }
736 
737 struct node_mem_mask {
738 	unsigned long mask;
739 	unsigned long val;
740 	unsigned long bootmem_paddr;
741 };
742 static struct node_mem_mask node_masks[MAX_NUMNODES];
743 static int num_node_masks;
744 
745 int numa_cpu_lookup_table[NR_CPUS];
746 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
747 
748 #ifdef CONFIG_NEED_MULTIPLE_NODES
749 
750 struct mdesc_mblock {
751 	u64	base;
752 	u64	size;
753 	u64	offset; /* RA-to-PA */
754 };
755 static struct mdesc_mblock *mblocks;
756 static int num_mblocks;
757 
ra_to_pa(unsigned long addr)758 static unsigned long ra_to_pa(unsigned long addr)
759 {
760 	int i;
761 
762 	for (i = 0; i < num_mblocks; i++) {
763 		struct mdesc_mblock *m = &mblocks[i];
764 
765 		if (addr >= m->base &&
766 		    addr < (m->base + m->size)) {
767 			addr += m->offset;
768 			break;
769 		}
770 	}
771 	return addr;
772 }
773 
find_node(unsigned long addr)774 static int find_node(unsigned long addr)
775 {
776 	int i;
777 
778 	addr = ra_to_pa(addr);
779 	for (i = 0; i < num_node_masks; i++) {
780 		struct node_mem_mask *p = &node_masks[i];
781 
782 		if ((addr & p->mask) == p->val)
783 			return i;
784 	}
785 	return -1;
786 }
787 
memblock_nid_range(u64 start,u64 end,int * nid)788 u64 memblock_nid_range(u64 start, u64 end, int *nid)
789 {
790 	*nid = find_node(start);
791 	start += PAGE_SIZE;
792 	while (start < end) {
793 		int n = find_node(start);
794 
795 		if (n != *nid)
796 			break;
797 		start += PAGE_SIZE;
798 	}
799 
800 	if (start > end)
801 		start = end;
802 
803 	return start;
804 }
805 #else
memblock_nid_range(u64 start,u64 end,int * nid)806 u64 memblock_nid_range(u64 start, u64 end, int *nid)
807 {
808 	*nid = 0;
809 	return end;
810 }
811 #endif
812 
813 /* This must be invoked after performing all of the necessary
814  * add_active_range() calls for 'nid'.  We need to be able to get
815  * correct data from get_pfn_range_for_nid().
816  */
allocate_node_data(int nid)817 static void __init allocate_node_data(int nid)
818 {
819 	unsigned long paddr, num_pages, start_pfn, end_pfn;
820 	struct pglist_data *p;
821 
822 #ifdef CONFIG_NEED_MULTIPLE_NODES
823 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
824 	if (!paddr) {
825 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
826 		prom_halt();
827 	}
828 	NODE_DATA(nid) = __va(paddr);
829 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
830 
831 	NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
832 #endif
833 
834 	p = NODE_DATA(nid);
835 
836 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
837 	p->node_start_pfn = start_pfn;
838 	p->node_spanned_pages = end_pfn - start_pfn;
839 
840 	if (p->node_spanned_pages) {
841 		num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
842 
843 		paddr = memblock_alloc_try_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid);
844 		if (!paddr) {
845 			prom_printf("Cannot allocate bootmap for nid[%d]\n",
846 				  nid);
847 			prom_halt();
848 		}
849 		node_masks[nid].bootmem_paddr = paddr;
850 	}
851 }
852 
init_node_masks_nonnuma(void)853 static void init_node_masks_nonnuma(void)
854 {
855 	int i;
856 
857 	numadbg("Initializing tables for non-numa.\n");
858 
859 	node_masks[0].mask = node_masks[0].val = 0;
860 	num_node_masks = 1;
861 
862 	for (i = 0; i < NR_CPUS; i++)
863 		numa_cpu_lookup_table[i] = 0;
864 
865 	numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
866 }
867 
868 #ifdef CONFIG_NEED_MULTIPLE_NODES
869 struct pglist_data *node_data[MAX_NUMNODES];
870 
871 EXPORT_SYMBOL(numa_cpu_lookup_table);
872 EXPORT_SYMBOL(numa_cpumask_lookup_table);
873 EXPORT_SYMBOL(node_data);
874 
875 struct mdesc_mlgroup {
876 	u64	node;
877 	u64	latency;
878 	u64	match;
879 	u64	mask;
880 };
881 static struct mdesc_mlgroup *mlgroups;
882 static int num_mlgroups;
883 
scan_pio_for_cfg_handle(struct mdesc_handle * md,u64 pio,u32 cfg_handle)884 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
885 				   u32 cfg_handle)
886 {
887 	u64 arc;
888 
889 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
890 		u64 target = mdesc_arc_target(md, arc);
891 		const u64 *val;
892 
893 		val = mdesc_get_property(md, target,
894 					 "cfg-handle", NULL);
895 		if (val && *val == cfg_handle)
896 			return 0;
897 	}
898 	return -ENODEV;
899 }
900 
scan_arcs_for_cfg_handle(struct mdesc_handle * md,u64 grp,u32 cfg_handle)901 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
902 				    u32 cfg_handle)
903 {
904 	u64 arc, candidate, best_latency = ~(u64)0;
905 
906 	candidate = MDESC_NODE_NULL;
907 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
908 		u64 target = mdesc_arc_target(md, arc);
909 		const char *name = mdesc_node_name(md, target);
910 		const u64 *val;
911 
912 		if (strcmp(name, "pio-latency-group"))
913 			continue;
914 
915 		val = mdesc_get_property(md, target, "latency", NULL);
916 		if (!val)
917 			continue;
918 
919 		if (*val < best_latency) {
920 			candidate = target;
921 			best_latency = *val;
922 		}
923 	}
924 
925 	if (candidate == MDESC_NODE_NULL)
926 		return -ENODEV;
927 
928 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
929 }
930 
of_node_to_nid(struct device_node * dp)931 int of_node_to_nid(struct device_node *dp)
932 {
933 	const struct linux_prom64_registers *regs;
934 	struct mdesc_handle *md;
935 	u32 cfg_handle;
936 	int count, nid;
937 	u64 grp;
938 
939 	/* This is the right thing to do on currently supported
940 	 * SUN4U NUMA platforms as well, as the PCI controller does
941 	 * not sit behind any particular memory controller.
942 	 */
943 	if (!mlgroups)
944 		return -1;
945 
946 	regs = of_get_property(dp, "reg", NULL);
947 	if (!regs)
948 		return -1;
949 
950 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
951 
952 	md = mdesc_grab();
953 
954 	count = 0;
955 	nid = -1;
956 	mdesc_for_each_node_by_name(md, grp, "group") {
957 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
958 			nid = count;
959 			break;
960 		}
961 		count++;
962 	}
963 
964 	mdesc_release(md);
965 
966 	return nid;
967 }
968 
add_node_ranges(void)969 static void __init add_node_ranges(void)
970 {
971 	struct memblock_region *reg;
972 
973 	for_each_memblock(memory, reg) {
974 		unsigned long size = reg->size;
975 		unsigned long start, end;
976 
977 		start = reg->base;
978 		end = start + size;
979 		while (start < end) {
980 			unsigned long this_end;
981 			int nid;
982 
983 			this_end = memblock_nid_range(start, end, &nid);
984 
985 			numadbg("Adding active range nid[%d] "
986 				"start[%lx] end[%lx]\n",
987 				nid, start, this_end);
988 
989 			add_active_range(nid,
990 					 start >> PAGE_SHIFT,
991 					 this_end >> PAGE_SHIFT);
992 
993 			start = this_end;
994 		}
995 	}
996 }
997 
grab_mlgroups(struct mdesc_handle * md)998 static int __init grab_mlgroups(struct mdesc_handle *md)
999 {
1000 	unsigned long paddr;
1001 	int count = 0;
1002 	u64 node;
1003 
1004 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1005 		count++;
1006 	if (!count)
1007 		return -ENOENT;
1008 
1009 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1010 			  SMP_CACHE_BYTES);
1011 	if (!paddr)
1012 		return -ENOMEM;
1013 
1014 	mlgroups = __va(paddr);
1015 	num_mlgroups = count;
1016 
1017 	count = 0;
1018 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1019 		struct mdesc_mlgroup *m = &mlgroups[count++];
1020 		const u64 *val;
1021 
1022 		m->node = node;
1023 
1024 		val = mdesc_get_property(md, node, "latency", NULL);
1025 		m->latency = *val;
1026 		val = mdesc_get_property(md, node, "address-match", NULL);
1027 		m->match = *val;
1028 		val = mdesc_get_property(md, node, "address-mask", NULL);
1029 		m->mask = *val;
1030 
1031 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1032 			"match[%llx] mask[%llx]\n",
1033 			count - 1, m->node, m->latency, m->match, m->mask);
1034 	}
1035 
1036 	return 0;
1037 }
1038 
grab_mblocks(struct mdesc_handle * md)1039 static int __init grab_mblocks(struct mdesc_handle *md)
1040 {
1041 	unsigned long paddr;
1042 	int count = 0;
1043 	u64 node;
1044 
1045 	mdesc_for_each_node_by_name(md, node, "mblock")
1046 		count++;
1047 	if (!count)
1048 		return -ENOENT;
1049 
1050 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1051 			  SMP_CACHE_BYTES);
1052 	if (!paddr)
1053 		return -ENOMEM;
1054 
1055 	mblocks = __va(paddr);
1056 	num_mblocks = count;
1057 
1058 	count = 0;
1059 	mdesc_for_each_node_by_name(md, node, "mblock") {
1060 		struct mdesc_mblock *m = &mblocks[count++];
1061 		const u64 *val;
1062 
1063 		val = mdesc_get_property(md, node, "base", NULL);
1064 		m->base = *val;
1065 		val = mdesc_get_property(md, node, "size", NULL);
1066 		m->size = *val;
1067 		val = mdesc_get_property(md, node,
1068 					 "address-congruence-offset", NULL);
1069 		m->offset = *val;
1070 
1071 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1072 			count - 1, m->base, m->size, m->offset);
1073 	}
1074 
1075 	return 0;
1076 }
1077 
numa_parse_mdesc_group_cpus(struct mdesc_handle * md,u64 grp,cpumask_t * mask)1078 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1079 					       u64 grp, cpumask_t *mask)
1080 {
1081 	u64 arc;
1082 
1083 	cpus_clear(*mask);
1084 
1085 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1086 		u64 target = mdesc_arc_target(md, arc);
1087 		const char *name = mdesc_node_name(md, target);
1088 		const u64 *id;
1089 
1090 		if (strcmp(name, "cpu"))
1091 			continue;
1092 		id = mdesc_get_property(md, target, "id", NULL);
1093 		if (*id < nr_cpu_ids)
1094 			cpu_set(*id, *mask);
1095 	}
1096 }
1097 
find_mlgroup(u64 node)1098 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1099 {
1100 	int i;
1101 
1102 	for (i = 0; i < num_mlgroups; i++) {
1103 		struct mdesc_mlgroup *m = &mlgroups[i];
1104 		if (m->node == node)
1105 			return m;
1106 	}
1107 	return NULL;
1108 }
1109 
numa_attach_mlgroup(struct mdesc_handle * md,u64 grp,int index)1110 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1111 				      int index)
1112 {
1113 	struct mdesc_mlgroup *candidate = NULL;
1114 	u64 arc, best_latency = ~(u64)0;
1115 	struct node_mem_mask *n;
1116 
1117 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1118 		u64 target = mdesc_arc_target(md, arc);
1119 		struct mdesc_mlgroup *m = find_mlgroup(target);
1120 		if (!m)
1121 			continue;
1122 		if (m->latency < best_latency) {
1123 			candidate = m;
1124 			best_latency = m->latency;
1125 		}
1126 	}
1127 	if (!candidate)
1128 		return -ENOENT;
1129 
1130 	if (num_node_masks != index) {
1131 		printk(KERN_ERR "Inconsistent NUMA state, "
1132 		       "index[%d] != num_node_masks[%d]\n",
1133 		       index, num_node_masks);
1134 		return -EINVAL;
1135 	}
1136 
1137 	n = &node_masks[num_node_masks++];
1138 
1139 	n->mask = candidate->mask;
1140 	n->val = candidate->match;
1141 
1142 	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1143 		index, n->mask, n->val, candidate->latency);
1144 
1145 	return 0;
1146 }
1147 
numa_parse_mdesc_group(struct mdesc_handle * md,u64 grp,int index)1148 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1149 					 int index)
1150 {
1151 	cpumask_t mask;
1152 	int cpu;
1153 
1154 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1155 
1156 	for_each_cpu_mask(cpu, mask)
1157 		numa_cpu_lookup_table[cpu] = index;
1158 	numa_cpumask_lookup_table[index] = mask;
1159 
1160 	if (numa_debug) {
1161 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1162 		for_each_cpu_mask(cpu, mask)
1163 			printk("%d ", cpu);
1164 		printk("]\n");
1165 	}
1166 
1167 	return numa_attach_mlgroup(md, grp, index);
1168 }
1169 
numa_parse_mdesc(void)1170 static int __init numa_parse_mdesc(void)
1171 {
1172 	struct mdesc_handle *md = mdesc_grab();
1173 	int i, err, count;
1174 	u64 node;
1175 
1176 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1177 	if (node == MDESC_NODE_NULL) {
1178 		mdesc_release(md);
1179 		return -ENOENT;
1180 	}
1181 
1182 	err = grab_mblocks(md);
1183 	if (err < 0)
1184 		goto out;
1185 
1186 	err = grab_mlgroups(md);
1187 	if (err < 0)
1188 		goto out;
1189 
1190 	count = 0;
1191 	mdesc_for_each_node_by_name(md, node, "group") {
1192 		err = numa_parse_mdesc_group(md, node, count);
1193 		if (err < 0)
1194 			break;
1195 		count++;
1196 	}
1197 
1198 	add_node_ranges();
1199 
1200 	for (i = 0; i < num_node_masks; i++) {
1201 		allocate_node_data(i);
1202 		node_set_online(i);
1203 	}
1204 
1205 	err = 0;
1206 out:
1207 	mdesc_release(md);
1208 	return err;
1209 }
1210 
numa_parse_jbus(void)1211 static int __init numa_parse_jbus(void)
1212 {
1213 	unsigned long cpu, index;
1214 
1215 	/* NUMA node id is encoded in bits 36 and higher, and there is
1216 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1217 	 */
1218 	index = 0;
1219 	for_each_present_cpu(cpu) {
1220 		numa_cpu_lookup_table[cpu] = index;
1221 		numa_cpumask_lookup_table[index] = cpumask_of_cpu(cpu);
1222 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1223 		node_masks[index].val = cpu << 36UL;
1224 
1225 		index++;
1226 	}
1227 	num_node_masks = index;
1228 
1229 	add_node_ranges();
1230 
1231 	for (index = 0; index < num_node_masks; index++) {
1232 		allocate_node_data(index);
1233 		node_set_online(index);
1234 	}
1235 
1236 	return 0;
1237 }
1238 
numa_parse_sun4u(void)1239 static int __init numa_parse_sun4u(void)
1240 {
1241 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1242 		unsigned long ver;
1243 
1244 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1245 		if ((ver >> 32UL) == __JALAPENO_ID ||
1246 		    (ver >> 32UL) == __SERRANO_ID)
1247 			return numa_parse_jbus();
1248 	}
1249 	return -1;
1250 }
1251 
bootmem_init_numa(void)1252 static int __init bootmem_init_numa(void)
1253 {
1254 	int err = -1;
1255 
1256 	numadbg("bootmem_init_numa()\n");
1257 
1258 	if (numa_enabled) {
1259 		if (tlb_type == hypervisor)
1260 			err = numa_parse_mdesc();
1261 		else
1262 			err = numa_parse_sun4u();
1263 	}
1264 	return err;
1265 }
1266 
1267 #else
1268 
bootmem_init_numa(void)1269 static int bootmem_init_numa(void)
1270 {
1271 	return -1;
1272 }
1273 
1274 #endif
1275 
bootmem_init_nonnuma(void)1276 static void __init bootmem_init_nonnuma(void)
1277 {
1278 	unsigned long top_of_ram = memblock_end_of_DRAM();
1279 	unsigned long total_ram = memblock_phys_mem_size();
1280 	struct memblock_region *reg;
1281 
1282 	numadbg("bootmem_init_nonnuma()\n");
1283 
1284 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1285 	       top_of_ram, total_ram);
1286 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1287 	       (top_of_ram - total_ram) >> 20);
1288 
1289 	init_node_masks_nonnuma();
1290 
1291 	for_each_memblock(memory, reg) {
1292 		unsigned long start_pfn, end_pfn;
1293 
1294 		if (!reg->size)
1295 			continue;
1296 
1297 		start_pfn = memblock_region_memory_base_pfn(reg);
1298 		end_pfn = memblock_region_memory_end_pfn(reg);
1299 		add_active_range(0, start_pfn, end_pfn);
1300 	}
1301 
1302 	allocate_node_data(0);
1303 
1304 	node_set_online(0);
1305 }
1306 
reserve_range_in_node(int nid,unsigned long start,unsigned long end)1307 static void __init reserve_range_in_node(int nid, unsigned long start,
1308 					 unsigned long end)
1309 {
1310 	numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1311 		nid, start, end);
1312 	while (start < end) {
1313 		unsigned long this_end;
1314 		int n;
1315 
1316 		this_end = memblock_nid_range(start, end, &n);
1317 		if (n == nid) {
1318 			numadbg("      MATCH reserving range [%lx:%lx]\n",
1319 				start, this_end);
1320 			reserve_bootmem_node(NODE_DATA(nid), start,
1321 					     (this_end - start), BOOTMEM_DEFAULT);
1322 		} else
1323 			numadbg("      NO MATCH, advancing start to %lx\n",
1324 				this_end);
1325 
1326 		start = this_end;
1327 	}
1328 }
1329 
trim_reserved_in_node(int nid)1330 static void __init trim_reserved_in_node(int nid)
1331 {
1332 	struct memblock_region *reg;
1333 
1334 	numadbg("  trim_reserved_in_node(%d)\n", nid);
1335 
1336 	for_each_memblock(reserved, reg)
1337 		reserve_range_in_node(nid, reg->base, reg->base + reg->size);
1338 }
1339 
bootmem_init_one_node(int nid)1340 static void __init bootmem_init_one_node(int nid)
1341 {
1342 	struct pglist_data *p;
1343 
1344 	numadbg("bootmem_init_one_node(%d)\n", nid);
1345 
1346 	p = NODE_DATA(nid);
1347 
1348 	if (p->node_spanned_pages) {
1349 		unsigned long paddr = node_masks[nid].bootmem_paddr;
1350 		unsigned long end_pfn;
1351 
1352 		end_pfn = p->node_start_pfn + p->node_spanned_pages;
1353 
1354 		numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1355 			nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1356 
1357 		init_bootmem_node(p, paddr >> PAGE_SHIFT,
1358 				  p->node_start_pfn, end_pfn);
1359 
1360 		numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1361 			nid, end_pfn);
1362 		free_bootmem_with_active_regions(nid, end_pfn);
1363 
1364 		trim_reserved_in_node(nid);
1365 
1366 		numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1367 			nid);
1368 		sparse_memory_present_with_active_regions(nid);
1369 	}
1370 }
1371 
bootmem_init(unsigned long phys_base)1372 static unsigned long __init bootmem_init(unsigned long phys_base)
1373 {
1374 	unsigned long end_pfn;
1375 	int nid;
1376 
1377 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1378 	max_pfn = max_low_pfn = end_pfn;
1379 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1380 
1381 	if (bootmem_init_numa() < 0)
1382 		bootmem_init_nonnuma();
1383 
1384 	/* XXX cpu notifier XXX */
1385 
1386 	for_each_online_node(nid)
1387 		bootmem_init_one_node(nid);
1388 
1389 	sparse_init();
1390 
1391 	return end_pfn;
1392 }
1393 
1394 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1395 static int pall_ents __initdata;
1396 
1397 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_range(unsigned long pstart,unsigned long pend,pgprot_t prot)1398 static unsigned long __ref kernel_map_range(unsigned long pstart,
1399 					    unsigned long pend, pgprot_t prot)
1400 {
1401 	unsigned long vstart = PAGE_OFFSET + pstart;
1402 	unsigned long vend = PAGE_OFFSET + pend;
1403 	unsigned long alloc_bytes = 0UL;
1404 
1405 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1406 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1407 			    vstart, vend);
1408 		prom_halt();
1409 	}
1410 
1411 	while (vstart < vend) {
1412 		unsigned long this_end, paddr = __pa(vstart);
1413 		pgd_t *pgd = pgd_offset_k(vstart);
1414 		pud_t *pud;
1415 		pmd_t *pmd;
1416 		pte_t *pte;
1417 
1418 		pud = pud_offset(pgd, vstart);
1419 		if (pud_none(*pud)) {
1420 			pmd_t *new;
1421 
1422 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1423 			alloc_bytes += PAGE_SIZE;
1424 			pud_populate(&init_mm, pud, new);
1425 		}
1426 
1427 		pmd = pmd_offset(pud, vstart);
1428 		if (!pmd_present(*pmd)) {
1429 			pte_t *new;
1430 
1431 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1432 			alloc_bytes += PAGE_SIZE;
1433 			pmd_populate_kernel(&init_mm, pmd, new);
1434 		}
1435 
1436 		pte = pte_offset_kernel(pmd, vstart);
1437 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1438 		if (this_end > vend)
1439 			this_end = vend;
1440 
1441 		while (vstart < this_end) {
1442 			pte_val(*pte) = (paddr | pgprot_val(prot));
1443 
1444 			vstart += PAGE_SIZE;
1445 			paddr += PAGE_SIZE;
1446 			pte++;
1447 		}
1448 	}
1449 
1450 	return alloc_bytes;
1451 }
1452 
1453 extern unsigned int kvmap_linear_patch[1];
1454 #endif /* CONFIG_DEBUG_PAGEALLOC */
1455 
mark_kpte_bitmap(unsigned long start,unsigned long end)1456 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1457 {
1458 	const unsigned long shift_256MB = 28;
1459 	const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1460 	const unsigned long size_256MB = (1UL << shift_256MB);
1461 
1462 	while (start < end) {
1463 		long remains;
1464 
1465 		remains = end - start;
1466 		if (remains < size_256MB)
1467 			break;
1468 
1469 		if (start & mask_256MB) {
1470 			start = (start + size_256MB) & ~mask_256MB;
1471 			continue;
1472 		}
1473 
1474 		while (remains >= size_256MB) {
1475 			unsigned long index = start >> shift_256MB;
1476 
1477 			__set_bit(index, kpte_linear_bitmap);
1478 
1479 			start += size_256MB;
1480 			remains -= size_256MB;
1481 		}
1482 	}
1483 }
1484 
init_kpte_bitmap(void)1485 static void __init init_kpte_bitmap(void)
1486 {
1487 	unsigned long i;
1488 
1489 	for (i = 0; i < pall_ents; i++) {
1490 		unsigned long phys_start, phys_end;
1491 
1492 		phys_start = pall[i].phys_addr;
1493 		phys_end = phys_start + pall[i].reg_size;
1494 
1495 		mark_kpte_bitmap(phys_start, phys_end);
1496 	}
1497 }
1498 
kernel_physical_mapping_init(void)1499 static void __init kernel_physical_mapping_init(void)
1500 {
1501 #ifdef CONFIG_DEBUG_PAGEALLOC
1502 	unsigned long i, mem_alloced = 0UL;
1503 
1504 	for (i = 0; i < pall_ents; i++) {
1505 		unsigned long phys_start, phys_end;
1506 
1507 		phys_start = pall[i].phys_addr;
1508 		phys_end = phys_start + pall[i].reg_size;
1509 
1510 		mem_alloced += kernel_map_range(phys_start, phys_end,
1511 						PAGE_KERNEL);
1512 	}
1513 
1514 	printk("Allocated %ld bytes for kernel page tables.\n",
1515 	       mem_alloced);
1516 
1517 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1518 	flushi(&kvmap_linear_patch[0]);
1519 
1520 	__flush_tlb_all();
1521 #endif
1522 }
1523 
1524 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_pages(struct page * page,int numpages,int enable)1525 void kernel_map_pages(struct page *page, int numpages, int enable)
1526 {
1527 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1528 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1529 
1530 	kernel_map_range(phys_start, phys_end,
1531 			 (enable ? PAGE_KERNEL : __pgprot(0)));
1532 
1533 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1534 			       PAGE_OFFSET + phys_end);
1535 
1536 	/* we should perform an IPI and flush all tlbs,
1537 	 * but that can deadlock->flush only current cpu.
1538 	 */
1539 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1540 				 PAGE_OFFSET + phys_end);
1541 }
1542 #endif
1543 
find_ecache_flush_span(unsigned long size)1544 unsigned long __init find_ecache_flush_span(unsigned long size)
1545 {
1546 	int i;
1547 
1548 	for (i = 0; i < pavail_ents; i++) {
1549 		if (pavail[i].reg_size >= size)
1550 			return pavail[i].phys_addr;
1551 	}
1552 
1553 	return ~0UL;
1554 }
1555 
tsb_phys_patch(void)1556 static void __init tsb_phys_patch(void)
1557 {
1558 	struct tsb_ldquad_phys_patch_entry *pquad;
1559 	struct tsb_phys_patch_entry *p;
1560 
1561 	pquad = &__tsb_ldquad_phys_patch;
1562 	while (pquad < &__tsb_ldquad_phys_patch_end) {
1563 		unsigned long addr = pquad->addr;
1564 
1565 		if (tlb_type == hypervisor)
1566 			*(unsigned int *) addr = pquad->sun4v_insn;
1567 		else
1568 			*(unsigned int *) addr = pquad->sun4u_insn;
1569 		wmb();
1570 		__asm__ __volatile__("flush	%0"
1571 				     : /* no outputs */
1572 				     : "r" (addr));
1573 
1574 		pquad++;
1575 	}
1576 
1577 	p = &__tsb_phys_patch;
1578 	while (p < &__tsb_phys_patch_end) {
1579 		unsigned long addr = p->addr;
1580 
1581 		*(unsigned int *) addr = p->insn;
1582 		wmb();
1583 		__asm__ __volatile__("flush	%0"
1584 				     : /* no outputs */
1585 				     : "r" (addr));
1586 
1587 		p++;
1588 	}
1589 }
1590 
1591 /* Don't mark as init, we give this to the Hypervisor.  */
1592 #ifndef CONFIG_DEBUG_PAGEALLOC
1593 #define NUM_KTSB_DESCR	2
1594 #else
1595 #define NUM_KTSB_DESCR	1
1596 #endif
1597 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1598 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1599 
sun4v_ktsb_init(void)1600 static void __init sun4v_ktsb_init(void)
1601 {
1602 	unsigned long ktsb_pa;
1603 
1604 	/* First KTSB for PAGE_SIZE mappings.  */
1605 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1606 
1607 	switch (PAGE_SIZE) {
1608 	case 8 * 1024:
1609 	default:
1610 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1611 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1612 		break;
1613 
1614 	case 64 * 1024:
1615 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1616 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1617 		break;
1618 
1619 	case 512 * 1024:
1620 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1621 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1622 		break;
1623 
1624 	case 4 * 1024 * 1024:
1625 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1626 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1627 		break;
1628 	};
1629 
1630 	ktsb_descr[0].assoc = 1;
1631 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1632 	ktsb_descr[0].ctx_idx = 0;
1633 	ktsb_descr[0].tsb_base = ktsb_pa;
1634 	ktsb_descr[0].resv = 0;
1635 
1636 #ifndef CONFIG_DEBUG_PAGEALLOC
1637 	/* Second KTSB for 4MB/256MB mappings.  */
1638 	ktsb_pa = (kern_base +
1639 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1640 
1641 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1642 	ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1643 				   HV_PGSZ_MASK_256MB);
1644 	ktsb_descr[1].assoc = 1;
1645 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1646 	ktsb_descr[1].ctx_idx = 0;
1647 	ktsb_descr[1].tsb_base = ktsb_pa;
1648 	ktsb_descr[1].resv = 0;
1649 #endif
1650 }
1651 
sun4v_ktsb_register(void)1652 void __cpuinit sun4v_ktsb_register(void)
1653 {
1654 	unsigned long pa, ret;
1655 
1656 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1657 
1658 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1659 	if (ret != 0) {
1660 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1661 			    "errors with %lx\n", pa, ret);
1662 		prom_halt();
1663 	}
1664 }
1665 
1666 /* paging_init() sets up the page tables */
1667 
1668 static unsigned long last_valid_pfn;
1669 pgd_t swapper_pg_dir[2048];
1670 
1671 static void sun4u_pgprot_init(void);
1672 static void sun4v_pgprot_init(void);
1673 
paging_init(void)1674 void __init paging_init(void)
1675 {
1676 	unsigned long end_pfn, shift, phys_base;
1677 	unsigned long real_end, i;
1678 
1679 	/* These build time checkes make sure that the dcache_dirty_cpu()
1680 	 * page->flags usage will work.
1681 	 *
1682 	 * When a page gets marked as dcache-dirty, we store the
1683 	 * cpu number starting at bit 32 in the page->flags.  Also,
1684 	 * functions like clear_dcache_dirty_cpu use the cpu mask
1685 	 * in 13-bit signed-immediate instruction fields.
1686 	 */
1687 
1688 	/*
1689 	 * Page flags must not reach into upper 32 bits that are used
1690 	 * for the cpu number
1691 	 */
1692 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1693 
1694 	/*
1695 	 * The bit fields placed in the high range must not reach below
1696 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
1697 	 * at the 32 bit boundary.
1698 	 */
1699 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1700 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1701 
1702 	BUILD_BUG_ON(NR_CPUS > 4096);
1703 
1704 	kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1705 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1706 
1707 	/* Invalidate both kernel TSBs.  */
1708 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1709 #ifndef CONFIG_DEBUG_PAGEALLOC
1710 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1711 #endif
1712 
1713 	if (tlb_type == hypervisor)
1714 		sun4v_pgprot_init();
1715 	else
1716 		sun4u_pgprot_init();
1717 
1718 	if (tlb_type == cheetah_plus ||
1719 	    tlb_type == hypervisor)
1720 		tsb_phys_patch();
1721 
1722 	if (tlb_type == hypervisor) {
1723 		sun4v_patch_tlb_handlers();
1724 		sun4v_ktsb_init();
1725 	}
1726 
1727 	memblock_init();
1728 
1729 	/* Find available physical memory...
1730 	 *
1731 	 * Read it twice in order to work around a bug in openfirmware.
1732 	 * The call to grab this table itself can cause openfirmware to
1733 	 * allocate memory, which in turn can take away some space from
1734 	 * the list of available memory.  Reading it twice makes sure
1735 	 * we really do get the final value.
1736 	 */
1737 	read_obp_translations();
1738 	read_obp_memory("reg", &pall[0], &pall_ents);
1739 	read_obp_memory("available", &pavail[0], &pavail_ents);
1740 	read_obp_memory("available", &pavail[0], &pavail_ents);
1741 
1742 	phys_base = 0xffffffffffffffffUL;
1743 	for (i = 0; i < pavail_ents; i++) {
1744 		phys_base = min(phys_base, pavail[i].phys_addr);
1745 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1746 	}
1747 
1748 	memblock_reserve(kern_base, kern_size);
1749 
1750 	find_ramdisk(phys_base);
1751 
1752 	memblock_enforce_memory_limit(cmdline_memory_size);
1753 
1754 	memblock_analyze();
1755 	memblock_dump_all();
1756 
1757 	set_bit(0, mmu_context_bmap);
1758 
1759 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1760 
1761 	real_end = (unsigned long)_end;
1762 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1763 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1764 	       num_kernel_image_mappings);
1765 
1766 	/* Set kernel pgd to upper alias so physical page computations
1767 	 * work.
1768 	 */
1769 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1770 
1771 	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1772 
1773 	/* Now can init the kernel/bad page tables. */
1774 	pud_set(pud_offset(&swapper_pg_dir[0], 0),
1775 		swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1776 
1777 	inherit_prom_mappings();
1778 
1779 	init_kpte_bitmap();
1780 
1781 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
1782 	setup_tba();
1783 
1784 	__flush_tlb_all();
1785 
1786 	if (tlb_type == hypervisor)
1787 		sun4v_ktsb_register();
1788 
1789 	prom_build_devicetree();
1790 	of_populate_present_mask();
1791 #ifndef CONFIG_SMP
1792 	of_fill_in_cpu_data();
1793 #endif
1794 
1795 	if (tlb_type == hypervisor) {
1796 		sun4v_mdesc_init();
1797 		mdesc_populate_present_mask(cpu_all_mask);
1798 #ifndef CONFIG_SMP
1799 		mdesc_fill_in_cpu_data(cpu_all_mask);
1800 #endif
1801 	}
1802 
1803 	/* Once the OF device tree and MDESC have been setup, we know
1804 	 * the list of possible cpus.  Therefore we can allocate the
1805 	 * IRQ stacks.
1806 	 */
1807 	for_each_possible_cpu(i) {
1808 		/* XXX Use node local allocations... XXX */
1809 		softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1810 		hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1811 	}
1812 
1813 	/* Setup bootmem... */
1814 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
1815 
1816 #ifndef CONFIG_NEED_MULTIPLE_NODES
1817 	max_mapnr = last_valid_pfn;
1818 #endif
1819 	kernel_physical_mapping_init();
1820 
1821 	{
1822 		unsigned long max_zone_pfns[MAX_NR_ZONES];
1823 
1824 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1825 
1826 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
1827 
1828 		free_area_init_nodes(max_zone_pfns);
1829 	}
1830 
1831 	printk("Booting Linux...\n");
1832 }
1833 
page_in_phys_avail(unsigned long paddr)1834 int __devinit page_in_phys_avail(unsigned long paddr)
1835 {
1836 	int i;
1837 
1838 	paddr &= PAGE_MASK;
1839 
1840 	for (i = 0; i < pavail_ents; i++) {
1841 		unsigned long start, end;
1842 
1843 		start = pavail[i].phys_addr;
1844 		end = start + pavail[i].reg_size;
1845 
1846 		if (paddr >= start && paddr < end)
1847 			return 1;
1848 	}
1849 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
1850 		return 1;
1851 #ifdef CONFIG_BLK_DEV_INITRD
1852 	if (paddr >= __pa(initrd_start) &&
1853 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
1854 		return 1;
1855 #endif
1856 
1857 	return 0;
1858 }
1859 
1860 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1861 static int pavail_rescan_ents __initdata;
1862 
1863 /* Certain OBP calls, such as fetching "available" properties, can
1864  * claim physical memory.  So, along with initializing the valid
1865  * address bitmap, what we do here is refetch the physical available
1866  * memory list again, and make sure it provides at least as much
1867  * memory as 'pavail' does.
1868  */
setup_valid_addr_bitmap_from_pavail(unsigned long * bitmap)1869 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1870 {
1871 	int i;
1872 
1873 	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1874 
1875 	for (i = 0; i < pavail_ents; i++) {
1876 		unsigned long old_start, old_end;
1877 
1878 		old_start = pavail[i].phys_addr;
1879 		old_end = old_start + pavail[i].reg_size;
1880 		while (old_start < old_end) {
1881 			int n;
1882 
1883 			for (n = 0; n < pavail_rescan_ents; n++) {
1884 				unsigned long new_start, new_end;
1885 
1886 				new_start = pavail_rescan[n].phys_addr;
1887 				new_end = new_start +
1888 					pavail_rescan[n].reg_size;
1889 
1890 				if (new_start <= old_start &&
1891 				    new_end >= (old_start + PAGE_SIZE)) {
1892 					set_bit(old_start >> 22, bitmap);
1893 					goto do_next_page;
1894 				}
1895 			}
1896 
1897 			prom_printf("mem_init: Lost memory in pavail\n");
1898 			prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1899 				    pavail[i].phys_addr,
1900 				    pavail[i].reg_size);
1901 			prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1902 				    pavail_rescan[i].phys_addr,
1903 				    pavail_rescan[i].reg_size);
1904 			prom_printf("mem_init: Cannot continue, aborting.\n");
1905 			prom_halt();
1906 
1907 		do_next_page:
1908 			old_start += PAGE_SIZE;
1909 		}
1910 	}
1911 }
1912 
patch_tlb_miss_handler_bitmap(void)1913 static void __init patch_tlb_miss_handler_bitmap(void)
1914 {
1915 	extern unsigned int valid_addr_bitmap_insn[];
1916 	extern unsigned int valid_addr_bitmap_patch[];
1917 
1918 	valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1919 	mb();
1920 	valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1921 	flushi(&valid_addr_bitmap_insn[0]);
1922 }
1923 
mem_init(void)1924 void __init mem_init(void)
1925 {
1926 	unsigned long codepages, datapages, initpages;
1927 	unsigned long addr, last;
1928 
1929 	addr = PAGE_OFFSET + kern_base;
1930 	last = PAGE_ALIGN(kern_size) + addr;
1931 	while (addr < last) {
1932 		set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1933 		addr += PAGE_SIZE;
1934 	}
1935 
1936 	setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1937 	patch_tlb_miss_handler_bitmap();
1938 
1939 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1940 
1941 #ifdef CONFIG_NEED_MULTIPLE_NODES
1942 	{
1943 		int i;
1944 		for_each_online_node(i) {
1945 			if (NODE_DATA(i)->node_spanned_pages != 0) {
1946 				totalram_pages +=
1947 					free_all_bootmem_node(NODE_DATA(i));
1948 			}
1949 		}
1950 	}
1951 #else
1952 	totalram_pages = free_all_bootmem();
1953 #endif
1954 
1955 	/* We subtract one to account for the mem_map_zero page
1956 	 * allocated below.
1957 	 */
1958 	totalram_pages -= 1;
1959 	num_physpages = totalram_pages;
1960 
1961 	/*
1962 	 * Set up the zero page, mark it reserved, so that page count
1963 	 * is not manipulated when freeing the page from user ptes.
1964 	 */
1965 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1966 	if (mem_map_zero == NULL) {
1967 		prom_printf("paging_init: Cannot alloc zero page.\n");
1968 		prom_halt();
1969 	}
1970 	SetPageReserved(mem_map_zero);
1971 
1972 	codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1973 	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1974 	datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1975 	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1976 	initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1977 	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1978 
1979 	printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1980 	       nr_free_pages() << (PAGE_SHIFT-10),
1981 	       codepages << (PAGE_SHIFT-10),
1982 	       datapages << (PAGE_SHIFT-10),
1983 	       initpages << (PAGE_SHIFT-10),
1984 	       PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1985 
1986 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
1987 		cheetah_ecache_flush_init();
1988 }
1989 
free_initmem(void)1990 void free_initmem(void)
1991 {
1992 	unsigned long addr, initend;
1993 	int do_free = 1;
1994 
1995 	/* If the physical memory maps were trimmed by kernel command
1996 	 * line options, don't even try freeing this initmem stuff up.
1997 	 * The kernel image could have been in the trimmed out region
1998 	 * and if so the freeing below will free invalid page structs.
1999 	 */
2000 	if (cmdline_memory_size)
2001 		do_free = 0;
2002 
2003 	/*
2004 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2005 	 */
2006 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2007 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2008 	for (; addr < initend; addr += PAGE_SIZE) {
2009 		unsigned long page;
2010 		struct page *p;
2011 
2012 		page = (addr +
2013 			((unsigned long) __va(kern_base)) -
2014 			((unsigned long) KERNBASE));
2015 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2016 
2017 		if (do_free) {
2018 			p = virt_to_page(page);
2019 
2020 			ClearPageReserved(p);
2021 			init_page_count(p);
2022 			__free_page(p);
2023 			num_physpages++;
2024 			totalram_pages++;
2025 		}
2026 	}
2027 }
2028 
2029 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)2030 void free_initrd_mem(unsigned long start, unsigned long end)
2031 {
2032 	if (start < end)
2033 		printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2034 	for (; start < end; start += PAGE_SIZE) {
2035 		struct page *p = virt_to_page(start);
2036 
2037 		ClearPageReserved(p);
2038 		init_page_count(p);
2039 		__free_page(p);
2040 		num_physpages++;
2041 		totalram_pages++;
2042 	}
2043 }
2044 #endif
2045 
2046 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2047 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2048 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2049 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2050 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2051 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2052 
2053 pgprot_t PAGE_KERNEL __read_mostly;
2054 EXPORT_SYMBOL(PAGE_KERNEL);
2055 
2056 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2057 pgprot_t PAGE_COPY __read_mostly;
2058 
2059 pgprot_t PAGE_SHARED __read_mostly;
2060 EXPORT_SYMBOL(PAGE_SHARED);
2061 
2062 unsigned long pg_iobits __read_mostly;
2063 
2064 unsigned long _PAGE_IE __read_mostly;
2065 EXPORT_SYMBOL(_PAGE_IE);
2066 
2067 unsigned long _PAGE_E __read_mostly;
2068 EXPORT_SYMBOL(_PAGE_E);
2069 
2070 unsigned long _PAGE_CACHE __read_mostly;
2071 EXPORT_SYMBOL(_PAGE_CACHE);
2072 
2073 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2074 unsigned long vmemmap_table[VMEMMAP_SIZE];
2075 
vmemmap_populate(struct page * start,unsigned long nr,int node)2076 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2077 {
2078 	unsigned long vstart = (unsigned long) start;
2079 	unsigned long vend = (unsigned long) (start + nr);
2080 	unsigned long phys_start = (vstart - VMEMMAP_BASE);
2081 	unsigned long phys_end = (vend - VMEMMAP_BASE);
2082 	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2083 	unsigned long end = VMEMMAP_ALIGN(phys_end);
2084 	unsigned long pte_base;
2085 
2086 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2087 		    _PAGE_CP_4U | _PAGE_CV_4U |
2088 		    _PAGE_P_4U | _PAGE_W_4U);
2089 	if (tlb_type == hypervisor)
2090 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2091 			    _PAGE_CP_4V | _PAGE_CV_4V |
2092 			    _PAGE_P_4V | _PAGE_W_4V);
2093 
2094 	for (; addr < end; addr += VMEMMAP_CHUNK) {
2095 		unsigned long *vmem_pp =
2096 			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2097 		void *block;
2098 
2099 		if (!(*vmem_pp & _PAGE_VALID)) {
2100 			block = vmemmap_alloc_block(1UL << 22, node);
2101 			if (!block)
2102 				return -ENOMEM;
2103 
2104 			*vmem_pp = pte_base | __pa(block);
2105 
2106 			printk(KERN_INFO "[%p-%p] page_structs=%lu "
2107 			       "node=%d entry=%lu/%lu\n", start, block, nr,
2108 			       node,
2109 			       addr >> VMEMMAP_CHUNK_SHIFT,
2110 			       VMEMMAP_SIZE);
2111 		}
2112 	}
2113 	return 0;
2114 }
2115 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2116 
prot_init_common(unsigned long page_none,unsigned long page_shared,unsigned long page_copy,unsigned long page_readonly,unsigned long page_exec_bit)2117 static void prot_init_common(unsigned long page_none,
2118 			     unsigned long page_shared,
2119 			     unsigned long page_copy,
2120 			     unsigned long page_readonly,
2121 			     unsigned long page_exec_bit)
2122 {
2123 	PAGE_COPY = __pgprot(page_copy);
2124 	PAGE_SHARED = __pgprot(page_shared);
2125 
2126 	protection_map[0x0] = __pgprot(page_none);
2127 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2128 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2129 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2130 	protection_map[0x4] = __pgprot(page_readonly);
2131 	protection_map[0x5] = __pgprot(page_readonly);
2132 	protection_map[0x6] = __pgprot(page_copy);
2133 	protection_map[0x7] = __pgprot(page_copy);
2134 	protection_map[0x8] = __pgprot(page_none);
2135 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2136 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2137 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2138 	protection_map[0xc] = __pgprot(page_readonly);
2139 	protection_map[0xd] = __pgprot(page_readonly);
2140 	protection_map[0xe] = __pgprot(page_shared);
2141 	protection_map[0xf] = __pgprot(page_shared);
2142 }
2143 
sun4u_pgprot_init(void)2144 static void __init sun4u_pgprot_init(void)
2145 {
2146 	unsigned long page_none, page_shared, page_copy, page_readonly;
2147 	unsigned long page_exec_bit;
2148 
2149 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2150 				_PAGE_CACHE_4U | _PAGE_P_4U |
2151 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2152 				_PAGE_EXEC_4U);
2153 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2154 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2155 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2156 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2157 
2158 	_PAGE_IE = _PAGE_IE_4U;
2159 	_PAGE_E = _PAGE_E_4U;
2160 	_PAGE_CACHE = _PAGE_CACHE_4U;
2161 
2162 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2163 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2164 
2165 #ifdef CONFIG_DEBUG_PAGEALLOC
2166 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2167 		0xfffff80000000000UL;
2168 #else
2169 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2170 		0xfffff80000000000UL;
2171 #endif
2172 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2173 				   _PAGE_P_4U | _PAGE_W_4U);
2174 
2175 	/* XXX Should use 256MB on Panther. XXX */
2176 	kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2177 
2178 	_PAGE_SZBITS = _PAGE_SZBITS_4U;
2179 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2180 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2181 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2182 
2183 
2184 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2185 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2186 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2187 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2188 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2189 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2190 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2191 
2192 	page_exec_bit = _PAGE_EXEC_4U;
2193 
2194 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2195 			 page_exec_bit);
2196 }
2197 
sun4v_pgprot_init(void)2198 static void __init sun4v_pgprot_init(void)
2199 {
2200 	unsigned long page_none, page_shared, page_copy, page_readonly;
2201 	unsigned long page_exec_bit;
2202 
2203 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2204 				_PAGE_CACHE_4V | _PAGE_P_4V |
2205 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2206 				_PAGE_EXEC_4V);
2207 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2208 
2209 	_PAGE_IE = _PAGE_IE_4V;
2210 	_PAGE_E = _PAGE_E_4V;
2211 	_PAGE_CACHE = _PAGE_CACHE_4V;
2212 
2213 #ifdef CONFIG_DEBUG_PAGEALLOC
2214 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2215 		0xfffff80000000000UL;
2216 #else
2217 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2218 		0xfffff80000000000UL;
2219 #endif
2220 	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2221 				   _PAGE_P_4V | _PAGE_W_4V);
2222 
2223 #ifdef CONFIG_DEBUG_PAGEALLOC
2224 	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2225 		0xfffff80000000000UL;
2226 #else
2227 	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2228 		0xfffff80000000000UL;
2229 #endif
2230 	kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2231 				   _PAGE_P_4V | _PAGE_W_4V);
2232 
2233 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2234 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2235 
2236 	_PAGE_SZBITS = _PAGE_SZBITS_4V;
2237 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2238 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2239 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2240 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2241 
2242 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2243 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2244 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2245 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2246 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2247 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2248 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2249 
2250 	page_exec_bit = _PAGE_EXEC_4V;
2251 
2252 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2253 			 page_exec_bit);
2254 }
2255 
pte_sz_bits(unsigned long sz)2256 unsigned long pte_sz_bits(unsigned long sz)
2257 {
2258 	if (tlb_type == hypervisor) {
2259 		switch (sz) {
2260 		case 8 * 1024:
2261 		default:
2262 			return _PAGE_SZ8K_4V;
2263 		case 64 * 1024:
2264 			return _PAGE_SZ64K_4V;
2265 		case 512 * 1024:
2266 			return _PAGE_SZ512K_4V;
2267 		case 4 * 1024 * 1024:
2268 			return _PAGE_SZ4MB_4V;
2269 		};
2270 	} else {
2271 		switch (sz) {
2272 		case 8 * 1024:
2273 		default:
2274 			return _PAGE_SZ8K_4U;
2275 		case 64 * 1024:
2276 			return _PAGE_SZ64K_4U;
2277 		case 512 * 1024:
2278 			return _PAGE_SZ512K_4U;
2279 		case 4 * 1024 * 1024:
2280 			return _PAGE_SZ4MB_4U;
2281 		};
2282 	}
2283 }
2284 
mk_pte_io(unsigned long page,pgprot_t prot,int space,unsigned long page_size)2285 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2286 {
2287 	pte_t pte;
2288 
2289 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2290 	pte_val(pte) |= (((unsigned long)space) << 32);
2291 	pte_val(pte) |= pte_sz_bits(page_size);
2292 
2293 	return pte;
2294 }
2295 
kern_large_tte(unsigned long paddr)2296 static unsigned long kern_large_tte(unsigned long paddr)
2297 {
2298 	unsigned long val;
2299 
2300 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2301 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2302 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2303 	if (tlb_type == hypervisor)
2304 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2305 		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2306 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2307 
2308 	return val | paddr;
2309 }
2310 
2311 /* If not locked, zap it. */
__flush_tlb_all(void)2312 void __flush_tlb_all(void)
2313 {
2314 	unsigned long pstate;
2315 	int i;
2316 
2317 	__asm__ __volatile__("flushw\n\t"
2318 			     "rdpr	%%pstate, %0\n\t"
2319 			     "wrpr	%0, %1, %%pstate"
2320 			     : "=r" (pstate)
2321 			     : "i" (PSTATE_IE));
2322 	if (tlb_type == hypervisor) {
2323 		sun4v_mmu_demap_all();
2324 	} else if (tlb_type == spitfire) {
2325 		for (i = 0; i < 64; i++) {
2326 			/* Spitfire Errata #32 workaround */
2327 			/* NOTE: Always runs on spitfire, so no
2328 			 *       cheetah+ page size encodings.
2329 			 */
2330 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2331 					     "flush	%%g6"
2332 					     : /* No outputs */
2333 					     : "r" (0),
2334 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2335 
2336 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2337 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2338 						     "membar #Sync"
2339 						     : /* no outputs */
2340 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2341 				spitfire_put_dtlb_data(i, 0x0UL);
2342 			}
2343 
2344 			/* Spitfire Errata #32 workaround */
2345 			/* NOTE: Always runs on spitfire, so no
2346 			 *       cheetah+ page size encodings.
2347 			 */
2348 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2349 					     "flush	%%g6"
2350 					     : /* No outputs */
2351 					     : "r" (0),
2352 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2353 
2354 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2355 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2356 						     "membar #Sync"
2357 						     : /* no outputs */
2358 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2359 				spitfire_put_itlb_data(i, 0x0UL);
2360 			}
2361 		}
2362 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2363 		cheetah_flush_dtlb_all();
2364 		cheetah_flush_itlb_all();
2365 	}
2366 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2367 			     : : "r" (pstate));
2368 }
2369