1 /* arch/sparc64/kernel/kprobes.c
2  *
3  * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/kprobes.h>
8 #include <linux/module.h>
9 #include <linux/kdebug.h>
10 #include <linux/slab.h>
11 #include <asm/signal.h>
12 #include <asm/cacheflush.h>
13 #include <asm/uaccess.h>
14 
15 /* We do not have hardware single-stepping on sparc64.
16  * So we implement software single-stepping with breakpoint
17  * traps.  The top-level scheme is similar to that used
18  * in the x86 kprobes implementation.
19  *
20  * In the kprobe->ainsn.insn[] array we store the original
21  * instruction at index zero and a break instruction at
22  * index one.
23  *
24  * When we hit a kprobe we:
25  * - Run the pre-handler
26  * - Remember "regs->tnpc" and interrupt level stored in
27  *   "regs->tstate" so we can restore them later
28  * - Disable PIL interrupts
29  * - Set regs->tpc to point to kprobe->ainsn.insn[0]
30  * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
31  * - Mark that we are actively in a kprobe
32  *
33  * At this point we wait for the second breakpoint at
34  * kprobe->ainsn.insn[1] to hit.  When it does we:
35  * - Run the post-handler
36  * - Set regs->tpc to "remembered" regs->tnpc stored above,
37  *   restore the PIL interrupt level in "regs->tstate" as well
38  * - Make any adjustments necessary to regs->tnpc in order
39  *   to handle relative branches correctly.  See below.
40  * - Mark that we are no longer actively in a kprobe.
41  */
42 
43 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
44 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
45 
46 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
47 
arch_prepare_kprobe(struct kprobe * p)48 int __kprobes arch_prepare_kprobe(struct kprobe *p)
49 {
50 	if ((unsigned long) p->addr & 0x3UL)
51 		return -EILSEQ;
52 
53 	p->ainsn.insn[0] = *p->addr;
54 	flushi(&p->ainsn.insn[0]);
55 
56 	p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
57 	flushi(&p->ainsn.insn[1]);
58 
59 	p->opcode = *p->addr;
60 	return 0;
61 }
62 
arch_arm_kprobe(struct kprobe * p)63 void __kprobes arch_arm_kprobe(struct kprobe *p)
64 {
65 	*p->addr = BREAKPOINT_INSTRUCTION;
66 	flushi(p->addr);
67 }
68 
arch_disarm_kprobe(struct kprobe * p)69 void __kprobes arch_disarm_kprobe(struct kprobe *p)
70 {
71 	*p->addr = p->opcode;
72 	flushi(p->addr);
73 }
74 
save_previous_kprobe(struct kprobe_ctlblk * kcb)75 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
76 {
77 	kcb->prev_kprobe.kp = kprobe_running();
78 	kcb->prev_kprobe.status = kcb->kprobe_status;
79 	kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
80 	kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
81 }
82 
restore_previous_kprobe(struct kprobe_ctlblk * kcb)83 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
84 {
85 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
86 	kcb->kprobe_status = kcb->prev_kprobe.status;
87 	kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
88 	kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
89 }
90 
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)91 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
92 				struct kprobe_ctlblk *kcb)
93 {
94 	__get_cpu_var(current_kprobe) = p;
95 	kcb->kprobe_orig_tnpc = regs->tnpc;
96 	kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
97 }
98 
prepare_singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)99 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
100 			struct kprobe_ctlblk *kcb)
101 {
102 	regs->tstate |= TSTATE_PIL;
103 
104 	/*single step inline, if it a breakpoint instruction*/
105 	if (p->opcode == BREAKPOINT_INSTRUCTION) {
106 		regs->tpc = (unsigned long) p->addr;
107 		regs->tnpc = kcb->kprobe_orig_tnpc;
108 	} else {
109 		regs->tpc = (unsigned long) &p->ainsn.insn[0];
110 		regs->tnpc = (unsigned long) &p->ainsn.insn[1];
111 	}
112 }
113 
kprobe_handler(struct pt_regs * regs)114 static int __kprobes kprobe_handler(struct pt_regs *regs)
115 {
116 	struct kprobe *p;
117 	void *addr = (void *) regs->tpc;
118 	int ret = 0;
119 	struct kprobe_ctlblk *kcb;
120 
121 	/*
122 	 * We don't want to be preempted for the entire
123 	 * duration of kprobe processing
124 	 */
125 	preempt_disable();
126 	kcb = get_kprobe_ctlblk();
127 
128 	if (kprobe_running()) {
129 		p = get_kprobe(addr);
130 		if (p) {
131 			if (kcb->kprobe_status == KPROBE_HIT_SS) {
132 				regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
133 					kcb->kprobe_orig_tstate_pil);
134 				goto no_kprobe;
135 			}
136 			/* We have reentered the kprobe_handler(), since
137 			 * another probe was hit while within the handler.
138 			 * We here save the original kprobes variables and
139 			 * just single step on the instruction of the new probe
140 			 * without calling any user handlers.
141 			 */
142 			save_previous_kprobe(kcb);
143 			set_current_kprobe(p, regs, kcb);
144 			kprobes_inc_nmissed_count(p);
145 			kcb->kprobe_status = KPROBE_REENTER;
146 			prepare_singlestep(p, regs, kcb);
147 			return 1;
148 		} else {
149 			if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
150 			/* The breakpoint instruction was removed by
151 			 * another cpu right after we hit, no further
152 			 * handling of this interrupt is appropriate
153 			 */
154 				ret = 1;
155 				goto no_kprobe;
156 			}
157 			p = __get_cpu_var(current_kprobe);
158 			if (p->break_handler && p->break_handler(p, regs))
159 				goto ss_probe;
160 		}
161 		goto no_kprobe;
162 	}
163 
164 	p = get_kprobe(addr);
165 	if (!p) {
166 		if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
167 			/*
168 			 * The breakpoint instruction was removed right
169 			 * after we hit it.  Another cpu has removed
170 			 * either a probepoint or a debugger breakpoint
171 			 * at this address.  In either case, no further
172 			 * handling of this interrupt is appropriate.
173 			 */
174 			ret = 1;
175 		}
176 		/* Not one of ours: let kernel handle it */
177 		goto no_kprobe;
178 	}
179 
180 	set_current_kprobe(p, regs, kcb);
181 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
182 	if (p->pre_handler && p->pre_handler(p, regs))
183 		return 1;
184 
185 ss_probe:
186 	prepare_singlestep(p, regs, kcb);
187 	kcb->kprobe_status = KPROBE_HIT_SS;
188 	return 1;
189 
190 no_kprobe:
191 	preempt_enable_no_resched();
192 	return ret;
193 }
194 
195 /* If INSN is a relative control transfer instruction,
196  * return the corrected branch destination value.
197  *
198  * regs->tpc and regs->tnpc still hold the values of the
199  * program counters at the time of trap due to the execution
200  * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
201  *
202  */
relbranch_fixup(u32 insn,struct kprobe * p,struct pt_regs * regs)203 static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
204 					       struct pt_regs *regs)
205 {
206 	unsigned long real_pc = (unsigned long) p->addr;
207 
208 	/* Branch not taken, no mods necessary.  */
209 	if (regs->tnpc == regs->tpc + 0x4UL)
210 		return real_pc + 0x8UL;
211 
212 	/* The three cases are call, branch w/prediction,
213 	 * and traditional branch.
214 	 */
215 	if ((insn & 0xc0000000) == 0x40000000 ||
216 	    (insn & 0xc1c00000) == 0x00400000 ||
217 	    (insn & 0xc1c00000) == 0x00800000) {
218 		unsigned long ainsn_addr;
219 
220 		ainsn_addr = (unsigned long) &p->ainsn.insn[0];
221 
222 		/* The instruction did all the work for us
223 		 * already, just apply the offset to the correct
224 		 * instruction location.
225 		 */
226 		return (real_pc + (regs->tnpc - ainsn_addr));
227 	}
228 
229 	/* It is jmpl or some other absolute PC modification instruction,
230 	 * leave NPC as-is.
231 	 */
232 	return regs->tnpc;
233 }
234 
235 /* If INSN is an instruction which writes it's PC location
236  * into a destination register, fix that up.
237  */
retpc_fixup(struct pt_regs * regs,u32 insn,unsigned long real_pc)238 static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
239 				  unsigned long real_pc)
240 {
241 	unsigned long *slot = NULL;
242 
243 	/* Simplest case is 'call', which always uses %o7 */
244 	if ((insn & 0xc0000000) == 0x40000000) {
245 		slot = &regs->u_regs[UREG_I7];
246 	}
247 
248 	/* 'jmpl' encodes the register inside of the opcode */
249 	if ((insn & 0xc1f80000) == 0x81c00000) {
250 		unsigned long rd = ((insn >> 25) & 0x1f);
251 
252 		if (rd <= 15) {
253 			slot = &regs->u_regs[rd];
254 		} else {
255 			/* Hard case, it goes onto the stack. */
256 			flushw_all();
257 
258 			rd -= 16;
259 			slot = (unsigned long *)
260 				(regs->u_regs[UREG_FP] + STACK_BIAS);
261 			slot += rd;
262 		}
263 	}
264 	if (slot != NULL)
265 		*slot = real_pc;
266 }
267 
268 /*
269  * Called after single-stepping.  p->addr is the address of the
270  * instruction which has been replaced by the breakpoint
271  * instruction.  To avoid the SMP problems that can occur when we
272  * temporarily put back the original opcode to single-step, we
273  * single-stepped a copy of the instruction.  The address of this
274  * copy is &p->ainsn.insn[0].
275  *
276  * This function prepares to return from the post-single-step
277  * breakpoint trap.
278  */
resume_execution(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)279 static void __kprobes resume_execution(struct kprobe *p,
280 		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
281 {
282 	u32 insn = p->ainsn.insn[0];
283 
284 	regs->tnpc = relbranch_fixup(insn, p, regs);
285 
286 	/* This assignment must occur after relbranch_fixup() */
287 	regs->tpc = kcb->kprobe_orig_tnpc;
288 
289 	retpc_fixup(regs, insn, (unsigned long) p->addr);
290 
291 	regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
292 			kcb->kprobe_orig_tstate_pil);
293 }
294 
post_kprobe_handler(struct pt_regs * regs)295 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
296 {
297 	struct kprobe *cur = kprobe_running();
298 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
299 
300 	if (!cur)
301 		return 0;
302 
303 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
304 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
305 		cur->post_handler(cur, regs, 0);
306 	}
307 
308 	resume_execution(cur, regs, kcb);
309 
310 	/*Restore back the original saved kprobes variables and continue. */
311 	if (kcb->kprobe_status == KPROBE_REENTER) {
312 		restore_previous_kprobe(kcb);
313 		goto out;
314 	}
315 	reset_current_kprobe();
316 out:
317 	preempt_enable_no_resched();
318 
319 	return 1;
320 }
321 
kprobe_fault_handler(struct pt_regs * regs,int trapnr)322 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
323 {
324 	struct kprobe *cur = kprobe_running();
325 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
326 	const struct exception_table_entry *entry;
327 
328 	switch(kcb->kprobe_status) {
329 	case KPROBE_HIT_SS:
330 	case KPROBE_REENTER:
331 		/*
332 		 * We are here because the instruction being single
333 		 * stepped caused a page fault. We reset the current
334 		 * kprobe and the tpc points back to the probe address
335 		 * and allow the page fault handler to continue as a
336 		 * normal page fault.
337 		 */
338 		regs->tpc = (unsigned long)cur->addr;
339 		regs->tnpc = kcb->kprobe_orig_tnpc;
340 		regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
341 				kcb->kprobe_orig_tstate_pil);
342 		if (kcb->kprobe_status == KPROBE_REENTER)
343 			restore_previous_kprobe(kcb);
344 		else
345 			reset_current_kprobe();
346 		preempt_enable_no_resched();
347 		break;
348 	case KPROBE_HIT_ACTIVE:
349 	case KPROBE_HIT_SSDONE:
350 		/*
351 		 * We increment the nmissed count for accounting,
352 		 * we can also use npre/npostfault count for accouting
353 		 * these specific fault cases.
354 		 */
355 		kprobes_inc_nmissed_count(cur);
356 
357 		/*
358 		 * We come here because instructions in the pre/post
359 		 * handler caused the page_fault, this could happen
360 		 * if handler tries to access user space by
361 		 * copy_from_user(), get_user() etc. Let the
362 		 * user-specified handler try to fix it first.
363 		 */
364 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
365 			return 1;
366 
367 		/*
368 		 * In case the user-specified fault handler returned
369 		 * zero, try to fix up.
370 		 */
371 
372 		entry = search_exception_tables(regs->tpc);
373 		if (entry) {
374 			regs->tpc = entry->fixup;
375 			regs->tnpc = regs->tpc + 4;
376 			return 1;
377 		}
378 
379 		/*
380 		 * fixup_exception() could not handle it,
381 		 * Let do_page_fault() fix it.
382 		 */
383 		break;
384 	default:
385 		break;
386 	}
387 
388 	return 0;
389 }
390 
391 /*
392  * Wrapper routine to for handling exceptions.
393  */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)394 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
395 				       unsigned long val, void *data)
396 {
397 	struct die_args *args = (struct die_args *)data;
398 	int ret = NOTIFY_DONE;
399 
400 	if (args->regs && user_mode(args->regs))
401 		return ret;
402 
403 	switch (val) {
404 	case DIE_DEBUG:
405 		if (kprobe_handler(args->regs))
406 			ret = NOTIFY_STOP;
407 		break;
408 	case DIE_DEBUG_2:
409 		if (post_kprobe_handler(args->regs))
410 			ret = NOTIFY_STOP;
411 		break;
412 	default:
413 		break;
414 	}
415 	return ret;
416 }
417 
kprobe_trap(unsigned long trap_level,struct pt_regs * regs)418 asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
419 				      struct pt_regs *regs)
420 {
421 	BUG_ON(trap_level != 0x170 && trap_level != 0x171);
422 
423 	if (user_mode(regs)) {
424 		local_irq_enable();
425 		bad_trap(regs, trap_level);
426 		return;
427 	}
428 
429 	/* trap_level == 0x170 --> ta 0x70
430 	 * trap_level == 0x171 --> ta 0x71
431 	 */
432 	if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
433 		       (trap_level == 0x170) ? "debug" : "debug_2",
434 		       regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
435 		bad_trap(regs, trap_level);
436 }
437 
438 /* Jprobes support.  */
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)439 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
440 {
441 	struct jprobe *jp = container_of(p, struct jprobe, kp);
442 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
443 
444 	memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
445 
446 	regs->tpc  = (unsigned long) jp->entry;
447 	regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
448 	regs->tstate |= TSTATE_PIL;
449 
450 	return 1;
451 }
452 
jprobe_return(void)453 void __kprobes jprobe_return(void)
454 {
455 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
456 	register unsigned long orig_fp asm("g1");
457 
458 	orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
459 	__asm__ __volatile__("\n"
460 "1:	cmp		%%sp, %0\n\t"
461 	"blu,a,pt	%%xcc, 1b\n\t"
462 	" restore\n\t"
463 	".globl		jprobe_return_trap_instruction\n"
464 "jprobe_return_trap_instruction:\n\t"
465 	"ta		0x70"
466 	: /* no outputs */
467 	: "r" (orig_fp));
468 }
469 
470 extern void jprobe_return_trap_instruction(void);
471 
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)472 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
473 {
474 	u32 *addr = (u32 *) regs->tpc;
475 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
476 
477 	if (addr == (u32 *) jprobe_return_trap_instruction) {
478 		memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
479 		preempt_enable_no_resched();
480 		return 1;
481 	}
482 	return 0;
483 }
484 
485 /* The value stored in the return address register is actually 2
486  * instructions before where the callee will return to.
487  * Sequences usually look something like this
488  *
489  *		call	some_function	<--- return register points here
490  *		 nop			<--- call delay slot
491  *		whatever		<--- where callee returns to
492  *
493  * To keep trampoline_probe_handler logic simpler, we normalize the
494  * value kept in ri->ret_addr so we don't need to keep adjusting it
495  * back and forth.
496  */
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)497 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
498 				      struct pt_regs *regs)
499 {
500 	ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
501 
502 	/* Replace the return addr with trampoline addr */
503 	regs->u_regs[UREG_RETPC] =
504 		((unsigned long)kretprobe_trampoline) - 8;
505 }
506 
507 /*
508  * Called when the probe at kretprobe trampoline is hit
509  */
trampoline_probe_handler(struct kprobe * p,struct pt_regs * regs)510 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
511 {
512 	struct kretprobe_instance *ri = NULL;
513 	struct hlist_head *head, empty_rp;
514 	struct hlist_node *node, *tmp;
515 	unsigned long flags, orig_ret_address = 0;
516 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
517 
518 	INIT_HLIST_HEAD(&empty_rp);
519 	kretprobe_hash_lock(current, &head, &flags);
520 
521 	/*
522 	 * It is possible to have multiple instances associated with a given
523 	 * task either because an multiple functions in the call path
524 	 * have a return probe installed on them, and/or more than one return
525 	 * return probe was registered for a target function.
526 	 *
527 	 * We can handle this because:
528 	 *     - instances are always inserted at the head of the list
529 	 *     - when multiple return probes are registered for the same
530 	 *       function, the first instance's ret_addr will point to the
531 	 *       real return address, and all the rest will point to
532 	 *       kretprobe_trampoline
533 	 */
534 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
535 		if (ri->task != current)
536 			/* another task is sharing our hash bucket */
537 			continue;
538 
539 		if (ri->rp && ri->rp->handler)
540 			ri->rp->handler(ri, regs);
541 
542 		orig_ret_address = (unsigned long)ri->ret_addr;
543 		recycle_rp_inst(ri, &empty_rp);
544 
545 		if (orig_ret_address != trampoline_address)
546 			/*
547 			 * This is the real return address. Any other
548 			 * instances associated with this task are for
549 			 * other calls deeper on the call stack
550 			 */
551 			break;
552 	}
553 
554 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
555 	regs->tpc = orig_ret_address;
556 	regs->tnpc = orig_ret_address + 4;
557 
558 	reset_current_kprobe();
559 	kretprobe_hash_unlock(current, &flags);
560 	preempt_enable_no_resched();
561 
562 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
563 		hlist_del(&ri->hlist);
564 		kfree(ri);
565 	}
566 	/*
567 	 * By returning a non-zero value, we are telling
568 	 * kprobe_handler() that we don't want the post_handler
569 	 * to run (and have re-enabled preemption)
570 	 */
571 	return 1;
572 }
573 
kretprobe_trampoline_holder(void)574 void kretprobe_trampoline_holder(void)
575 {
576 	asm volatile(".global kretprobe_trampoline\n"
577 		     "kretprobe_trampoline:\n"
578 		     "\tnop\n"
579 		     "\tnop\n");
580 }
581 static struct kprobe trampoline_p = {
582 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
583 	.pre_handler = trampoline_probe_handler
584 };
585 
arch_init_kprobes(void)586 int __init arch_init_kprobes(void)
587 {
588 	return register_kprobe(&trampoline_p);
589 }
590 
arch_trampoline_kprobe(struct kprobe * p)591 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
592 {
593 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
594 		return 1;
595 
596 	return 0;
597 }
598