1 /*
2  * unaligned.c: Unaligned load/store trap handling with special
3  *              cases for the kernel to do them more quickly.
4  *
5  * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
6  * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8 
9 
10 #include <linux/jiffies.h>
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <asm/asi.h>
16 #include <asm/ptrace.h>
17 #include <asm/pstate.h>
18 #include <asm/processor.h>
19 #include <asm/system.h>
20 #include <asm/uaccess.h>
21 #include <linux/smp.h>
22 #include <linux/bitops.h>
23 #include <linux/perf_event.h>
24 #include <linux/ratelimit.h>
25 #include <asm/fpumacro.h>
26 
27 enum direction {
28 	load,    /* ld, ldd, ldh, ldsh */
29 	store,   /* st, std, sth, stsh */
30 	both,    /* Swap, ldstub, cas, ... */
31 	fpld,
32 	fpst,
33 	invalid,
34 };
35 
decode_direction(unsigned int insn)36 static inline enum direction decode_direction(unsigned int insn)
37 {
38 	unsigned long tmp = (insn >> 21) & 1;
39 
40 	if (!tmp)
41 		return load;
42 	else {
43 		switch ((insn>>19)&0xf) {
44 		case 15: /* swap* */
45 			return both;
46 		default:
47 			return store;
48 		}
49 	}
50 }
51 
52 /* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
decode_access_size(struct pt_regs * regs,unsigned int insn)53 static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
54 {
55 	unsigned int tmp;
56 
57 	tmp = ((insn >> 19) & 0xf);
58 	if (tmp == 11 || tmp == 14) /* ldx/stx */
59 		return 8;
60 	tmp &= 3;
61 	if (!tmp)
62 		return 4;
63 	else if (tmp == 3)
64 		return 16;	/* ldd/std - Although it is actually 8 */
65 	else if (tmp == 2)
66 		return 2;
67 	else {
68 		printk("Impossible unaligned trap. insn=%08x\n", insn);
69 		die_if_kernel("Byte sized unaligned access?!?!", regs);
70 
71 		/* GCC should never warn that control reaches the end
72 		 * of this function without returning a value because
73 		 * die_if_kernel() is marked with attribute 'noreturn'.
74 		 * Alas, some versions do...
75 		 */
76 
77 		return 0;
78 	}
79 }
80 
decode_asi(unsigned int insn,struct pt_regs * regs)81 static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
82 {
83 	if (insn & 0x800000) {
84 		if (insn & 0x2000)
85 			return (unsigned char)(regs->tstate >> 24);	/* %asi */
86 		else
87 			return (unsigned char)(insn >> 5);		/* imm_asi */
88 	} else
89 		return ASI_P;
90 }
91 
92 /* 0x400000 = signed, 0 = unsigned */
decode_signedness(unsigned int insn)93 static inline int decode_signedness(unsigned int insn)
94 {
95 	return (insn & 0x400000);
96 }
97 
maybe_flush_windows(unsigned int rs1,unsigned int rs2,unsigned int rd,int from_kernel)98 static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
99 				       unsigned int rd, int from_kernel)
100 {
101 	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
102 		if (from_kernel != 0)
103 			__asm__ __volatile__("flushw");
104 		else
105 			flushw_user();
106 	}
107 }
108 
sign_extend_imm13(long imm)109 static inline long sign_extend_imm13(long imm)
110 {
111 	return imm << 51 >> 51;
112 }
113 
fetch_reg(unsigned int reg,struct pt_regs * regs)114 static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
115 {
116 	unsigned long value;
117 
118 	if (reg < 16)
119 		return (!reg ? 0 : regs->u_regs[reg]);
120 	if (regs->tstate & TSTATE_PRIV) {
121 		struct reg_window *win;
122 		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
123 		value = win->locals[reg - 16];
124 	} else if (test_thread_flag(TIF_32BIT)) {
125 		struct reg_window32 __user *win32;
126 		win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
127 		get_user(value, &win32->locals[reg - 16]);
128 	} else {
129 		struct reg_window __user *win;
130 		win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
131 		get_user(value, &win->locals[reg - 16]);
132 	}
133 	return value;
134 }
135 
fetch_reg_addr(unsigned int reg,struct pt_regs * regs)136 static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
137 {
138 	if (reg < 16)
139 		return &regs->u_regs[reg];
140 	if (regs->tstate & TSTATE_PRIV) {
141 		struct reg_window *win;
142 		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
143 		return &win->locals[reg - 16];
144 	} else if (test_thread_flag(TIF_32BIT)) {
145 		struct reg_window32 *win32;
146 		win32 = (struct reg_window32 *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
147 		return (unsigned long *)&win32->locals[reg - 16];
148 	} else {
149 		struct reg_window *win;
150 		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
151 		return &win->locals[reg - 16];
152 	}
153 }
154 
compute_effective_address(struct pt_regs * regs,unsigned int insn,unsigned int rd)155 unsigned long compute_effective_address(struct pt_regs *regs,
156 					unsigned int insn, unsigned int rd)
157 {
158 	unsigned int rs1 = (insn >> 14) & 0x1f;
159 	unsigned int rs2 = insn & 0x1f;
160 	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
161 
162 	if (insn & 0x2000) {
163 		maybe_flush_windows(rs1, 0, rd, from_kernel);
164 		return (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
165 	} else {
166 		maybe_flush_windows(rs1, rs2, rd, from_kernel);
167 		return (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
168 	}
169 }
170 
171 /* This is just to make gcc think die_if_kernel does return... */
unaligned_panic(char * str,struct pt_regs * regs)172 static void __used unaligned_panic(char *str, struct pt_regs *regs)
173 {
174 	die_if_kernel(str, regs);
175 }
176 
177 extern int do_int_load(unsigned long *dest_reg, int size,
178 		       unsigned long *saddr, int is_signed, int asi);
179 
180 extern int __do_int_store(unsigned long *dst_addr, int size,
181 			  unsigned long src_val, int asi);
182 
do_int_store(int reg_num,int size,unsigned long * dst_addr,struct pt_regs * regs,int asi,int orig_asi)183 static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
184 			       struct pt_regs *regs, int asi, int orig_asi)
185 {
186 	unsigned long zero = 0;
187 	unsigned long *src_val_p = &zero;
188 	unsigned long src_val;
189 
190 	if (size == 16) {
191 		size = 8;
192 		zero = (((long)(reg_num ?
193 		        (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
194 			(unsigned)fetch_reg(reg_num + 1, regs);
195 	} else if (reg_num) {
196 		src_val_p = fetch_reg_addr(reg_num, regs);
197 	}
198 	src_val = *src_val_p;
199 	if (unlikely(asi != orig_asi)) {
200 		switch (size) {
201 		case 2:
202 			src_val = swab16(src_val);
203 			break;
204 		case 4:
205 			src_val = swab32(src_val);
206 			break;
207 		case 8:
208 			src_val = swab64(src_val);
209 			break;
210 		case 16:
211 		default:
212 			BUG();
213 			break;
214 		};
215 	}
216 	return __do_int_store(dst_addr, size, src_val, asi);
217 }
218 
advance(struct pt_regs * regs)219 static inline void advance(struct pt_regs *regs)
220 {
221 	regs->tpc   = regs->tnpc;
222 	regs->tnpc += 4;
223 	if (test_thread_flag(TIF_32BIT)) {
224 		regs->tpc &= 0xffffffff;
225 		regs->tnpc &= 0xffffffff;
226 	}
227 }
228 
floating_point_load_or_store_p(unsigned int insn)229 static inline int floating_point_load_or_store_p(unsigned int insn)
230 {
231 	return (insn >> 24) & 1;
232 }
233 
ok_for_kernel(unsigned int insn)234 static inline int ok_for_kernel(unsigned int insn)
235 {
236 	return !floating_point_load_or_store_p(insn);
237 }
238 
kernel_mna_trap_fault(int fixup_tstate_asi)239 static void kernel_mna_trap_fault(int fixup_tstate_asi)
240 {
241 	struct pt_regs *regs = current_thread_info()->kern_una_regs;
242 	unsigned int insn = current_thread_info()->kern_una_insn;
243 	const struct exception_table_entry *entry;
244 
245 	entry = search_exception_tables(regs->tpc);
246 	if (!entry) {
247 		unsigned long address;
248 
249 		address = compute_effective_address(regs, insn,
250 						    ((insn >> 25) & 0x1f));
251         	if (address < PAGE_SIZE) {
252                 	printk(KERN_ALERT "Unable to handle kernel NULL "
253 			       "pointer dereference in mna handler");
254         	} else
255                 	printk(KERN_ALERT "Unable to handle kernel paging "
256 			       "request in mna handler");
257 	        printk(KERN_ALERT " at virtual address %016lx\n",address);
258 		printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
259 			(current->mm ? CTX_HWBITS(current->mm->context) :
260 			CTX_HWBITS(current->active_mm->context)));
261 		printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
262 			(current->mm ? (unsigned long) current->mm->pgd :
263 			(unsigned long) current->active_mm->pgd));
264 	        die_if_kernel("Oops", regs);
265 		/* Not reached */
266 	}
267 	regs->tpc = entry->fixup;
268 	regs->tnpc = regs->tpc + 4;
269 
270 	if (fixup_tstate_asi) {
271 		regs->tstate &= ~TSTATE_ASI;
272 		regs->tstate |= (ASI_AIUS << 24UL);
273 	}
274 }
275 
log_unaligned(struct pt_regs * regs)276 static void log_unaligned(struct pt_regs *regs)
277 {
278 	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
279 
280 	if (__ratelimit(&ratelimit)) {
281 		printk("Kernel unaligned access at TPC[%lx] %pS\n",
282 		       regs->tpc, (void *) regs->tpc);
283 	}
284 }
285 
kernel_unaligned_trap(struct pt_regs * regs,unsigned int insn)286 asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
287 {
288 	enum direction dir = decode_direction(insn);
289 	int size = decode_access_size(regs, insn);
290 	int orig_asi, asi;
291 
292 	current_thread_info()->kern_una_regs = regs;
293 	current_thread_info()->kern_una_insn = insn;
294 
295 	orig_asi = asi = decode_asi(insn, regs);
296 
297 	/* If this is a {get,put}_user() on an unaligned userspace pointer,
298 	 * just signal a fault and do not log the event.
299 	 */
300 	if (asi == ASI_AIUS) {
301 		kernel_mna_trap_fault(0);
302 		return;
303 	}
304 
305 	log_unaligned(regs);
306 
307 	if (!ok_for_kernel(insn) || dir == both) {
308 		printk("Unsupported unaligned load/store trap for kernel "
309 		       "at <%016lx>.\n", regs->tpc);
310 		unaligned_panic("Kernel does fpu/atomic "
311 				"unaligned load/store.", regs);
312 
313 		kernel_mna_trap_fault(0);
314 	} else {
315 		unsigned long addr, *reg_addr;
316 		int err;
317 
318 		addr = compute_effective_address(regs, insn,
319 						 ((insn >> 25) & 0x1f));
320 		perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, addr);
321 		switch (asi) {
322 		case ASI_NL:
323 		case ASI_AIUPL:
324 		case ASI_AIUSL:
325 		case ASI_PL:
326 		case ASI_SL:
327 		case ASI_PNFL:
328 		case ASI_SNFL:
329 			asi &= ~0x08;
330 			break;
331 		};
332 		switch (dir) {
333 		case load:
334 			reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
335 			err = do_int_load(reg_addr, size,
336 					  (unsigned long *) addr,
337 					  decode_signedness(insn), asi);
338 			if (likely(!err) && unlikely(asi != orig_asi)) {
339 				unsigned long val_in = *reg_addr;
340 				switch (size) {
341 				case 2:
342 					val_in = swab16(val_in);
343 					break;
344 				case 4:
345 					val_in = swab32(val_in);
346 					break;
347 				case 8:
348 					val_in = swab64(val_in);
349 					break;
350 				case 16:
351 				default:
352 					BUG();
353 					break;
354 				};
355 				*reg_addr = val_in;
356 			}
357 			break;
358 
359 		case store:
360 			err = do_int_store(((insn>>25)&0x1f), size,
361 					   (unsigned long *) addr, regs,
362 					   asi, orig_asi);
363 			break;
364 
365 		default:
366 			panic("Impossible kernel unaligned trap.");
367 			/* Not reached... */
368 		}
369 		if (unlikely(err))
370 			kernel_mna_trap_fault(1);
371 		else
372 			advance(regs);
373 	}
374 }
375 
376 static char popc_helper[] = {
377 0, 1, 1, 2, 1, 2, 2, 3,
378 1, 2, 2, 3, 2, 3, 3, 4,
379 };
380 
handle_popc(u32 insn,struct pt_regs * regs)381 int handle_popc(u32 insn, struct pt_regs *regs)
382 {
383 	u64 value;
384 	int ret, i, rd = ((insn >> 25) & 0x1f);
385 	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
386 
387 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
388 	if (insn & 0x2000) {
389 		maybe_flush_windows(0, 0, rd, from_kernel);
390 		value = sign_extend_imm13(insn);
391 	} else {
392 		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
393 		value = fetch_reg(insn & 0x1f, regs);
394 	}
395 	for (ret = 0, i = 0; i < 16; i++) {
396 		ret += popc_helper[value & 0xf];
397 		value >>= 4;
398 	}
399 	if (rd < 16) {
400 		if (rd)
401 			regs->u_regs[rd] = ret;
402 	} else {
403 		if (test_thread_flag(TIF_32BIT)) {
404 			struct reg_window32 __user *win32;
405 			win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
406 			put_user(ret, &win32->locals[rd - 16]);
407 		} else {
408 			struct reg_window __user *win;
409 			win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
410 			put_user(ret, &win->locals[rd - 16]);
411 		}
412 	}
413 	advance(regs);
414 	return 1;
415 }
416 
417 extern void do_fpother(struct pt_regs *regs);
418 extern void do_privact(struct pt_regs *regs);
419 extern void spitfire_data_access_exception(struct pt_regs *regs,
420 					   unsigned long sfsr,
421 					   unsigned long sfar);
422 extern void sun4v_data_access_exception(struct pt_regs *regs,
423 					unsigned long addr,
424 					unsigned long type_ctx);
425 
handle_ldf_stq(u32 insn,struct pt_regs * regs)426 int handle_ldf_stq(u32 insn, struct pt_regs *regs)
427 {
428 	unsigned long addr = compute_effective_address(regs, insn, 0);
429 	int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
430 	struct fpustate *f = FPUSTATE;
431 	int asi = decode_asi(insn, regs);
432 	int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
433 
434 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
435 
436 	save_and_clear_fpu();
437 	current_thread_info()->xfsr[0] &= ~0x1c000;
438 	if (freg & 3) {
439 		current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
440 		do_fpother(regs);
441 		return 0;
442 	}
443 	if (insn & 0x200000) {
444 		/* STQ */
445 		u64 first = 0, second = 0;
446 
447 		if (current_thread_info()->fpsaved[0] & flag) {
448 			first = *(u64 *)&f->regs[freg];
449 			second = *(u64 *)&f->regs[freg+2];
450 		}
451 		if (asi < 0x80) {
452 			do_privact(regs);
453 			return 1;
454 		}
455 		switch (asi) {
456 		case ASI_P:
457 		case ASI_S: break;
458 		case ASI_PL:
459 		case ASI_SL:
460 			{
461 				/* Need to convert endians */
462 				u64 tmp = __swab64p(&first);
463 
464 				first = __swab64p(&second);
465 				second = tmp;
466 				break;
467 			}
468 		default:
469 			if (tlb_type == hypervisor)
470 				sun4v_data_access_exception(regs, addr, 0);
471 			else
472 				spitfire_data_access_exception(regs, 0, addr);
473 			return 1;
474 		}
475 		if (put_user (first >> 32, (u32 __user *)addr) ||
476 		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
477 		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
478 		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {
479 			if (tlb_type == hypervisor)
480 				sun4v_data_access_exception(regs, addr, 0);
481 			else
482 				spitfire_data_access_exception(regs, 0, addr);
483 		    	return 1;
484 		}
485 	} else {
486 		/* LDF, LDDF, LDQF */
487 		u32 data[4] __attribute__ ((aligned(8)));
488 		int size, i;
489 		int err;
490 
491 		if (asi < 0x80) {
492 			do_privact(regs);
493 			return 1;
494 		} else if (asi > ASI_SNFL) {
495 			if (tlb_type == hypervisor)
496 				sun4v_data_access_exception(regs, addr, 0);
497 			else
498 				spitfire_data_access_exception(regs, 0, addr);
499 			return 1;
500 		}
501 		switch (insn & 0x180000) {
502 		case 0x000000: size = 1; break;
503 		case 0x100000: size = 4; break;
504 		default: size = 2; break;
505 		}
506 		for (i = 0; i < size; i++)
507 			data[i] = 0;
508 
509 		err = get_user (data[0], (u32 __user *) addr);
510 		if (!err) {
511 			for (i = 1; i < size; i++)
512 				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
513 		}
514 		if (err && !(asi & 0x2 /* NF */)) {
515 			if (tlb_type == hypervisor)
516 				sun4v_data_access_exception(regs, addr, 0);
517 			else
518 				spitfire_data_access_exception(regs, 0, addr);
519 			return 1;
520 		}
521 		if (asi & 0x8) /* Little */ {
522 			u64 tmp;
523 
524 			switch (size) {
525 			case 1: data[0] = le32_to_cpup(data + 0); break;
526 			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
527 				break;
528 			case 4: tmp = le64_to_cpup((u64 *)(data + 0));
529 				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
530 				*(u64 *)(data + 2) = tmp;
531 				break;
532 			}
533 		}
534 		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
535 			current_thread_info()->fpsaved[0] = FPRS_FEF;
536 			current_thread_info()->gsr[0] = 0;
537 		}
538 		if (!(current_thread_info()->fpsaved[0] & flag)) {
539 			if (freg < 32)
540 				memset(f->regs, 0, 32*sizeof(u32));
541 			else
542 				memset(f->regs+32, 0, 32*sizeof(u32));
543 		}
544 		memcpy(f->regs + freg, data, size * 4);
545 		current_thread_info()->fpsaved[0] |= flag;
546 	}
547 	advance(regs);
548 	return 1;
549 }
550 
handle_ld_nf(u32 insn,struct pt_regs * regs)551 void handle_ld_nf(u32 insn, struct pt_regs *regs)
552 {
553 	int rd = ((insn >> 25) & 0x1f);
554 	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
555 	unsigned long *reg;
556 
557 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
558 
559 	maybe_flush_windows(0, 0, rd, from_kernel);
560 	reg = fetch_reg_addr(rd, regs);
561 	if (from_kernel || rd < 16) {
562 		reg[0] = 0;
563 		if ((insn & 0x780000) == 0x180000)
564 			reg[1] = 0;
565 	} else if (test_thread_flag(TIF_32BIT)) {
566 		put_user(0, (int __user *) reg);
567 		if ((insn & 0x780000) == 0x180000)
568 			put_user(0, ((int __user *) reg) + 1);
569 	} else {
570 		put_user(0, (unsigned long __user *) reg);
571 		if ((insn & 0x780000) == 0x180000)
572 			put_user(0, (unsigned long __user *) reg + 1);
573 	}
574 	advance(regs);
575 }
576 
handle_lddfmna(struct pt_regs * regs,unsigned long sfar,unsigned long sfsr)577 void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
578 {
579 	unsigned long pc = regs->tpc;
580 	unsigned long tstate = regs->tstate;
581 	u32 insn;
582 	u64 value;
583 	u8 freg;
584 	int flag;
585 	struct fpustate *f = FPUSTATE;
586 
587 	if (tstate & TSTATE_PRIV)
588 		die_if_kernel("lddfmna from kernel", regs);
589 	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, sfar);
590 	if (test_thread_flag(TIF_32BIT))
591 		pc = (u32)pc;
592 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
593 		int asi = decode_asi(insn, regs);
594 		u32 first, second;
595 		int err;
596 
597 		if ((asi > ASI_SNFL) ||
598 		    (asi < ASI_P))
599 			goto daex;
600 		first = second = 0;
601 		err = get_user(first, (u32 __user *)sfar);
602 		if (!err)
603 			err = get_user(second, (u32 __user *)(sfar + 4));
604 		if (err) {
605 			if (!(asi & 0x2))
606 				goto daex;
607 			first = second = 0;
608 		}
609 		save_and_clear_fpu();
610 		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
611 		value = (((u64)first) << 32) | second;
612 		if (asi & 0x8) /* Little */
613 			value = __swab64p(&value);
614 		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
615 		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
616 			current_thread_info()->fpsaved[0] = FPRS_FEF;
617 			current_thread_info()->gsr[0] = 0;
618 		}
619 		if (!(current_thread_info()->fpsaved[0] & flag)) {
620 			if (freg < 32)
621 				memset(f->regs, 0, 32*sizeof(u32));
622 			else
623 				memset(f->regs+32, 0, 32*sizeof(u32));
624 		}
625 		*(u64 *)(f->regs + freg) = value;
626 		current_thread_info()->fpsaved[0] |= flag;
627 	} else {
628 daex:
629 		if (tlb_type == hypervisor)
630 			sun4v_data_access_exception(regs, sfar, sfsr);
631 		else
632 			spitfire_data_access_exception(regs, sfsr, sfar);
633 		return;
634 	}
635 	advance(regs);
636 }
637 
handle_stdfmna(struct pt_regs * regs,unsigned long sfar,unsigned long sfsr)638 void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
639 {
640 	unsigned long pc = regs->tpc;
641 	unsigned long tstate = regs->tstate;
642 	u32 insn;
643 	u64 value;
644 	u8 freg;
645 	int flag;
646 	struct fpustate *f = FPUSTATE;
647 
648 	if (tstate & TSTATE_PRIV)
649 		die_if_kernel("stdfmna from kernel", regs);
650 	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, sfar);
651 	if (test_thread_flag(TIF_32BIT))
652 		pc = (u32)pc;
653 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
654 		int asi = decode_asi(insn, regs);
655 		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
656 		value = 0;
657 		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
658 		if ((asi > ASI_SNFL) ||
659 		    (asi < ASI_P))
660 			goto daex;
661 		save_and_clear_fpu();
662 		if (current_thread_info()->fpsaved[0] & flag)
663 			value = *(u64 *)&f->regs[freg];
664 		switch (asi) {
665 		case ASI_P:
666 		case ASI_S: break;
667 		case ASI_PL:
668 		case ASI_SL:
669 			value = __swab64p(&value); break;
670 		default: goto daex;
671 		}
672 		if (put_user (value >> 32, (u32 __user *) sfar) ||
673 		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))
674 			goto daex;
675 	} else {
676 daex:
677 		if (tlb_type == hypervisor)
678 			sun4v_data_access_exception(regs, sfar, sfsr);
679 		else
680 			spitfire_data_access_exception(regs, sfsr, sfar);
681 		return;
682 	}
683 	advance(regs);
684 }
685