1 /*
2  * ioport.c:  Simple io mapping allocator.
3  *
4  * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5  * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
6  *
7  * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
8  *
9  * 2000/01/29
10  * <rth> zait: as long as pci_alloc_consistent produces something addressable,
11  *	things are ok.
12  * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
13  *	pointer into the big page mapping
14  * <rth> zait: so what?
15  * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
16  * <zaitcev> Hmm
17  * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
18  *	So far so good.
19  * <zaitcev> Now, driver calls pci_free_consistent(with result of
20  *	remap_it_my_way()).
21  * <zaitcev> How do you find the address to pass to free_pages()?
22  * <rth> zait: walk the page tables?  It's only two or three level after all.
23  * <rth> zait: you have to walk them anyway to remove the mapping.
24  * <zaitcev> Hmm
25  * <zaitcev> Sounds reasonable
26  */
27 
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/kernel.h>
31 #include <linux/errno.h>
32 #include <linux/types.h>
33 #include <linux/ioport.h>
34 #include <linux/mm.h>
35 #include <linux/slab.h>
36 #include <linux/pci.h>		/* struct pci_dev */
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/scatterlist.h>
40 #include <linux/of_device.h>
41 
42 #include <asm/io.h>
43 #include <asm/vaddrs.h>
44 #include <asm/oplib.h>
45 #include <asm/prom.h>
46 #include <asm/page.h>
47 #include <asm/pgalloc.h>
48 #include <asm/dma.h>
49 #include <asm/iommu.h>
50 #include <asm/io-unit.h>
51 #include <asm/leon.h>
52 
53 #ifndef CONFIG_SPARC_LEON
54 #define mmu_inval_dma_area(p, l)	/* Anton pulled it out for 2.4.0-xx */
55 #else
mmu_inval_dma_area(void * va,unsigned long len)56 static inline void mmu_inval_dma_area(void *va, unsigned long len)
57 {
58 	if (!sparc_leon3_snooping_enabled())
59 		leon_flush_dcache_all();
60 }
61 #endif
62 
63 static struct resource *_sparc_find_resource(struct resource *r,
64 					     unsigned long);
65 
66 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz);
67 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
68     unsigned long size, char *name);
69 static void _sparc_free_io(struct resource *res);
70 
71 static void register_proc_sparc_ioport(void);
72 
73 /* This points to the next to use virtual memory for DVMA mappings */
74 static struct resource _sparc_dvma = {
75 	.name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1
76 };
77 /* This points to the start of I/O mappings, cluable from outside. */
78 /*ext*/ struct resource sparc_iomap = {
79 	.name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1
80 };
81 
82 /*
83  * Our mini-allocator...
84  * Boy this is gross! We need it because we must map I/O for
85  * timers and interrupt controller before the kmalloc is available.
86  */
87 
88 #define XNMLN  15
89 #define XNRES  10	/* SS-10 uses 8 */
90 
91 struct xresource {
92 	struct resource xres;	/* Must be first */
93 	int xflag;		/* 1 == used */
94 	char xname[XNMLN+1];
95 };
96 
97 static struct xresource xresv[XNRES];
98 
xres_alloc(void)99 static struct xresource *xres_alloc(void) {
100 	struct xresource *xrp;
101 	int n;
102 
103 	xrp = xresv;
104 	for (n = 0; n < XNRES; n++) {
105 		if (xrp->xflag == 0) {
106 			xrp->xflag = 1;
107 			return xrp;
108 		}
109 		xrp++;
110 	}
111 	return NULL;
112 }
113 
xres_free(struct xresource * xrp)114 static void xres_free(struct xresource *xrp) {
115 	xrp->xflag = 0;
116 }
117 
118 /*
119  * These are typically used in PCI drivers
120  * which are trying to be cross-platform.
121  *
122  * Bus type is always zero on IIep.
123  */
ioremap(unsigned long offset,unsigned long size)124 void __iomem *ioremap(unsigned long offset, unsigned long size)
125 {
126 	char name[14];
127 
128 	sprintf(name, "phys_%08x", (u32)offset);
129 	return _sparc_alloc_io(0, offset, size, name);
130 }
131 EXPORT_SYMBOL(ioremap);
132 
133 /*
134  * Comlimentary to ioremap().
135  */
iounmap(volatile void __iomem * virtual)136 void iounmap(volatile void __iomem *virtual)
137 {
138 	unsigned long vaddr = (unsigned long) virtual & PAGE_MASK;
139 	struct resource *res;
140 
141 	if ((res = _sparc_find_resource(&sparc_iomap, vaddr)) == NULL) {
142 		printk("free_io/iounmap: cannot free %lx\n", vaddr);
143 		return;
144 	}
145 	_sparc_free_io(res);
146 
147 	if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) {
148 		xres_free((struct xresource *)res);
149 	} else {
150 		kfree(res);
151 	}
152 }
153 EXPORT_SYMBOL(iounmap);
154 
of_ioremap(struct resource * res,unsigned long offset,unsigned long size,char * name)155 void __iomem *of_ioremap(struct resource *res, unsigned long offset,
156 			 unsigned long size, char *name)
157 {
158 	return _sparc_alloc_io(res->flags & 0xF,
159 			       res->start + offset,
160 			       size, name);
161 }
162 EXPORT_SYMBOL(of_ioremap);
163 
of_iounmap(struct resource * res,void __iomem * base,unsigned long size)164 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
165 {
166 	iounmap(base);
167 }
168 EXPORT_SYMBOL(of_iounmap);
169 
170 /*
171  * Meat of mapping
172  */
_sparc_alloc_io(unsigned int busno,unsigned long phys,unsigned long size,char * name)173 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
174     unsigned long size, char *name)
175 {
176 	static int printed_full;
177 	struct xresource *xres;
178 	struct resource *res;
179 	char *tack;
180 	int tlen;
181 	void __iomem *va;	/* P3 diag */
182 
183 	if (name == NULL) name = "???";
184 
185 	if ((xres = xres_alloc()) != 0) {
186 		tack = xres->xname;
187 		res = &xres->xres;
188 	} else {
189 		if (!printed_full) {
190 			printk("ioremap: done with statics, switching to malloc\n");
191 			printed_full = 1;
192 		}
193 		tlen = strlen(name);
194 		tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL);
195 		if (tack == NULL) return NULL;
196 		memset(tack, 0, sizeof(struct resource));
197 		res = (struct resource *) tack;
198 		tack += sizeof (struct resource);
199 	}
200 
201 	strlcpy(tack, name, XNMLN+1);
202 	res->name = tack;
203 
204 	va = _sparc_ioremap(res, busno, phys, size);
205 	/* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
206 	return va;
207 }
208 
209 /*
210  */
211 static void __iomem *
_sparc_ioremap(struct resource * res,u32 bus,u32 pa,int sz)212 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz)
213 {
214 	unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK);
215 
216 	if (allocate_resource(&sparc_iomap, res,
217 	    (offset + sz + PAGE_SIZE-1) & PAGE_MASK,
218 	    sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) {
219 		/* Usually we cannot see printks in this case. */
220 		prom_printf("alloc_io_res(%s): cannot occupy\n",
221 		    (res->name != NULL)? res->name: "???");
222 		prom_halt();
223 	}
224 
225 	pa &= PAGE_MASK;
226 	sparc_mapiorange(bus, pa, res->start, res->end - res->start + 1);
227 
228 	return (void __iomem *)(unsigned long)(res->start + offset);
229 }
230 
231 /*
232  * Comlimentary to _sparc_ioremap().
233  */
_sparc_free_io(struct resource * res)234 static void _sparc_free_io(struct resource *res)
235 {
236 	unsigned long plen;
237 
238 	plen = res->end - res->start + 1;
239 	BUG_ON((plen & (PAGE_SIZE-1)) != 0);
240 	sparc_unmapiorange(res->start, plen);
241 	release_resource(res);
242 }
243 
244 #ifdef CONFIG_SBUS
245 
sbus_set_sbus64(struct device * dev,int x)246 void sbus_set_sbus64(struct device *dev, int x)
247 {
248 	printk("sbus_set_sbus64: unsupported\n");
249 }
250 EXPORT_SYMBOL(sbus_set_sbus64);
251 
252 /*
253  * Allocate a chunk of memory suitable for DMA.
254  * Typically devices use them for control blocks.
255  * CPU may access them without any explicit flushing.
256  */
sbus_alloc_coherent(struct device * dev,size_t len,dma_addr_t * dma_addrp,gfp_t gfp)257 static void *sbus_alloc_coherent(struct device *dev, size_t len,
258 				 dma_addr_t *dma_addrp, gfp_t gfp)
259 {
260 	struct platform_device *op = to_platform_device(dev);
261 	unsigned long len_total = PAGE_ALIGN(len);
262 	unsigned long va;
263 	struct resource *res;
264 	int order;
265 
266 	/* XXX why are some lengths signed, others unsigned? */
267 	if (len <= 0) {
268 		return NULL;
269 	}
270 	/* XXX So what is maxphys for us and how do drivers know it? */
271 	if (len > 256*1024) {			/* __get_free_pages() limit */
272 		return NULL;
273 	}
274 
275 	order = get_order(len_total);
276 	if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0)
277 		goto err_nopages;
278 
279 	if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL)
280 		goto err_nomem;
281 
282 	if (allocate_resource(&_sparc_dvma, res, len_total,
283 	    _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
284 		printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total);
285 		goto err_nova;
286 	}
287 	mmu_inval_dma_area((void *)va, len_total);
288 
289 	// XXX The mmu_map_dma_area does this for us below, see comments.
290 	// sparc_mapiorange(0, virt_to_phys(va), res->start, len_total);
291 	/*
292 	 * XXX That's where sdev would be used. Currently we load
293 	 * all iommu tables with the same translations.
294 	 */
295 	if (mmu_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0)
296 		goto err_noiommu;
297 
298 	res->name = op->dev.of_node->name;
299 
300 	return (void *)(unsigned long)res->start;
301 
302 err_noiommu:
303 	release_resource(res);
304 err_nova:
305 	kfree(res);
306 err_nomem:
307 	free_pages(va, order);
308 err_nopages:
309 	return NULL;
310 }
311 
sbus_free_coherent(struct device * dev,size_t n,void * p,dma_addr_t ba)312 static void sbus_free_coherent(struct device *dev, size_t n, void *p,
313 			       dma_addr_t ba)
314 {
315 	struct resource *res;
316 	struct page *pgv;
317 
318 	if ((res = _sparc_find_resource(&_sparc_dvma,
319 	    (unsigned long)p)) == NULL) {
320 		printk("sbus_free_consistent: cannot free %p\n", p);
321 		return;
322 	}
323 
324 	if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
325 		printk("sbus_free_consistent: unaligned va %p\n", p);
326 		return;
327 	}
328 
329 	n = PAGE_ALIGN(n);
330 	if ((res->end-res->start)+1 != n) {
331 		printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
332 		    (long)((res->end-res->start)+1), n);
333 		return;
334 	}
335 
336 	release_resource(res);
337 	kfree(res);
338 
339 	/* mmu_inval_dma_area(va, n); */ /* it's consistent, isn't it */
340 	pgv = virt_to_page(p);
341 	mmu_unmap_dma_area(dev, ba, n);
342 
343 	__free_pages(pgv, get_order(n));
344 }
345 
346 /*
347  * Map a chunk of memory so that devices can see it.
348  * CPU view of this memory may be inconsistent with
349  * a device view and explicit flushing is necessary.
350  */
sbus_map_page(struct device * dev,struct page * page,unsigned long offset,size_t len,enum dma_data_direction dir,struct dma_attrs * attrs)351 static dma_addr_t sbus_map_page(struct device *dev, struct page *page,
352 				unsigned long offset, size_t len,
353 				enum dma_data_direction dir,
354 				struct dma_attrs *attrs)
355 {
356 	void *va = page_address(page) + offset;
357 
358 	/* XXX why are some lengths signed, others unsigned? */
359 	if (len <= 0) {
360 		return 0;
361 	}
362 	/* XXX So what is maxphys for us and how do drivers know it? */
363 	if (len > 256*1024) {			/* __get_free_pages() limit */
364 		return 0;
365 	}
366 	return mmu_get_scsi_one(dev, va, len);
367 }
368 
sbus_unmap_page(struct device * dev,dma_addr_t ba,size_t n,enum dma_data_direction dir,struct dma_attrs * attrs)369 static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n,
370 			    enum dma_data_direction dir, struct dma_attrs *attrs)
371 {
372 	mmu_release_scsi_one(dev, ba, n);
373 }
374 
sbus_map_sg(struct device * dev,struct scatterlist * sg,int n,enum dma_data_direction dir,struct dma_attrs * attrs)375 static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n,
376 		       enum dma_data_direction dir, struct dma_attrs *attrs)
377 {
378 	mmu_get_scsi_sgl(dev, sg, n);
379 
380 	/*
381 	 * XXX sparc64 can return a partial length here. sun4c should do this
382 	 * but it currently panics if it can't fulfill the request - Anton
383 	 */
384 	return n;
385 }
386 
sbus_unmap_sg(struct device * dev,struct scatterlist * sg,int n,enum dma_data_direction dir,struct dma_attrs * attrs)387 static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n,
388 			  enum dma_data_direction dir, struct dma_attrs *attrs)
389 {
390 	mmu_release_scsi_sgl(dev, sg, n);
391 }
392 
sbus_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int n,enum dma_data_direction dir)393 static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
394 				 int n,	enum dma_data_direction dir)
395 {
396 	BUG();
397 }
398 
sbus_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int n,enum dma_data_direction dir)399 static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
400 				    int n, enum dma_data_direction dir)
401 {
402 	BUG();
403 }
404 
405 struct dma_map_ops sbus_dma_ops = {
406 	.alloc_coherent		= sbus_alloc_coherent,
407 	.free_coherent		= sbus_free_coherent,
408 	.map_page		= sbus_map_page,
409 	.unmap_page		= sbus_unmap_page,
410 	.map_sg			= sbus_map_sg,
411 	.unmap_sg		= sbus_unmap_sg,
412 	.sync_sg_for_cpu	= sbus_sync_sg_for_cpu,
413 	.sync_sg_for_device	= sbus_sync_sg_for_device,
414 };
415 
sparc_register_ioport(void)416 static int __init sparc_register_ioport(void)
417 {
418 	register_proc_sparc_ioport();
419 
420 	return 0;
421 }
422 
423 arch_initcall(sparc_register_ioport);
424 
425 #endif /* CONFIG_SBUS */
426 
427 
428 /* LEON reuses PCI DMA ops */
429 #if defined(CONFIG_PCI) || defined(CONFIG_SPARC_LEON)
430 
431 /* Allocate and map kernel buffer using consistent mode DMA for a device.
432  * hwdev should be valid struct pci_dev pointer for PCI devices.
433  */
pci32_alloc_coherent(struct device * dev,size_t len,dma_addr_t * pba,gfp_t gfp)434 static void *pci32_alloc_coherent(struct device *dev, size_t len,
435 				  dma_addr_t *pba, gfp_t gfp)
436 {
437 	unsigned long len_total = PAGE_ALIGN(len);
438 	void *va;
439 	struct resource *res;
440 	int order;
441 
442 	if (len == 0) {
443 		return NULL;
444 	}
445 	if (len > 256*1024) {			/* __get_free_pages() limit */
446 		return NULL;
447 	}
448 
449 	order = get_order(len_total);
450 	va = (void *) __get_free_pages(GFP_KERNEL, order);
451 	if (va == NULL) {
452 		printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT);
453 		goto err_nopages;
454 	}
455 
456 	if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
457 		printk("pci_alloc_consistent: no core\n");
458 		goto err_nomem;
459 	}
460 
461 	if (allocate_resource(&_sparc_dvma, res, len_total,
462 	    _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
463 		printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total);
464 		goto err_nova;
465 	}
466 	mmu_inval_dma_area(va, len_total);
467 	sparc_mapiorange(0, virt_to_phys(va), res->start, len_total);
468 
469 	*pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */
470 	return (void *) res->start;
471 
472 err_nova:
473 	kfree(res);
474 err_nomem:
475 	free_pages((unsigned long)va, order);
476 err_nopages:
477 	return NULL;
478 }
479 
480 /* Free and unmap a consistent DMA buffer.
481  * cpu_addr is what was returned from pci_alloc_consistent,
482  * size must be the same as what as passed into pci_alloc_consistent,
483  * and likewise dma_addr must be the same as what *dma_addrp was set to.
484  *
485  * References to the memory and mappings associated with cpu_addr/dma_addr
486  * past this call are illegal.
487  */
pci32_free_coherent(struct device * dev,size_t n,void * p,dma_addr_t ba)488 static void pci32_free_coherent(struct device *dev, size_t n, void *p,
489 				dma_addr_t ba)
490 {
491 	struct resource *res;
492 	void *pgp;
493 
494 	if ((res = _sparc_find_resource(&_sparc_dvma,
495 	    (unsigned long)p)) == NULL) {
496 		printk("pci_free_consistent: cannot free %p\n", p);
497 		return;
498 	}
499 
500 	if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
501 		printk("pci_free_consistent: unaligned va %p\n", p);
502 		return;
503 	}
504 
505 	n = PAGE_ALIGN(n);
506 	if ((res->end-res->start)+1 != n) {
507 		printk("pci_free_consistent: region 0x%lx asked 0x%lx\n",
508 		    (long)((res->end-res->start)+1), (long)n);
509 		return;
510 	}
511 
512 	pgp = phys_to_virt(ba);	/* bus_to_virt actually */
513 	mmu_inval_dma_area(pgp, n);
514 	sparc_unmapiorange((unsigned long)p, n);
515 
516 	release_resource(res);
517 	kfree(res);
518 
519 	free_pages((unsigned long)pgp, get_order(n));
520 }
521 
522 /*
523  * Same as pci_map_single, but with pages.
524  */
pci32_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)525 static dma_addr_t pci32_map_page(struct device *dev, struct page *page,
526 				 unsigned long offset, size_t size,
527 				 enum dma_data_direction dir,
528 				 struct dma_attrs *attrs)
529 {
530 	/* IIep is write-through, not flushing. */
531 	return page_to_phys(page) + offset;
532 }
533 
pci32_unmap_page(struct device * dev,dma_addr_t ba,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)534 static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size,
535 			     enum dma_data_direction dir, struct dma_attrs *attrs)
536 {
537 	if (dir != PCI_DMA_TODEVICE)
538 		mmu_inval_dma_area(phys_to_virt(ba), PAGE_ALIGN(size));
539 }
540 
541 /* Map a set of buffers described by scatterlist in streaming
542  * mode for DMA.  This is the scather-gather version of the
543  * above pci_map_single interface.  Here the scatter gather list
544  * elements are each tagged with the appropriate dma address
545  * and length.  They are obtained via sg_dma_{address,length}(SG).
546  *
547  * NOTE: An implementation may be able to use a smaller number of
548  *       DMA address/length pairs than there are SG table elements.
549  *       (for example via virtual mapping capabilities)
550  *       The routine returns the number of addr/length pairs actually
551  *       used, at most nents.
552  *
553  * Device ownership issues as mentioned above for pci_map_single are
554  * the same here.
555  */
pci32_map_sg(struct device * device,struct scatterlist * sgl,int nents,enum dma_data_direction dir,struct dma_attrs * attrs)556 static int pci32_map_sg(struct device *device, struct scatterlist *sgl,
557 			int nents, enum dma_data_direction dir,
558 			struct dma_attrs *attrs)
559 {
560 	struct scatterlist *sg;
561 	int n;
562 
563 	/* IIep is write-through, not flushing. */
564 	for_each_sg(sgl, sg, nents, n) {
565 		BUG_ON(page_address(sg_page(sg)) == NULL);
566 		sg->dma_address = virt_to_phys(sg_virt(sg));
567 		sg->dma_length = sg->length;
568 	}
569 	return nents;
570 }
571 
572 /* Unmap a set of streaming mode DMA translations.
573  * Again, cpu read rules concerning calls here are the same as for
574  * pci_unmap_single() above.
575  */
pci32_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,struct dma_attrs * attrs)576 static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl,
577 			   int nents, enum dma_data_direction dir,
578 			   struct dma_attrs *attrs)
579 {
580 	struct scatterlist *sg;
581 	int n;
582 
583 	if (dir != PCI_DMA_TODEVICE) {
584 		for_each_sg(sgl, sg, nents, n) {
585 			BUG_ON(page_address(sg_page(sg)) == NULL);
586 			mmu_inval_dma_area(page_address(sg_page(sg)),
587 					   PAGE_ALIGN(sg->length));
588 		}
589 	}
590 }
591 
592 /* Make physical memory consistent for a single
593  * streaming mode DMA translation before or after a transfer.
594  *
595  * If you perform a pci_map_single() but wish to interrogate the
596  * buffer using the cpu, yet do not wish to teardown the PCI dma
597  * mapping, you must call this function before doing so.  At the
598  * next point you give the PCI dma address back to the card, you
599  * must first perform a pci_dma_sync_for_device, and then the
600  * device again owns the buffer.
601  */
pci32_sync_single_for_cpu(struct device * dev,dma_addr_t ba,size_t size,enum dma_data_direction dir)602 static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
603 				      size_t size, enum dma_data_direction dir)
604 {
605 	if (dir != PCI_DMA_TODEVICE) {
606 		mmu_inval_dma_area(phys_to_virt(ba),
607 				   PAGE_ALIGN(size));
608 	}
609 }
610 
pci32_sync_single_for_device(struct device * dev,dma_addr_t ba,size_t size,enum dma_data_direction dir)611 static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba,
612 					 size_t size, enum dma_data_direction dir)
613 {
614 	if (dir != PCI_DMA_TODEVICE) {
615 		mmu_inval_dma_area(phys_to_virt(ba),
616 				   PAGE_ALIGN(size));
617 	}
618 }
619 
620 /* Make physical memory consistent for a set of streaming
621  * mode DMA translations after a transfer.
622  *
623  * The same as pci_dma_sync_single_* but for a scatter-gather list,
624  * same rules and usage.
625  */
pci32_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)626 static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
627 				  int nents, enum dma_data_direction dir)
628 {
629 	struct scatterlist *sg;
630 	int n;
631 
632 	if (dir != PCI_DMA_TODEVICE) {
633 		for_each_sg(sgl, sg, nents, n) {
634 			BUG_ON(page_address(sg_page(sg)) == NULL);
635 			mmu_inval_dma_area(page_address(sg_page(sg)),
636 					   PAGE_ALIGN(sg->length));
637 		}
638 	}
639 }
640 
pci32_sync_sg_for_device(struct device * device,struct scatterlist * sgl,int nents,enum dma_data_direction dir)641 static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl,
642 				     int nents, enum dma_data_direction dir)
643 {
644 	struct scatterlist *sg;
645 	int n;
646 
647 	if (dir != PCI_DMA_TODEVICE) {
648 		for_each_sg(sgl, sg, nents, n) {
649 			BUG_ON(page_address(sg_page(sg)) == NULL);
650 			mmu_inval_dma_area(page_address(sg_page(sg)),
651 					   PAGE_ALIGN(sg->length));
652 		}
653 	}
654 }
655 
656 struct dma_map_ops pci32_dma_ops = {
657 	.alloc_coherent		= pci32_alloc_coherent,
658 	.free_coherent		= pci32_free_coherent,
659 	.map_page		= pci32_map_page,
660 	.unmap_page		= pci32_unmap_page,
661 	.map_sg			= pci32_map_sg,
662 	.unmap_sg		= pci32_unmap_sg,
663 	.sync_single_for_cpu	= pci32_sync_single_for_cpu,
664 	.sync_single_for_device	= pci32_sync_single_for_device,
665 	.sync_sg_for_cpu	= pci32_sync_sg_for_cpu,
666 	.sync_sg_for_device	= pci32_sync_sg_for_device,
667 };
668 EXPORT_SYMBOL(pci32_dma_ops);
669 
670 #endif /* CONFIG_PCI || CONFIG_SPARC_LEON */
671 
672 #ifdef CONFIG_SPARC_LEON
673 struct dma_map_ops *dma_ops = &pci32_dma_ops;
674 #elif defined(CONFIG_SBUS)
675 struct dma_map_ops *dma_ops = &sbus_dma_ops;
676 #endif
677 
678 EXPORT_SYMBOL(dma_ops);
679 
680 
681 /*
682  * Return whether the given PCI device DMA address mask can be
683  * supported properly.  For example, if your device can only drive the
684  * low 24-bits during PCI bus mastering, then you would pass
685  * 0x00ffffff as the mask to this function.
686  */
dma_supported(struct device * dev,u64 mask)687 int dma_supported(struct device *dev, u64 mask)
688 {
689 #ifdef CONFIG_PCI
690 	if (dev->bus == &pci_bus_type)
691 		return 1;
692 #endif
693 	return 0;
694 }
695 EXPORT_SYMBOL(dma_supported);
696 
697 #ifdef CONFIG_PROC_FS
698 
sparc_io_proc_show(struct seq_file * m,void * v)699 static int sparc_io_proc_show(struct seq_file *m, void *v)
700 {
701 	struct resource *root = m->private, *r;
702 	const char *nm;
703 
704 	for (r = root->child; r != NULL; r = r->sibling) {
705 		if ((nm = r->name) == 0) nm = "???";
706 		seq_printf(m, "%016llx-%016llx: %s\n",
707 				(unsigned long long)r->start,
708 				(unsigned long long)r->end, nm);
709 	}
710 
711 	return 0;
712 }
713 
sparc_io_proc_open(struct inode * inode,struct file * file)714 static int sparc_io_proc_open(struct inode *inode, struct file *file)
715 {
716 	return single_open(file, sparc_io_proc_show, PDE(inode)->data);
717 }
718 
719 static const struct file_operations sparc_io_proc_fops = {
720 	.owner		= THIS_MODULE,
721 	.open		= sparc_io_proc_open,
722 	.read		= seq_read,
723 	.llseek		= seq_lseek,
724 	.release	= single_release,
725 };
726 #endif /* CONFIG_PROC_FS */
727 
728 /*
729  * This is a version of find_resource and it belongs to kernel/resource.c.
730  * Until we have agreement with Linus and Martin, it lingers here.
731  *
732  * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
733  * This probably warrants some sort of hashing.
734  */
_sparc_find_resource(struct resource * root,unsigned long hit)735 static struct resource *_sparc_find_resource(struct resource *root,
736 					     unsigned long hit)
737 {
738 	struct resource *tmp;
739 
740 	for (tmp = root->child; tmp != 0; tmp = tmp->sibling) {
741 		if (tmp->start <= hit && tmp->end >= hit)
742 			return tmp;
743 	}
744 	return NULL;
745 }
746 
register_proc_sparc_ioport(void)747 static void register_proc_sparc_ioport(void)
748 {
749 #ifdef CONFIG_PROC_FS
750 	proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap);
751 	proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma);
752 #endif
753 }
754