1 /*
2  * SMP support for ppc.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5  * deal of code from the sparc and intel versions.
6  *
7  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
8  *
9  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  */
17 
18 #undef DEBUG
19 
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/spinlock.h>
28 #include <linux/cache.h>
29 #include <linux/err.h>
30 #include <linux/sysdev.h>
31 #include <linux/cpu.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 
35 #include <asm/ptrace.h>
36 #include <asm/atomic.h>
37 #include <asm/irq.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/prom.h>
41 #include <asm/smp.h>
42 #include <asm/time.h>
43 #include <asm/machdep.h>
44 #include <asm/cputhreads.h>
45 #include <asm/cputable.h>
46 #include <asm/system.h>
47 #include <asm/mpic.h>
48 #include <asm/vdso_datapage.h>
49 #ifdef CONFIG_PPC64
50 #include <asm/paca.h>
51 #endif
52 
53 #ifdef DEBUG
54 #include <asm/udbg.h>
55 #define DBG(fmt...) udbg_printf(fmt)
56 #else
57 #define DBG(fmt...)
58 #endif
59 
60 
61 /* Store all idle threads, this can be reused instead of creating
62 * a new thread. Also avoids complicated thread destroy functionality
63 * for idle threads.
64 */
65 #ifdef CONFIG_HOTPLUG_CPU
66 /*
67  * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is
68  * removed after init for !CONFIG_HOTPLUG_CPU.
69  */
70 static DEFINE_PER_CPU(struct task_struct *, idle_thread_array);
71 #define get_idle_for_cpu(x)      (per_cpu(idle_thread_array, x))
72 #define set_idle_for_cpu(x, p)   (per_cpu(idle_thread_array, x) = (p))
73 #else
74 static struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
75 #define get_idle_for_cpu(x)      (idle_thread_array[(x)])
76 #define set_idle_for_cpu(x, p)   (idle_thread_array[(x)] = (p))
77 #endif
78 
79 struct thread_info *secondary_ti;
80 
81 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
82 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
83 
84 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
85 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
86 
87 /* SMP operations for this machine */
88 struct smp_ops_t *smp_ops;
89 
90 /* Can't be static due to PowerMac hackery */
91 volatile unsigned int cpu_callin_map[NR_CPUS];
92 
93 int smt_enabled_at_boot = 1;
94 
95 static void (*crash_ipi_function_ptr)(struct pt_regs *) = NULL;
96 
97 #ifdef CONFIG_PPC64
smp_generic_kick_cpu(int nr)98 void __devinit smp_generic_kick_cpu(int nr)
99 {
100 	BUG_ON(nr < 0 || nr >= NR_CPUS);
101 
102 	/*
103 	 * The processor is currently spinning, waiting for the
104 	 * cpu_start field to become non-zero After we set cpu_start,
105 	 * the processor will continue on to secondary_start
106 	 */
107 	paca[nr].cpu_start = 1;
108 	smp_mb();
109 }
110 #endif
111 
smp_message_recv(int msg)112 void smp_message_recv(int msg)
113 {
114 	switch(msg) {
115 	case PPC_MSG_CALL_FUNCTION:
116 		generic_smp_call_function_interrupt();
117 		break;
118 	case PPC_MSG_RESCHEDULE:
119 		/* we notice need_resched on exit */
120 		break;
121 	case PPC_MSG_CALL_FUNC_SINGLE:
122 		generic_smp_call_function_single_interrupt();
123 		break;
124 	case PPC_MSG_DEBUGGER_BREAK:
125 		if (crash_ipi_function_ptr) {
126 			crash_ipi_function_ptr(get_irq_regs());
127 			break;
128 		}
129 #ifdef CONFIG_DEBUGGER
130 		debugger_ipi(get_irq_regs());
131 		break;
132 #endif /* CONFIG_DEBUGGER */
133 		/* FALLTHROUGH */
134 	default:
135 		printk("SMP %d: smp_message_recv(): unknown msg %d\n",
136 		       smp_processor_id(), msg);
137 		break;
138 	}
139 }
140 
call_function_action(int irq,void * data)141 static irqreturn_t call_function_action(int irq, void *data)
142 {
143 	generic_smp_call_function_interrupt();
144 	return IRQ_HANDLED;
145 }
146 
reschedule_action(int irq,void * data)147 static irqreturn_t reschedule_action(int irq, void *data)
148 {
149 	/* we just need the return path side effect of checking need_resched */
150 	return IRQ_HANDLED;
151 }
152 
call_function_single_action(int irq,void * data)153 static irqreturn_t call_function_single_action(int irq, void *data)
154 {
155 	generic_smp_call_function_single_interrupt();
156 	return IRQ_HANDLED;
157 }
158 
debug_ipi_action(int irq,void * data)159 static irqreturn_t debug_ipi_action(int irq, void *data)
160 {
161 	smp_message_recv(PPC_MSG_DEBUGGER_BREAK);
162 	return IRQ_HANDLED;
163 }
164 
165 static irq_handler_t smp_ipi_action[] = {
166 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
167 	[PPC_MSG_RESCHEDULE] = reschedule_action,
168 	[PPC_MSG_CALL_FUNC_SINGLE] = call_function_single_action,
169 	[PPC_MSG_DEBUGGER_BREAK] = debug_ipi_action,
170 };
171 
172 const char *smp_ipi_name[] = {
173 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
174 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
175 	[PPC_MSG_CALL_FUNC_SINGLE] = "ipi call function single",
176 	[PPC_MSG_DEBUGGER_BREAK] = "ipi debugger",
177 };
178 
179 /* optional function to request ipi, for controllers with >= 4 ipis */
smp_request_message_ipi(int virq,int msg)180 int smp_request_message_ipi(int virq, int msg)
181 {
182 	int err;
183 
184 	if (msg < 0 || msg > PPC_MSG_DEBUGGER_BREAK) {
185 		return -EINVAL;
186 	}
187 #if !defined(CONFIG_DEBUGGER) && !defined(CONFIG_KEXEC)
188 	if (msg == PPC_MSG_DEBUGGER_BREAK) {
189 		return 1;
190 	}
191 #endif
192 	err = request_irq(virq, smp_ipi_action[msg], IRQF_DISABLED|IRQF_PERCPU,
193 			  smp_ipi_name[msg], 0);
194 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
195 		virq, smp_ipi_name[msg], err);
196 
197 	return err;
198 }
199 
smp_send_reschedule(int cpu)200 void smp_send_reschedule(int cpu)
201 {
202 	if (likely(smp_ops))
203 		smp_ops->message_pass(cpu, PPC_MSG_RESCHEDULE);
204 }
205 
arch_send_call_function_single_ipi(int cpu)206 void arch_send_call_function_single_ipi(int cpu)
207 {
208 	smp_ops->message_pass(cpu, PPC_MSG_CALL_FUNC_SINGLE);
209 }
210 
arch_send_call_function_ipi_mask(const struct cpumask * mask)211 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
212 {
213 	unsigned int cpu;
214 
215 	for_each_cpu(cpu, mask)
216 		smp_ops->message_pass(cpu, PPC_MSG_CALL_FUNCTION);
217 }
218 
219 #ifdef CONFIG_DEBUGGER
smp_send_debugger_break(int cpu)220 void smp_send_debugger_break(int cpu)
221 {
222 	if (likely(smp_ops))
223 		smp_ops->message_pass(cpu, PPC_MSG_DEBUGGER_BREAK);
224 }
225 #endif
226 
227 #ifdef CONFIG_KEXEC
crash_send_ipi(void (* crash_ipi_callback)(struct pt_regs *))228 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
229 {
230 	crash_ipi_function_ptr = crash_ipi_callback;
231 	if (crash_ipi_callback && smp_ops) {
232 		mb();
233 		smp_ops->message_pass(MSG_ALL_BUT_SELF, PPC_MSG_DEBUGGER_BREAK);
234 	}
235 }
236 #endif
237 
stop_this_cpu(void * dummy)238 static void stop_this_cpu(void *dummy)
239 {
240 	/* Remove this CPU */
241 	set_cpu_online(smp_processor_id(), false);
242 
243 	local_irq_disable();
244 	while (1)
245 		;
246 }
247 
smp_send_stop(void)248 void smp_send_stop(void)
249 {
250 	smp_call_function(stop_this_cpu, NULL, 0);
251 }
252 
253 struct thread_info *current_set[NR_CPUS];
254 
smp_store_cpu_info(int id)255 static void __devinit smp_store_cpu_info(int id)
256 {
257 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
258 }
259 
smp_prepare_cpus(unsigned int max_cpus)260 void __init smp_prepare_cpus(unsigned int max_cpus)
261 {
262 	unsigned int cpu;
263 
264 	DBG("smp_prepare_cpus\n");
265 
266 	/*
267 	 * setup_cpu may need to be called on the boot cpu. We havent
268 	 * spun any cpus up but lets be paranoid.
269 	 */
270 	BUG_ON(boot_cpuid != smp_processor_id());
271 
272 	/* Fixup boot cpu */
273 	smp_store_cpu_info(boot_cpuid);
274 	cpu_callin_map[boot_cpuid] = 1;
275 
276 	for_each_possible_cpu(cpu) {
277 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
278 					GFP_KERNEL, cpu_to_node(cpu));
279 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
280 					GFP_KERNEL, cpu_to_node(cpu));
281 	}
282 
283 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
284 	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
285 
286 	if (smp_ops)
287 		if (smp_ops->probe)
288 			max_cpus = smp_ops->probe();
289 		else
290 			max_cpus = NR_CPUS;
291 	else
292 		max_cpus = 1;
293 }
294 
smp_prepare_boot_cpu(void)295 void __devinit smp_prepare_boot_cpu(void)
296 {
297 	BUG_ON(smp_processor_id() != boot_cpuid);
298 #ifdef CONFIG_PPC64
299 	paca[boot_cpuid].__current = current;
300 #endif
301 	current_set[boot_cpuid] = task_thread_info(current);
302 }
303 
304 #ifdef CONFIG_HOTPLUG_CPU
305 /* State of each CPU during hotplug phases */
306 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
307 
generic_cpu_disable(void)308 int generic_cpu_disable(void)
309 {
310 	unsigned int cpu = smp_processor_id();
311 
312 	if (cpu == boot_cpuid)
313 		return -EBUSY;
314 
315 	set_cpu_online(cpu, false);
316 #ifdef CONFIG_PPC64
317 	vdso_data->processorCount--;
318 #endif
319 	migrate_irqs();
320 	return 0;
321 }
322 
generic_cpu_die(unsigned int cpu)323 void generic_cpu_die(unsigned int cpu)
324 {
325 	int i;
326 
327 	for (i = 0; i < 100; i++) {
328 		smp_rmb();
329 		if (per_cpu(cpu_state, cpu) == CPU_DEAD)
330 			return;
331 		msleep(100);
332 	}
333 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
334 }
335 
generic_mach_cpu_die(void)336 void generic_mach_cpu_die(void)
337 {
338 	unsigned int cpu;
339 
340 	local_irq_disable();
341 	idle_task_exit();
342 	cpu = smp_processor_id();
343 	printk(KERN_DEBUG "CPU%d offline\n", cpu);
344 	__get_cpu_var(cpu_state) = CPU_DEAD;
345 	smp_wmb();
346 	while (__get_cpu_var(cpu_state) != CPU_UP_PREPARE)
347 		cpu_relax();
348 }
349 
generic_set_cpu_dead(unsigned int cpu)350 void generic_set_cpu_dead(unsigned int cpu)
351 {
352 	per_cpu(cpu_state, cpu) = CPU_DEAD;
353 }
354 #endif
355 
356 struct create_idle {
357 	struct work_struct work;
358 	struct task_struct *idle;
359 	struct completion done;
360 	int cpu;
361 };
362 
do_fork_idle(struct work_struct * work)363 static void __cpuinit do_fork_idle(struct work_struct *work)
364 {
365 	struct create_idle *c_idle =
366 		container_of(work, struct create_idle, work);
367 
368 	c_idle->idle = fork_idle(c_idle->cpu);
369 	complete(&c_idle->done);
370 }
371 
create_idle(unsigned int cpu)372 static int __cpuinit create_idle(unsigned int cpu)
373 {
374 	struct thread_info *ti;
375 	struct create_idle c_idle = {
376 		.cpu	= cpu,
377 		.done	= COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
378 	};
379 	INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle);
380 
381 	c_idle.idle = get_idle_for_cpu(cpu);
382 
383 	/* We can't use kernel_thread since we must avoid to
384 	 * reschedule the child. We use a workqueue because
385 	 * we want to fork from a kernel thread, not whatever
386 	 * userspace process happens to be trying to online us.
387 	 */
388 	if (!c_idle.idle) {
389 		schedule_work(&c_idle.work);
390 		wait_for_completion(&c_idle.done);
391 	} else
392 		init_idle(c_idle.idle, cpu);
393 	if (IS_ERR(c_idle.idle)) {
394 		pr_err("Failed fork for CPU %u: %li", cpu, PTR_ERR(c_idle.idle));
395 		return PTR_ERR(c_idle.idle);
396 	}
397 	ti = task_thread_info(c_idle.idle);
398 
399 #ifdef CONFIG_PPC64
400 	paca[cpu].__current = c_idle.idle;
401 	paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
402 #endif
403 	ti->cpu = cpu;
404 	current_set[cpu] = ti;
405 
406 	return 0;
407 }
408 
__cpu_up(unsigned int cpu)409 int __cpuinit __cpu_up(unsigned int cpu)
410 {
411 	int rc, c;
412 
413 	secondary_ti = current_set[cpu];
414 
415 	if (smp_ops == NULL ||
416 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
417 		return -EINVAL;
418 
419 	/* Make sure we have an idle thread */
420 	rc = create_idle(cpu);
421 	if (rc)
422 		return rc;
423 
424 	/* Make sure callin-map entry is 0 (can be leftover a CPU
425 	 * hotplug
426 	 */
427 	cpu_callin_map[cpu] = 0;
428 
429 	/* The information for processor bringup must
430 	 * be written out to main store before we release
431 	 * the processor.
432 	 */
433 	smp_mb();
434 
435 	/* wake up cpus */
436 	DBG("smp: kicking cpu %d\n", cpu);
437 	smp_ops->kick_cpu(cpu);
438 
439 	/*
440 	 * wait to see if the cpu made a callin (is actually up).
441 	 * use this value that I found through experimentation.
442 	 * -- Cort
443 	 */
444 	if (system_state < SYSTEM_RUNNING)
445 		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
446 			udelay(100);
447 #ifdef CONFIG_HOTPLUG_CPU
448 	else
449 		/*
450 		 * CPUs can take much longer to come up in the
451 		 * hotplug case.  Wait five seconds.
452 		 */
453 		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
454 			msleep(1);
455 #endif
456 
457 	if (!cpu_callin_map[cpu]) {
458 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
459 		return -ENOENT;
460 	}
461 
462 	DBG("Processor %u found.\n", cpu);
463 
464 	if (smp_ops->give_timebase)
465 		smp_ops->give_timebase();
466 
467 	/* Wait until cpu puts itself in the online map */
468 	while (!cpu_online(cpu))
469 		cpu_relax();
470 
471 	return 0;
472 }
473 
474 /* Return the value of the reg property corresponding to the given
475  * logical cpu.
476  */
cpu_to_core_id(int cpu)477 int cpu_to_core_id(int cpu)
478 {
479 	struct device_node *np;
480 	const int *reg;
481 	int id = -1;
482 
483 	np = of_get_cpu_node(cpu, NULL);
484 	if (!np)
485 		goto out;
486 
487 	reg = of_get_property(np, "reg", NULL);
488 	if (!reg)
489 		goto out;
490 
491 	id = *reg;
492 out:
493 	of_node_put(np);
494 	return id;
495 }
496 
497 /* Helper routines for cpu to core mapping */
cpu_core_index_of_thread(int cpu)498 int cpu_core_index_of_thread(int cpu)
499 {
500 	return cpu >> threads_shift;
501 }
502 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
503 
cpu_first_thread_of_core(int core)504 int cpu_first_thread_of_core(int core)
505 {
506 	return core << threads_shift;
507 }
508 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
509 
510 /* Must be called when no change can occur to cpu_present_map,
511  * i.e. during cpu online or offline.
512  */
cpu_to_l2cache(int cpu)513 static struct device_node *cpu_to_l2cache(int cpu)
514 {
515 	struct device_node *np;
516 	struct device_node *cache;
517 
518 	if (!cpu_present(cpu))
519 		return NULL;
520 
521 	np = of_get_cpu_node(cpu, NULL);
522 	if (np == NULL)
523 		return NULL;
524 
525 	cache = of_find_next_cache_node(np);
526 
527 	of_node_put(np);
528 
529 	return cache;
530 }
531 
532 /* Activate a secondary processor. */
start_secondary(void * unused)533 void __devinit start_secondary(void *unused)
534 {
535 	unsigned int cpu = smp_processor_id();
536 	struct device_node *l2_cache;
537 	int i, base;
538 
539 	atomic_inc(&init_mm.mm_count);
540 	current->active_mm = &init_mm;
541 
542 	smp_store_cpu_info(cpu);
543 	set_dec(tb_ticks_per_jiffy);
544 	preempt_disable();
545 	cpu_callin_map[cpu] = 1;
546 
547 	if (smp_ops->setup_cpu)
548 		smp_ops->setup_cpu(cpu);
549 	if (smp_ops->take_timebase)
550 		smp_ops->take_timebase();
551 
552 	secondary_cpu_time_init();
553 
554 #ifdef CONFIG_PPC64
555 	if (system_state == SYSTEM_RUNNING)
556 		vdso_data->processorCount++;
557 #endif
558 	ipi_call_lock();
559 	notify_cpu_starting(cpu);
560 	set_cpu_online(cpu, true);
561 	/* Update sibling maps */
562 	base = cpu_first_thread_sibling(cpu);
563 	for (i = 0; i < threads_per_core; i++) {
564 		if (cpu_is_offline(base + i))
565 			continue;
566 		cpumask_set_cpu(cpu, cpu_sibling_mask(base + i));
567 		cpumask_set_cpu(base + i, cpu_sibling_mask(cpu));
568 
569 		/* cpu_core_map should be a superset of
570 		 * cpu_sibling_map even if we don't have cache
571 		 * information, so update the former here, too.
572 		 */
573 		cpumask_set_cpu(cpu, cpu_core_mask(base + i));
574 		cpumask_set_cpu(base + i, cpu_core_mask(cpu));
575 	}
576 	l2_cache = cpu_to_l2cache(cpu);
577 	for_each_online_cpu(i) {
578 		struct device_node *np = cpu_to_l2cache(i);
579 		if (!np)
580 			continue;
581 		if (np == l2_cache) {
582 			cpumask_set_cpu(cpu, cpu_core_mask(i));
583 			cpumask_set_cpu(i, cpu_core_mask(cpu));
584 		}
585 		of_node_put(np);
586 	}
587 	of_node_put(l2_cache);
588 	ipi_call_unlock();
589 
590 	local_irq_enable();
591 
592 	cpu_idle();
593 
594 	BUG();
595 }
596 
setup_profiling_timer(unsigned int multiplier)597 int setup_profiling_timer(unsigned int multiplier)
598 {
599 	return 0;
600 }
601 
smp_cpus_done(unsigned int max_cpus)602 void __init smp_cpus_done(unsigned int max_cpus)
603 {
604 	cpumask_var_t old_mask;
605 
606 	/* We want the setup_cpu() here to be called from CPU 0, but our
607 	 * init thread may have been "borrowed" by another CPU in the meantime
608 	 * se we pin us down to CPU 0 for a short while
609 	 */
610 	alloc_cpumask_var(&old_mask, GFP_NOWAIT);
611 	cpumask_copy(old_mask, &current->cpus_allowed);
612 	set_cpus_allowed_ptr(current, cpumask_of(boot_cpuid));
613 
614 	if (smp_ops && smp_ops->setup_cpu)
615 		smp_ops->setup_cpu(boot_cpuid);
616 
617 	set_cpus_allowed_ptr(current, old_mask);
618 
619 	free_cpumask_var(old_mask);
620 
621 	if (smp_ops && smp_ops->bringup_done)
622 		smp_ops->bringup_done();
623 
624 	dump_numa_cpu_topology();
625 
626 }
627 
arch_sd_sibling_asym_packing(void)628 int arch_sd_sibling_asym_packing(void)
629 {
630 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
631 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
632 		return SD_ASYM_PACKING;
633 	}
634 	return 0;
635 }
636 
637 #ifdef CONFIG_HOTPLUG_CPU
__cpu_disable(void)638 int __cpu_disable(void)
639 {
640 	struct device_node *l2_cache;
641 	int cpu = smp_processor_id();
642 	int base, i;
643 	int err;
644 
645 	if (!smp_ops->cpu_disable)
646 		return -ENOSYS;
647 
648 	err = smp_ops->cpu_disable();
649 	if (err)
650 		return err;
651 
652 	/* Update sibling maps */
653 	base = cpu_first_thread_sibling(cpu);
654 	for (i = 0; i < threads_per_core; i++) {
655 		cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i));
656 		cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu));
657 		cpumask_clear_cpu(cpu, cpu_core_mask(base + i));
658 		cpumask_clear_cpu(base + i, cpu_core_mask(cpu));
659 	}
660 
661 	l2_cache = cpu_to_l2cache(cpu);
662 	for_each_present_cpu(i) {
663 		struct device_node *np = cpu_to_l2cache(i);
664 		if (!np)
665 			continue;
666 		if (np == l2_cache) {
667 			cpumask_clear_cpu(cpu, cpu_core_mask(i));
668 			cpumask_clear_cpu(i, cpu_core_mask(cpu));
669 		}
670 		of_node_put(np);
671 	}
672 	of_node_put(l2_cache);
673 
674 
675 	return 0;
676 }
677 
__cpu_die(unsigned int cpu)678 void __cpu_die(unsigned int cpu)
679 {
680 	if (smp_ops->cpu_die)
681 		smp_ops->cpu_die(cpu);
682 }
683 
684 static DEFINE_MUTEX(powerpc_cpu_hotplug_driver_mutex);
685 
cpu_hotplug_driver_lock()686 void cpu_hotplug_driver_lock()
687 {
688 	mutex_lock(&powerpc_cpu_hotplug_driver_mutex);
689 }
690 
cpu_hotplug_driver_unlock()691 void cpu_hotplug_driver_unlock()
692 {
693 	mutex_unlock(&powerpc_cpu_hotplug_driver_mutex);
694 }
695 
cpu_die(void)696 void cpu_die(void)
697 {
698 	if (ppc_md.cpu_die)
699 		ppc_md.cpu_die();
700 
701 	/* If we return, we re-enter start_secondary */
702 	start_secondary_resume();
703 }
704 
705 #endif
706