1 /*
2  *  arch/s390/mm/vmem.c
3  *
4  *    Copyright IBM Corp. 2006
5  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
6  */
7 
8 #include <linux/bootmem.h>
9 #include <linux/pfn.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/hugetlb.h>
14 #include <linux/slab.h>
15 #include <asm/pgalloc.h>
16 #include <asm/pgtable.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/sections.h>
20 
21 static DEFINE_MUTEX(vmem_mutex);
22 
23 struct memory_segment {
24 	struct list_head list;
25 	unsigned long start;
26 	unsigned long size;
27 };
28 
29 static LIST_HEAD(mem_segs);
30 
vmem_alloc_pages(unsigned int order)31 static void __ref *vmem_alloc_pages(unsigned int order)
32 {
33 	if (slab_is_available())
34 		return (void *)__get_free_pages(GFP_KERNEL, order);
35 	return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
36 }
37 
vmem_pud_alloc(void)38 static inline pud_t *vmem_pud_alloc(void)
39 {
40 	pud_t *pud = NULL;
41 
42 #ifdef CONFIG_64BIT
43 	pud = vmem_alloc_pages(2);
44 	if (!pud)
45 		return NULL;
46 	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
47 #endif
48 	return pud;
49 }
50 
vmem_pmd_alloc(void)51 static inline pmd_t *vmem_pmd_alloc(void)
52 {
53 	pmd_t *pmd = NULL;
54 
55 #ifdef CONFIG_64BIT
56 	pmd = vmem_alloc_pages(2);
57 	if (!pmd)
58 		return NULL;
59 	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
60 #endif
61 	return pmd;
62 }
63 
vmem_pte_alloc(void)64 static pte_t __ref *vmem_pte_alloc(void)
65 {
66 	pte_t *pte;
67 
68 	if (slab_is_available())
69 		pte = (pte_t *) page_table_alloc(&init_mm);
70 	else
71 		pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
72 	if (!pte)
73 		return NULL;
74 	clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
75 		    PTRS_PER_PTE * sizeof(pte_t));
76 	return pte;
77 }
78 
79 /*
80  * Add a physical memory range to the 1:1 mapping.
81  */
vmem_add_mem(unsigned long start,unsigned long size,int ro)82 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
83 {
84 	unsigned long address;
85 	pgd_t *pg_dir;
86 	pud_t *pu_dir;
87 	pmd_t *pm_dir;
88 	pte_t *pt_dir;
89 	pte_t  pte;
90 	int ret = -ENOMEM;
91 
92 	for (address = start; address < start + size; address += PAGE_SIZE) {
93 		pg_dir = pgd_offset_k(address);
94 		if (pgd_none(*pg_dir)) {
95 			pu_dir = vmem_pud_alloc();
96 			if (!pu_dir)
97 				goto out;
98 			pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
99 		}
100 
101 		pu_dir = pud_offset(pg_dir, address);
102 		if (pud_none(*pu_dir)) {
103 			pm_dir = vmem_pmd_alloc();
104 			if (!pm_dir)
105 				goto out;
106 			pud_populate_kernel(&init_mm, pu_dir, pm_dir);
107 		}
108 
109 		pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
110 		pm_dir = pmd_offset(pu_dir, address);
111 
112 #ifdef __s390x__
113 		if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) &&
114 		    (address + HPAGE_SIZE <= start + size) &&
115 		    (address >= HPAGE_SIZE)) {
116 			pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
117 			pmd_val(*pm_dir) = pte_val(pte);
118 			address += HPAGE_SIZE - PAGE_SIZE;
119 			continue;
120 		}
121 #endif
122 		if (pmd_none(*pm_dir)) {
123 			pt_dir = vmem_pte_alloc();
124 			if (!pt_dir)
125 				goto out;
126 			pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
127 		}
128 
129 		pt_dir = pte_offset_kernel(pm_dir, address);
130 		*pt_dir = pte;
131 	}
132 	ret = 0;
133 out:
134 	flush_tlb_kernel_range(start, start + size);
135 	return ret;
136 }
137 
138 /*
139  * Remove a physical memory range from the 1:1 mapping.
140  * Currently only invalidates page table entries.
141  */
vmem_remove_range(unsigned long start,unsigned long size)142 static void vmem_remove_range(unsigned long start, unsigned long size)
143 {
144 	unsigned long address;
145 	pgd_t *pg_dir;
146 	pud_t *pu_dir;
147 	pmd_t *pm_dir;
148 	pte_t *pt_dir;
149 	pte_t  pte;
150 
151 	pte_val(pte) = _PAGE_TYPE_EMPTY;
152 	for (address = start; address < start + size; address += PAGE_SIZE) {
153 		pg_dir = pgd_offset_k(address);
154 		pu_dir = pud_offset(pg_dir, address);
155 		if (pud_none(*pu_dir))
156 			continue;
157 		pm_dir = pmd_offset(pu_dir, address);
158 		if (pmd_none(*pm_dir))
159 			continue;
160 
161 		if (pmd_huge(*pm_dir)) {
162 			pmd_clear_kernel(pm_dir);
163 			address += HPAGE_SIZE - PAGE_SIZE;
164 			continue;
165 		}
166 
167 		pt_dir = pte_offset_kernel(pm_dir, address);
168 		*pt_dir = pte;
169 	}
170 	flush_tlb_kernel_range(start, start + size);
171 }
172 
173 /*
174  * Add a backed mem_map array to the virtual mem_map array.
175  */
vmemmap_populate(struct page * start,unsigned long nr,int node)176 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
177 {
178 	unsigned long address, start_addr, end_addr;
179 	pgd_t *pg_dir;
180 	pud_t *pu_dir;
181 	pmd_t *pm_dir;
182 	pte_t *pt_dir;
183 	pte_t  pte;
184 	int ret = -ENOMEM;
185 
186 	start_addr = (unsigned long) start;
187 	end_addr = (unsigned long) (start + nr);
188 
189 	for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
190 		pg_dir = pgd_offset_k(address);
191 		if (pgd_none(*pg_dir)) {
192 			pu_dir = vmem_pud_alloc();
193 			if (!pu_dir)
194 				goto out;
195 			pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
196 		}
197 
198 		pu_dir = pud_offset(pg_dir, address);
199 		if (pud_none(*pu_dir)) {
200 			pm_dir = vmem_pmd_alloc();
201 			if (!pm_dir)
202 				goto out;
203 			pud_populate_kernel(&init_mm, pu_dir, pm_dir);
204 		}
205 
206 		pm_dir = pmd_offset(pu_dir, address);
207 		if (pmd_none(*pm_dir)) {
208 			pt_dir = vmem_pte_alloc();
209 			if (!pt_dir)
210 				goto out;
211 			pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
212 		}
213 
214 		pt_dir = pte_offset_kernel(pm_dir, address);
215 		if (pte_none(*pt_dir)) {
216 			unsigned long new_page;
217 
218 			new_page =__pa(vmem_alloc_pages(0));
219 			if (!new_page)
220 				goto out;
221 			pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
222 			*pt_dir = pte;
223 		}
224 	}
225 	memset(start, 0, nr * sizeof(struct page));
226 	ret = 0;
227 out:
228 	flush_tlb_kernel_range(start_addr, end_addr);
229 	return ret;
230 }
231 
232 /*
233  * Add memory segment to the segment list if it doesn't overlap with
234  * an already present segment.
235  */
insert_memory_segment(struct memory_segment * seg)236 static int insert_memory_segment(struct memory_segment *seg)
237 {
238 	struct memory_segment *tmp;
239 
240 	if (seg->start + seg->size > VMEM_MAX_PHYS ||
241 	    seg->start + seg->size < seg->start)
242 		return -ERANGE;
243 
244 	list_for_each_entry(tmp, &mem_segs, list) {
245 		if (seg->start >= tmp->start + tmp->size)
246 			continue;
247 		if (seg->start + seg->size <= tmp->start)
248 			continue;
249 		return -ENOSPC;
250 	}
251 	list_add(&seg->list, &mem_segs);
252 	return 0;
253 }
254 
255 /*
256  * Remove memory segment from the segment list.
257  */
remove_memory_segment(struct memory_segment * seg)258 static void remove_memory_segment(struct memory_segment *seg)
259 {
260 	list_del(&seg->list);
261 }
262 
__remove_shared_memory(struct memory_segment * seg)263 static void __remove_shared_memory(struct memory_segment *seg)
264 {
265 	remove_memory_segment(seg);
266 	vmem_remove_range(seg->start, seg->size);
267 }
268 
vmem_remove_mapping(unsigned long start,unsigned long size)269 int vmem_remove_mapping(unsigned long start, unsigned long size)
270 {
271 	struct memory_segment *seg;
272 	int ret;
273 
274 	mutex_lock(&vmem_mutex);
275 
276 	ret = -ENOENT;
277 	list_for_each_entry(seg, &mem_segs, list) {
278 		if (seg->start == start && seg->size == size)
279 			break;
280 	}
281 
282 	if (seg->start != start || seg->size != size)
283 		goto out;
284 
285 	ret = 0;
286 	__remove_shared_memory(seg);
287 	kfree(seg);
288 out:
289 	mutex_unlock(&vmem_mutex);
290 	return ret;
291 }
292 
vmem_add_mapping(unsigned long start,unsigned long size)293 int vmem_add_mapping(unsigned long start, unsigned long size)
294 {
295 	struct memory_segment *seg;
296 	int ret;
297 
298 	mutex_lock(&vmem_mutex);
299 	ret = -ENOMEM;
300 	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
301 	if (!seg)
302 		goto out;
303 	seg->start = start;
304 	seg->size = size;
305 
306 	ret = insert_memory_segment(seg);
307 	if (ret)
308 		goto out_free;
309 
310 	ret = vmem_add_mem(start, size, 0);
311 	if (ret)
312 		goto out_remove;
313 	goto out;
314 
315 out_remove:
316 	__remove_shared_memory(seg);
317 out_free:
318 	kfree(seg);
319 out:
320 	mutex_unlock(&vmem_mutex);
321 	return ret;
322 }
323 
324 /*
325  * map whole physical memory to virtual memory (identity mapping)
326  * we reserve enough space in the vmalloc area for vmemmap to hotplug
327  * additional memory segments.
328  */
vmem_map_init(void)329 void __init vmem_map_init(void)
330 {
331 	unsigned long ro_start, ro_end;
332 	unsigned long start, end;
333 	int i;
334 
335 	ro_start = ((unsigned long)&_stext) & PAGE_MASK;
336 	ro_end = PFN_ALIGN((unsigned long)&_eshared);
337 	for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
338 		start = memory_chunk[i].addr;
339 		end = memory_chunk[i].addr + memory_chunk[i].size;
340 		if (start >= ro_end || end <= ro_start)
341 			vmem_add_mem(start, end - start, 0);
342 		else if (start >= ro_start && end <= ro_end)
343 			vmem_add_mem(start, end - start, 1);
344 		else if (start >= ro_start) {
345 			vmem_add_mem(start, ro_end - start, 1);
346 			vmem_add_mem(ro_end, end - ro_end, 0);
347 		} else if (end < ro_end) {
348 			vmem_add_mem(start, ro_start - start, 0);
349 			vmem_add_mem(ro_start, end - ro_start, 1);
350 		} else {
351 			vmem_add_mem(start, ro_start - start, 0);
352 			vmem_add_mem(ro_start, ro_end - ro_start, 1);
353 			vmem_add_mem(ro_end, end - ro_end, 0);
354 		}
355 	}
356 }
357 
358 /*
359  * Convert memory chunk array to a memory segment list so there is a single
360  * list that contains both r/w memory and shared memory segments.
361  */
vmem_convert_memory_chunk(void)362 static int __init vmem_convert_memory_chunk(void)
363 {
364 	struct memory_segment *seg;
365 	int i;
366 
367 	mutex_lock(&vmem_mutex);
368 	for (i = 0; i < MEMORY_CHUNKS; i++) {
369 		if (!memory_chunk[i].size)
370 			continue;
371 		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
372 		if (!seg)
373 			panic("Out of memory...\n");
374 		seg->start = memory_chunk[i].addr;
375 		seg->size = memory_chunk[i].size;
376 		insert_memory_segment(seg);
377 	}
378 	mutex_unlock(&vmem_mutex);
379 	return 0;
380 }
381 
382 core_initcall(vmem_convert_memory_chunk);
383