1 /*
2 * ioport.c: Simple io mapping allocator.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
6 *
7 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
8 *
9 * 2000/01/29
10 * <rth> zait: as long as pci_alloc_consistent produces something addressable,
11 * things are ok.
12 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
13 * pointer into the big page mapping
14 * <rth> zait: so what?
15 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
16 * <zaitcev> Hmm
17 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
18 * So far so good.
19 * <zaitcev> Now, driver calls pci_free_consistent(with result of
20 * remap_it_my_way()).
21 * <zaitcev> How do you find the address to pass to free_pages()?
22 * <rth> zait: walk the page tables? It's only two or three level after all.
23 * <rth> zait: you have to walk them anyway to remove the mapping.
24 * <zaitcev> Hmm
25 * <zaitcev> Sounds reasonable
26 */
27
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/kernel.h>
31 #include <linux/errno.h>
32 #include <linux/types.h>
33 #include <linux/ioport.h>
34 #include <linux/mm.h>
35 #include <linux/slab.h>
36 #include <linux/pci.h> /* struct pci_dev */
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/scatterlist.h>
40 #include <linux/of_device.h>
41
42 #include <asm/io.h>
43 #include <asm/vaddrs.h>
44 #include <asm/oplib.h>
45 #include <asm/prom.h>
46 #include <asm/page.h>
47 #include <asm/pgalloc.h>
48 #include <asm/dma.h>
49 #include <asm/iommu.h>
50 #include <asm/io-unit.h>
51 #include <asm/leon.h>
52
53 #ifndef CONFIG_SPARC_LEON
54 #define mmu_inval_dma_area(p, l) /* Anton pulled it out for 2.4.0-xx */
55 #else
mmu_inval_dma_area(void * va,unsigned long len)56 static inline void mmu_inval_dma_area(void *va, unsigned long len)
57 {
58 if (!sparc_leon3_snooping_enabled())
59 leon_flush_dcache_all();
60 }
61 #endif
62
63 static struct resource *_sparc_find_resource(struct resource *r,
64 unsigned long);
65
66 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz);
67 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
68 unsigned long size, char *name);
69 static void _sparc_free_io(struct resource *res);
70
71 static void register_proc_sparc_ioport(void);
72
73 /* This points to the next to use virtual memory for DVMA mappings */
74 static struct resource _sparc_dvma = {
75 .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1
76 };
77 /* This points to the start of I/O mappings, cluable from outside. */
78 /*ext*/ struct resource sparc_iomap = {
79 .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1
80 };
81
82 /*
83 * Our mini-allocator...
84 * Boy this is gross! We need it because we must map I/O for
85 * timers and interrupt controller before the kmalloc is available.
86 */
87
88 #define XNMLN 15
89 #define XNRES 10 /* SS-10 uses 8 */
90
91 struct xresource {
92 struct resource xres; /* Must be first */
93 int xflag; /* 1 == used */
94 char xname[XNMLN+1];
95 };
96
97 static struct xresource xresv[XNRES];
98
xres_alloc(void)99 static struct xresource *xres_alloc(void) {
100 struct xresource *xrp;
101 int n;
102
103 xrp = xresv;
104 for (n = 0; n < XNRES; n++) {
105 if (xrp->xflag == 0) {
106 xrp->xflag = 1;
107 return xrp;
108 }
109 xrp++;
110 }
111 return NULL;
112 }
113
xres_free(struct xresource * xrp)114 static void xres_free(struct xresource *xrp) {
115 xrp->xflag = 0;
116 }
117
118 /*
119 * These are typically used in PCI drivers
120 * which are trying to be cross-platform.
121 *
122 * Bus type is always zero on IIep.
123 */
ioremap(unsigned long offset,unsigned long size)124 void __iomem *ioremap(unsigned long offset, unsigned long size)
125 {
126 char name[14];
127
128 sprintf(name, "phys_%08x", (u32)offset);
129 return _sparc_alloc_io(0, offset, size, name);
130 }
131 EXPORT_SYMBOL(ioremap);
132
133 /*
134 * Comlimentary to ioremap().
135 */
iounmap(volatile void __iomem * virtual)136 void iounmap(volatile void __iomem *virtual)
137 {
138 unsigned long vaddr = (unsigned long) virtual & PAGE_MASK;
139 struct resource *res;
140
141 if ((res = _sparc_find_resource(&sparc_iomap, vaddr)) == NULL) {
142 printk("free_io/iounmap: cannot free %lx\n", vaddr);
143 return;
144 }
145 _sparc_free_io(res);
146
147 if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) {
148 xres_free((struct xresource *)res);
149 } else {
150 kfree(res);
151 }
152 }
153 EXPORT_SYMBOL(iounmap);
154
of_ioremap(struct resource * res,unsigned long offset,unsigned long size,char * name)155 void __iomem *of_ioremap(struct resource *res, unsigned long offset,
156 unsigned long size, char *name)
157 {
158 return _sparc_alloc_io(res->flags & 0xF,
159 res->start + offset,
160 size, name);
161 }
162 EXPORT_SYMBOL(of_ioremap);
163
of_iounmap(struct resource * res,void __iomem * base,unsigned long size)164 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
165 {
166 iounmap(base);
167 }
168 EXPORT_SYMBOL(of_iounmap);
169
170 /*
171 * Meat of mapping
172 */
_sparc_alloc_io(unsigned int busno,unsigned long phys,unsigned long size,char * name)173 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
174 unsigned long size, char *name)
175 {
176 static int printed_full;
177 struct xresource *xres;
178 struct resource *res;
179 char *tack;
180 int tlen;
181 void __iomem *va; /* P3 diag */
182
183 if (name == NULL) name = "???";
184
185 if ((xres = xres_alloc()) != 0) {
186 tack = xres->xname;
187 res = &xres->xres;
188 } else {
189 if (!printed_full) {
190 printk("ioremap: done with statics, switching to malloc\n");
191 printed_full = 1;
192 }
193 tlen = strlen(name);
194 tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL);
195 if (tack == NULL) return NULL;
196 memset(tack, 0, sizeof(struct resource));
197 res = (struct resource *) tack;
198 tack += sizeof (struct resource);
199 }
200
201 strlcpy(tack, name, XNMLN+1);
202 res->name = tack;
203
204 va = _sparc_ioremap(res, busno, phys, size);
205 /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
206 return va;
207 }
208
209 /*
210 */
211 static void __iomem *
_sparc_ioremap(struct resource * res,u32 bus,u32 pa,int sz)212 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz)
213 {
214 unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK);
215
216 if (allocate_resource(&sparc_iomap, res,
217 (offset + sz + PAGE_SIZE-1) & PAGE_MASK,
218 sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) {
219 /* Usually we cannot see printks in this case. */
220 prom_printf("alloc_io_res(%s): cannot occupy\n",
221 (res->name != NULL)? res->name: "???");
222 prom_halt();
223 }
224
225 pa &= PAGE_MASK;
226 sparc_mapiorange(bus, pa, res->start, res->end - res->start + 1);
227
228 return (void __iomem *)(unsigned long)(res->start + offset);
229 }
230
231 /*
232 * Comlimentary to _sparc_ioremap().
233 */
_sparc_free_io(struct resource * res)234 static void _sparc_free_io(struct resource *res)
235 {
236 unsigned long plen;
237
238 plen = res->end - res->start + 1;
239 BUG_ON((plen & (PAGE_SIZE-1)) != 0);
240 sparc_unmapiorange(res->start, plen);
241 release_resource(res);
242 }
243
244 #ifdef CONFIG_SBUS
245
sbus_set_sbus64(struct device * dev,int x)246 void sbus_set_sbus64(struct device *dev, int x)
247 {
248 printk("sbus_set_sbus64: unsupported\n");
249 }
250 EXPORT_SYMBOL(sbus_set_sbus64);
251
252 /*
253 * Allocate a chunk of memory suitable for DMA.
254 * Typically devices use them for control blocks.
255 * CPU may access them without any explicit flushing.
256 */
sbus_alloc_coherent(struct device * dev,size_t len,dma_addr_t * dma_addrp,gfp_t gfp)257 static void *sbus_alloc_coherent(struct device *dev, size_t len,
258 dma_addr_t *dma_addrp, gfp_t gfp)
259 {
260 struct platform_device *op = to_platform_device(dev);
261 unsigned long len_total = PAGE_ALIGN(len);
262 unsigned long va;
263 struct resource *res;
264 int order;
265
266 /* XXX why are some lengths signed, others unsigned? */
267 if (len <= 0) {
268 return NULL;
269 }
270 /* XXX So what is maxphys for us and how do drivers know it? */
271 if (len > 256*1024) { /* __get_free_pages() limit */
272 return NULL;
273 }
274
275 order = get_order(len_total);
276 if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0)
277 goto err_nopages;
278
279 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL)
280 goto err_nomem;
281
282 if (allocate_resource(&_sparc_dvma, res, len_total,
283 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
284 printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total);
285 goto err_nova;
286 }
287 mmu_inval_dma_area((void *)va, len_total);
288
289 // XXX The mmu_map_dma_area does this for us below, see comments.
290 // sparc_mapiorange(0, virt_to_phys(va), res->start, len_total);
291 /*
292 * XXX That's where sdev would be used. Currently we load
293 * all iommu tables with the same translations.
294 */
295 if (mmu_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0)
296 goto err_noiommu;
297
298 res->name = op->dev.of_node->name;
299
300 return (void *)(unsigned long)res->start;
301
302 err_noiommu:
303 release_resource(res);
304 err_nova:
305 kfree(res);
306 err_nomem:
307 free_pages(va, order);
308 err_nopages:
309 return NULL;
310 }
311
sbus_free_coherent(struct device * dev,size_t n,void * p,dma_addr_t ba)312 static void sbus_free_coherent(struct device *dev, size_t n, void *p,
313 dma_addr_t ba)
314 {
315 struct resource *res;
316 struct page *pgv;
317
318 if ((res = _sparc_find_resource(&_sparc_dvma,
319 (unsigned long)p)) == NULL) {
320 printk("sbus_free_consistent: cannot free %p\n", p);
321 return;
322 }
323
324 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
325 printk("sbus_free_consistent: unaligned va %p\n", p);
326 return;
327 }
328
329 n = PAGE_ALIGN(n);
330 if ((res->end-res->start)+1 != n) {
331 printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
332 (long)((res->end-res->start)+1), n);
333 return;
334 }
335
336 release_resource(res);
337 kfree(res);
338
339 /* mmu_inval_dma_area(va, n); */ /* it's consistent, isn't it */
340 pgv = virt_to_page(p);
341 mmu_unmap_dma_area(dev, ba, n);
342
343 __free_pages(pgv, get_order(n));
344 }
345
346 /*
347 * Map a chunk of memory so that devices can see it.
348 * CPU view of this memory may be inconsistent with
349 * a device view and explicit flushing is necessary.
350 */
sbus_map_page(struct device * dev,struct page * page,unsigned long offset,size_t len,enum dma_data_direction dir,struct dma_attrs * attrs)351 static dma_addr_t sbus_map_page(struct device *dev, struct page *page,
352 unsigned long offset, size_t len,
353 enum dma_data_direction dir,
354 struct dma_attrs *attrs)
355 {
356 void *va = page_address(page) + offset;
357
358 /* XXX why are some lengths signed, others unsigned? */
359 if (len <= 0) {
360 return 0;
361 }
362 /* XXX So what is maxphys for us and how do drivers know it? */
363 if (len > 256*1024) { /* __get_free_pages() limit */
364 return 0;
365 }
366 return mmu_get_scsi_one(dev, va, len);
367 }
368
sbus_unmap_page(struct device * dev,dma_addr_t ba,size_t n,enum dma_data_direction dir,struct dma_attrs * attrs)369 static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n,
370 enum dma_data_direction dir, struct dma_attrs *attrs)
371 {
372 mmu_release_scsi_one(dev, ba, n);
373 }
374
sbus_map_sg(struct device * dev,struct scatterlist * sg,int n,enum dma_data_direction dir,struct dma_attrs * attrs)375 static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n,
376 enum dma_data_direction dir, struct dma_attrs *attrs)
377 {
378 mmu_get_scsi_sgl(dev, sg, n);
379
380 /*
381 * XXX sparc64 can return a partial length here. sun4c should do this
382 * but it currently panics if it can't fulfill the request - Anton
383 */
384 return n;
385 }
386
sbus_unmap_sg(struct device * dev,struct scatterlist * sg,int n,enum dma_data_direction dir,struct dma_attrs * attrs)387 static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n,
388 enum dma_data_direction dir, struct dma_attrs *attrs)
389 {
390 mmu_release_scsi_sgl(dev, sg, n);
391 }
392
sbus_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int n,enum dma_data_direction dir)393 static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
394 int n, enum dma_data_direction dir)
395 {
396 BUG();
397 }
398
sbus_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int n,enum dma_data_direction dir)399 static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
400 int n, enum dma_data_direction dir)
401 {
402 BUG();
403 }
404
405 struct dma_map_ops sbus_dma_ops = {
406 .alloc_coherent = sbus_alloc_coherent,
407 .free_coherent = sbus_free_coherent,
408 .map_page = sbus_map_page,
409 .unmap_page = sbus_unmap_page,
410 .map_sg = sbus_map_sg,
411 .unmap_sg = sbus_unmap_sg,
412 .sync_sg_for_cpu = sbus_sync_sg_for_cpu,
413 .sync_sg_for_device = sbus_sync_sg_for_device,
414 };
415
sparc_register_ioport(void)416 static int __init sparc_register_ioport(void)
417 {
418 register_proc_sparc_ioport();
419
420 return 0;
421 }
422
423 arch_initcall(sparc_register_ioport);
424
425 #endif /* CONFIG_SBUS */
426
427
428 /* LEON reuses PCI DMA ops */
429 #if defined(CONFIG_PCI) || defined(CONFIG_SPARC_LEON)
430
431 /* Allocate and map kernel buffer using consistent mode DMA for a device.
432 * hwdev should be valid struct pci_dev pointer for PCI devices.
433 */
pci32_alloc_coherent(struct device * dev,size_t len,dma_addr_t * pba,gfp_t gfp)434 static void *pci32_alloc_coherent(struct device *dev, size_t len,
435 dma_addr_t *pba, gfp_t gfp)
436 {
437 unsigned long len_total = PAGE_ALIGN(len);
438 void *va;
439 struct resource *res;
440 int order;
441
442 if (len == 0) {
443 return NULL;
444 }
445 if (len > 256*1024) { /* __get_free_pages() limit */
446 return NULL;
447 }
448
449 order = get_order(len_total);
450 va = (void *) __get_free_pages(GFP_KERNEL, order);
451 if (va == NULL) {
452 printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT);
453 goto err_nopages;
454 }
455
456 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
457 printk("pci_alloc_consistent: no core\n");
458 goto err_nomem;
459 }
460
461 if (allocate_resource(&_sparc_dvma, res, len_total,
462 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
463 printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total);
464 goto err_nova;
465 }
466 mmu_inval_dma_area(va, len_total);
467 sparc_mapiorange(0, virt_to_phys(va), res->start, len_total);
468
469 *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */
470 return (void *) res->start;
471
472 err_nova:
473 kfree(res);
474 err_nomem:
475 free_pages((unsigned long)va, order);
476 err_nopages:
477 return NULL;
478 }
479
480 /* Free and unmap a consistent DMA buffer.
481 * cpu_addr is what was returned from pci_alloc_consistent,
482 * size must be the same as what as passed into pci_alloc_consistent,
483 * and likewise dma_addr must be the same as what *dma_addrp was set to.
484 *
485 * References to the memory and mappings associated with cpu_addr/dma_addr
486 * past this call are illegal.
487 */
pci32_free_coherent(struct device * dev,size_t n,void * p,dma_addr_t ba)488 static void pci32_free_coherent(struct device *dev, size_t n, void *p,
489 dma_addr_t ba)
490 {
491 struct resource *res;
492 void *pgp;
493
494 if ((res = _sparc_find_resource(&_sparc_dvma,
495 (unsigned long)p)) == NULL) {
496 printk("pci_free_consistent: cannot free %p\n", p);
497 return;
498 }
499
500 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
501 printk("pci_free_consistent: unaligned va %p\n", p);
502 return;
503 }
504
505 n = PAGE_ALIGN(n);
506 if ((res->end-res->start)+1 != n) {
507 printk("pci_free_consistent: region 0x%lx asked 0x%lx\n",
508 (long)((res->end-res->start)+1), (long)n);
509 return;
510 }
511
512 pgp = phys_to_virt(ba); /* bus_to_virt actually */
513 mmu_inval_dma_area(pgp, n);
514 sparc_unmapiorange((unsigned long)p, n);
515
516 release_resource(res);
517 kfree(res);
518
519 free_pages((unsigned long)pgp, get_order(n));
520 }
521
522 /*
523 * Same as pci_map_single, but with pages.
524 */
pci32_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)525 static dma_addr_t pci32_map_page(struct device *dev, struct page *page,
526 unsigned long offset, size_t size,
527 enum dma_data_direction dir,
528 struct dma_attrs *attrs)
529 {
530 /* IIep is write-through, not flushing. */
531 return page_to_phys(page) + offset;
532 }
533
pci32_unmap_page(struct device * dev,dma_addr_t ba,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)534 static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size,
535 enum dma_data_direction dir, struct dma_attrs *attrs)
536 {
537 if (dir != PCI_DMA_TODEVICE)
538 mmu_inval_dma_area(phys_to_virt(ba), PAGE_ALIGN(size));
539 }
540
541 /* Map a set of buffers described by scatterlist in streaming
542 * mode for DMA. This is the scather-gather version of the
543 * above pci_map_single interface. Here the scatter gather list
544 * elements are each tagged with the appropriate dma address
545 * and length. They are obtained via sg_dma_{address,length}(SG).
546 *
547 * NOTE: An implementation may be able to use a smaller number of
548 * DMA address/length pairs than there are SG table elements.
549 * (for example via virtual mapping capabilities)
550 * The routine returns the number of addr/length pairs actually
551 * used, at most nents.
552 *
553 * Device ownership issues as mentioned above for pci_map_single are
554 * the same here.
555 */
pci32_map_sg(struct device * device,struct scatterlist * sgl,int nents,enum dma_data_direction dir,struct dma_attrs * attrs)556 static int pci32_map_sg(struct device *device, struct scatterlist *sgl,
557 int nents, enum dma_data_direction dir,
558 struct dma_attrs *attrs)
559 {
560 struct scatterlist *sg;
561 int n;
562
563 /* IIep is write-through, not flushing. */
564 for_each_sg(sgl, sg, nents, n) {
565 BUG_ON(page_address(sg_page(sg)) == NULL);
566 sg->dma_address = virt_to_phys(sg_virt(sg));
567 sg->dma_length = sg->length;
568 }
569 return nents;
570 }
571
572 /* Unmap a set of streaming mode DMA translations.
573 * Again, cpu read rules concerning calls here are the same as for
574 * pci_unmap_single() above.
575 */
pci32_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,struct dma_attrs * attrs)576 static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl,
577 int nents, enum dma_data_direction dir,
578 struct dma_attrs *attrs)
579 {
580 struct scatterlist *sg;
581 int n;
582
583 if (dir != PCI_DMA_TODEVICE) {
584 for_each_sg(sgl, sg, nents, n) {
585 BUG_ON(page_address(sg_page(sg)) == NULL);
586 mmu_inval_dma_area(page_address(sg_page(sg)),
587 PAGE_ALIGN(sg->length));
588 }
589 }
590 }
591
592 /* Make physical memory consistent for a single
593 * streaming mode DMA translation before or after a transfer.
594 *
595 * If you perform a pci_map_single() but wish to interrogate the
596 * buffer using the cpu, yet do not wish to teardown the PCI dma
597 * mapping, you must call this function before doing so. At the
598 * next point you give the PCI dma address back to the card, you
599 * must first perform a pci_dma_sync_for_device, and then the
600 * device again owns the buffer.
601 */
pci32_sync_single_for_cpu(struct device * dev,dma_addr_t ba,size_t size,enum dma_data_direction dir)602 static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
603 size_t size, enum dma_data_direction dir)
604 {
605 if (dir != PCI_DMA_TODEVICE) {
606 mmu_inval_dma_area(phys_to_virt(ba),
607 PAGE_ALIGN(size));
608 }
609 }
610
pci32_sync_single_for_device(struct device * dev,dma_addr_t ba,size_t size,enum dma_data_direction dir)611 static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba,
612 size_t size, enum dma_data_direction dir)
613 {
614 if (dir != PCI_DMA_TODEVICE) {
615 mmu_inval_dma_area(phys_to_virt(ba),
616 PAGE_ALIGN(size));
617 }
618 }
619
620 /* Make physical memory consistent for a set of streaming
621 * mode DMA translations after a transfer.
622 *
623 * The same as pci_dma_sync_single_* but for a scatter-gather list,
624 * same rules and usage.
625 */
pci32_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)626 static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
627 int nents, enum dma_data_direction dir)
628 {
629 struct scatterlist *sg;
630 int n;
631
632 if (dir != PCI_DMA_TODEVICE) {
633 for_each_sg(sgl, sg, nents, n) {
634 BUG_ON(page_address(sg_page(sg)) == NULL);
635 mmu_inval_dma_area(page_address(sg_page(sg)),
636 PAGE_ALIGN(sg->length));
637 }
638 }
639 }
640
pci32_sync_sg_for_device(struct device * device,struct scatterlist * sgl,int nents,enum dma_data_direction dir)641 static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl,
642 int nents, enum dma_data_direction dir)
643 {
644 struct scatterlist *sg;
645 int n;
646
647 if (dir != PCI_DMA_TODEVICE) {
648 for_each_sg(sgl, sg, nents, n) {
649 BUG_ON(page_address(sg_page(sg)) == NULL);
650 mmu_inval_dma_area(page_address(sg_page(sg)),
651 PAGE_ALIGN(sg->length));
652 }
653 }
654 }
655
656 struct dma_map_ops pci32_dma_ops = {
657 .alloc_coherent = pci32_alloc_coherent,
658 .free_coherent = pci32_free_coherent,
659 .map_page = pci32_map_page,
660 .unmap_page = pci32_unmap_page,
661 .map_sg = pci32_map_sg,
662 .unmap_sg = pci32_unmap_sg,
663 .sync_single_for_cpu = pci32_sync_single_for_cpu,
664 .sync_single_for_device = pci32_sync_single_for_device,
665 .sync_sg_for_cpu = pci32_sync_sg_for_cpu,
666 .sync_sg_for_device = pci32_sync_sg_for_device,
667 };
668 EXPORT_SYMBOL(pci32_dma_ops);
669
670 #endif /* CONFIG_PCI || CONFIG_SPARC_LEON */
671
672 #ifdef CONFIG_SPARC_LEON
673 struct dma_map_ops *dma_ops = &pci32_dma_ops;
674 #elif defined(CONFIG_SBUS)
675 struct dma_map_ops *dma_ops = &sbus_dma_ops;
676 #endif
677
678 EXPORT_SYMBOL(dma_ops);
679
680
681 /*
682 * Return whether the given PCI device DMA address mask can be
683 * supported properly. For example, if your device can only drive the
684 * low 24-bits during PCI bus mastering, then you would pass
685 * 0x00ffffff as the mask to this function.
686 */
dma_supported(struct device * dev,u64 mask)687 int dma_supported(struct device *dev, u64 mask)
688 {
689 #ifdef CONFIG_PCI
690 if (dev->bus == &pci_bus_type)
691 return 1;
692 #endif
693 return 0;
694 }
695 EXPORT_SYMBOL(dma_supported);
696
697 #ifdef CONFIG_PROC_FS
698
sparc_io_proc_show(struct seq_file * m,void * v)699 static int sparc_io_proc_show(struct seq_file *m, void *v)
700 {
701 struct resource *root = m->private, *r;
702 const char *nm;
703
704 for (r = root->child; r != NULL; r = r->sibling) {
705 if ((nm = r->name) == 0) nm = "???";
706 seq_printf(m, "%016llx-%016llx: %s\n",
707 (unsigned long long)r->start,
708 (unsigned long long)r->end, nm);
709 }
710
711 return 0;
712 }
713
sparc_io_proc_open(struct inode * inode,struct file * file)714 static int sparc_io_proc_open(struct inode *inode, struct file *file)
715 {
716 return single_open(file, sparc_io_proc_show, PDE(inode)->data);
717 }
718
719 static const struct file_operations sparc_io_proc_fops = {
720 .owner = THIS_MODULE,
721 .open = sparc_io_proc_open,
722 .read = seq_read,
723 .llseek = seq_lseek,
724 .release = single_release,
725 };
726 #endif /* CONFIG_PROC_FS */
727
728 /*
729 * This is a version of find_resource and it belongs to kernel/resource.c.
730 * Until we have agreement with Linus and Martin, it lingers here.
731 *
732 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
733 * This probably warrants some sort of hashing.
734 */
_sparc_find_resource(struct resource * root,unsigned long hit)735 static struct resource *_sparc_find_resource(struct resource *root,
736 unsigned long hit)
737 {
738 struct resource *tmp;
739
740 for (tmp = root->child; tmp != 0; tmp = tmp->sibling) {
741 if (tmp->start <= hit && tmp->end >= hit)
742 return tmp;
743 }
744 return NULL;
745 }
746
register_proc_sparc_ioport(void)747 static void register_proc_sparc_ioport(void)
748 {
749 #ifdef CONFIG_PROC_FS
750 proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap);
751 proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma);
752 #endif
753 }
754