1 /*
2  * PowerPC64 Segment Translation Support.
3  *
4  * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
5  *    Copyright (c) 2001 Dave Engebretsen
6  *
7  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
8  *
9  *      This program is free software; you can redistribute it and/or
10  *      modify it under the terms of the GNU General Public License
11  *      as published by the Free Software Foundation; either version
12  *      2 of the License, or (at your option) any later version.
13  */
14 
15 #include <linux/memblock.h>
16 
17 #include <asm/pgtable.h>
18 #include <asm/mmu.h>
19 #include <asm/mmu_context.h>
20 #include <asm/paca.h>
21 #include <asm/cputable.h>
22 #include <asm/prom.h>
23 #include <asm/abs_addr.h>
24 #include <asm/firmware.h>
25 #include <asm/iseries/hv_call.h>
26 
27 struct stab_entry {
28 	unsigned long esid_data;
29 	unsigned long vsid_data;
30 };
31 
32 #define NR_STAB_CACHE_ENTRIES 8
33 static DEFINE_PER_CPU(long, stab_cache_ptr);
34 static DEFINE_PER_CPU(long [NR_STAB_CACHE_ENTRIES], stab_cache);
35 
36 /*
37  * Create a segment table entry for the given esid/vsid pair.
38  */
make_ste(unsigned long stab,unsigned long esid,unsigned long vsid)39 static int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid)
40 {
41 	unsigned long esid_data, vsid_data;
42 	unsigned long entry, group, old_esid, castout_entry, i;
43 	unsigned int global_entry;
44 	struct stab_entry *ste, *castout_ste;
45 	unsigned long kernel_segment = (esid << SID_SHIFT) >= PAGE_OFFSET;
46 
47 	vsid_data = vsid << STE_VSID_SHIFT;
48 	esid_data = esid << SID_SHIFT | STE_ESID_KP | STE_ESID_V;
49 	if (! kernel_segment)
50 		esid_data |= STE_ESID_KS;
51 
52 	/* Search the primary group first. */
53 	global_entry = (esid & 0x1f) << 3;
54 	ste = (struct stab_entry *)(stab | ((esid & 0x1f) << 7));
55 
56 	/* Find an empty entry, if one exists. */
57 	for (group = 0; group < 2; group++) {
58 		for (entry = 0; entry < 8; entry++, ste++) {
59 			if (!(ste->esid_data & STE_ESID_V)) {
60 				ste->vsid_data = vsid_data;
61 				eieio();
62 				ste->esid_data = esid_data;
63 				return (global_entry | entry);
64 			}
65 		}
66 		/* Now search the secondary group. */
67 		global_entry = ((~esid) & 0x1f) << 3;
68 		ste = (struct stab_entry *)(stab | (((~esid) & 0x1f) << 7));
69 	}
70 
71 	/*
72 	 * Could not find empty entry, pick one with a round robin selection.
73 	 * Search all entries in the two groups.
74 	 */
75 	castout_entry = get_paca()->stab_rr;
76 	for (i = 0; i < 16; i++) {
77 		if (castout_entry < 8) {
78 			global_entry = (esid & 0x1f) << 3;
79 			ste = (struct stab_entry *)(stab | ((esid & 0x1f) << 7));
80 			castout_ste = ste + castout_entry;
81 		} else {
82 			global_entry = ((~esid) & 0x1f) << 3;
83 			ste = (struct stab_entry *)(stab | (((~esid) & 0x1f) << 7));
84 			castout_ste = ste + (castout_entry - 8);
85 		}
86 
87 		/* Dont cast out the first kernel segment */
88 		if ((castout_ste->esid_data & ESID_MASK) != PAGE_OFFSET)
89 			break;
90 
91 		castout_entry = (castout_entry + 1) & 0xf;
92 	}
93 
94 	get_paca()->stab_rr = (castout_entry + 1) & 0xf;
95 
96 	/* Modify the old entry to the new value. */
97 
98 	/* Force previous translations to complete. DRENG */
99 	asm volatile("isync" : : : "memory");
100 
101 	old_esid = castout_ste->esid_data >> SID_SHIFT;
102 	castout_ste->esid_data = 0;		/* Invalidate old entry */
103 
104 	asm volatile("sync" : : : "memory");    /* Order update */
105 
106 	castout_ste->vsid_data = vsid_data;
107 	eieio();				/* Order update */
108 	castout_ste->esid_data = esid_data;
109 
110 	asm volatile("slbie  %0" : : "r" (old_esid << SID_SHIFT));
111 	/* Ensure completion of slbie */
112 	asm volatile("sync" : : : "memory");
113 
114 	return (global_entry | (castout_entry & 0x7));
115 }
116 
117 /*
118  * Allocate a segment table entry for the given ea and mm
119  */
__ste_allocate(unsigned long ea,struct mm_struct * mm)120 static int __ste_allocate(unsigned long ea, struct mm_struct *mm)
121 {
122 	unsigned long vsid;
123 	unsigned char stab_entry;
124 	unsigned long offset;
125 
126 	/* Kernel or user address? */
127 	if (is_kernel_addr(ea)) {
128 		vsid = get_kernel_vsid(ea, MMU_SEGSIZE_256M);
129 	} else {
130 		if ((ea >= TASK_SIZE_USER64) || (! mm))
131 			return 1;
132 
133 		vsid = get_vsid(mm->context.id, ea, MMU_SEGSIZE_256M);
134 	}
135 
136 	stab_entry = make_ste(get_paca()->stab_addr, GET_ESID(ea), vsid);
137 
138 	if (!is_kernel_addr(ea)) {
139 		offset = __get_cpu_var(stab_cache_ptr);
140 		if (offset < NR_STAB_CACHE_ENTRIES)
141 			__get_cpu_var(stab_cache[offset++]) = stab_entry;
142 		else
143 			offset = NR_STAB_CACHE_ENTRIES+1;
144 		__get_cpu_var(stab_cache_ptr) = offset;
145 
146 		/* Order update */
147 		asm volatile("sync":::"memory");
148 	}
149 
150 	return 0;
151 }
152 
ste_allocate(unsigned long ea)153 int ste_allocate(unsigned long ea)
154 {
155 	return __ste_allocate(ea, current->mm);
156 }
157 
158 /*
159  * Do the segment table work for a context switch: flush all user
160  * entries from the table, then preload some probably useful entries
161  * for the new task
162  */
switch_stab(struct task_struct * tsk,struct mm_struct * mm)163 void switch_stab(struct task_struct *tsk, struct mm_struct *mm)
164 {
165 	struct stab_entry *stab = (struct stab_entry *) get_paca()->stab_addr;
166 	struct stab_entry *ste;
167 	unsigned long offset;
168 	unsigned long pc = KSTK_EIP(tsk);
169 	unsigned long stack = KSTK_ESP(tsk);
170 	unsigned long unmapped_base;
171 
172 	/* Force previous translations to complete. DRENG */
173 	asm volatile("isync" : : : "memory");
174 
175 	/*
176 	 * We need interrupts hard-disabled here, not just soft-disabled,
177 	 * so that a PMU interrupt can't occur, which might try to access
178 	 * user memory (to get a stack trace) and possible cause an STAB miss
179 	 * which would update the stab_cache/stab_cache_ptr per-cpu variables.
180 	 */
181 	hard_irq_disable();
182 
183 	offset = __get_cpu_var(stab_cache_ptr);
184 	if (offset <= NR_STAB_CACHE_ENTRIES) {
185 		int i;
186 
187 		for (i = 0; i < offset; i++) {
188 			ste = stab + __get_cpu_var(stab_cache[i]);
189 			ste->esid_data = 0; /* invalidate entry */
190 		}
191 	} else {
192 		unsigned long entry;
193 
194 		/* Invalidate all entries. */
195 		ste = stab;
196 
197 		/* Never flush the first entry. */
198 		ste += 1;
199 		for (entry = 1;
200 		     entry < (HW_PAGE_SIZE / sizeof(struct stab_entry));
201 		     entry++, ste++) {
202 			unsigned long ea;
203 			ea = ste->esid_data & ESID_MASK;
204 			if (!is_kernel_addr(ea)) {
205 				ste->esid_data = 0;
206 			}
207 		}
208 	}
209 
210 	asm volatile("sync; slbia; sync":::"memory");
211 
212 	__get_cpu_var(stab_cache_ptr) = 0;
213 
214 	/* Now preload some entries for the new task */
215 	if (test_tsk_thread_flag(tsk, TIF_32BIT))
216 		unmapped_base = TASK_UNMAPPED_BASE_USER32;
217 	else
218 		unmapped_base = TASK_UNMAPPED_BASE_USER64;
219 
220 	__ste_allocate(pc, mm);
221 
222 	if (GET_ESID(pc) == GET_ESID(stack))
223 		return;
224 
225 	__ste_allocate(stack, mm);
226 
227 	if ((GET_ESID(pc) == GET_ESID(unmapped_base))
228 	    || (GET_ESID(stack) == GET_ESID(unmapped_base)))
229 		return;
230 
231 	__ste_allocate(unmapped_base, mm);
232 
233 	/* Order update */
234 	asm volatile("sync" : : : "memory");
235 }
236 
237 /*
238  * Allocate segment tables for secondary CPUs.  These must all go in
239  * the first (bolted) segment, so that do_stab_bolted won't get a
240  * recursive segment miss on the segment table itself.
241  */
stabs_alloc(void)242 void __init stabs_alloc(void)
243 {
244 	int cpu;
245 
246 	if (cpu_has_feature(CPU_FTR_SLB))
247 		return;
248 
249 	for_each_possible_cpu(cpu) {
250 		unsigned long newstab;
251 
252 		if (cpu == 0)
253 			continue; /* stab for CPU 0 is statically allocated */
254 
255 		newstab = memblock_alloc_base(HW_PAGE_SIZE, HW_PAGE_SIZE,
256 					 1<<SID_SHIFT);
257 		newstab = (unsigned long)__va(newstab);
258 
259 		memset((void *)newstab, 0, HW_PAGE_SIZE);
260 
261 		paca[cpu].stab_addr = newstab;
262 		paca[cpu].stab_real = virt_to_abs(newstab);
263 		printk(KERN_INFO "Segment table for CPU %d at 0x%llx "
264 		       "virtual, 0x%llx absolute\n",
265 		       cpu, paca[cpu].stab_addr, paca[cpu].stab_real);
266 	}
267 }
268 
269 /*
270  * Build an entry for the base kernel segment and put it into
271  * the segment table or SLB.  All other segment table or SLB
272  * entries are faulted in.
273  */
stab_initialize(unsigned long stab)274 void stab_initialize(unsigned long stab)
275 {
276 	unsigned long vsid = get_kernel_vsid(PAGE_OFFSET, MMU_SEGSIZE_256M);
277 	unsigned long stabreal;
278 
279 	asm volatile("isync; slbia; isync":::"memory");
280 	make_ste(stab, GET_ESID(PAGE_OFFSET), vsid);
281 
282 	/* Order update */
283 	asm volatile("sync":::"memory");
284 
285 	/* Set ASR */
286 	stabreal = get_paca()->stab_real | 0x1ul;
287 
288 #ifdef CONFIG_PPC_ISERIES
289 	if (firmware_has_feature(FW_FEATURE_ISERIES)) {
290 		HvCall1(HvCallBaseSetASR, stabreal);
291 		return;
292 	}
293 #endif /* CONFIG_PPC_ISERIES */
294 
295 	mtspr(SPRN_ASR, stabreal);
296 }
297