1 /*
2 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
3 *
4 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6 * Copyright (C) 1999 - 2001 Kanoj Sarcar
7 */
8
9 #undef DEBUG
10
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/errno.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/timex.h>
20 #include <linux/smp.h>
21 #include <linux/random.h>
22 #include <linux/kernel.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/delay.h>
25 #include <linux/bitops.h>
26
27 #include <asm/bootinfo.h>
28 #include <asm/io.h>
29 #include <asm/mipsregs.h>
30 #include <asm/system.h>
31
32 #include <asm/processor.h>
33 #include <asm/pci/bridge.h>
34 #include <asm/sn/addrs.h>
35 #include <asm/sn/agent.h>
36 #include <asm/sn/arch.h>
37 #include <asm/sn/hub.h>
38 #include <asm/sn/intr.h>
39
40 /*
41 * Linux has a controller-independent x86 interrupt architecture.
42 * every controller has a 'controller-template', that is used
43 * by the main code to do the right thing. Each driver-visible
44 * interrupt source is transparently wired to the appropriate
45 * controller. Thus drivers need not be aware of the
46 * interrupt-controller.
47 *
48 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
49 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
50 * (IO-APICs assumed to be messaging to Pentium local-APICs)
51 *
52 * the code is designed to be easily extended with new/different
53 * interrupt controllers, without having to do assembly magic.
54 */
55
56 extern asmlinkage void ip27_irq(void);
57
58 extern struct bridge_controller *irq_to_bridge[];
59 extern int irq_to_slot[];
60
61 /*
62 * use these macros to get the encoded nasid and widget id
63 * from the irq value
64 */
65 #define IRQ_TO_BRIDGE(i) irq_to_bridge[(i)]
66 #define SLOT_FROM_PCI_IRQ(i) irq_to_slot[i]
67
alloc_level(int cpu,int irq)68 static inline int alloc_level(int cpu, int irq)
69 {
70 struct hub_data *hub = hub_data(cpu_to_node(cpu));
71 struct slice_data *si = cpu_data[cpu].data;
72 int level;
73
74 level = find_first_zero_bit(hub->irq_alloc_mask, LEVELS_PER_SLICE);
75 if (level >= LEVELS_PER_SLICE)
76 panic("Cpu %d flooded with devices\n", cpu);
77
78 __set_bit(level, hub->irq_alloc_mask);
79 si->level_to_irq[level] = irq;
80
81 return level;
82 }
83
find_level(cpuid_t * cpunum,int irq)84 static inline int find_level(cpuid_t *cpunum, int irq)
85 {
86 int cpu, i;
87
88 for_each_online_cpu(cpu) {
89 struct slice_data *si = cpu_data[cpu].data;
90
91 for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++)
92 if (si->level_to_irq[i] == irq) {
93 *cpunum = cpu;
94
95 return i;
96 }
97 }
98
99 panic("Could not identify cpu/level for irq %d\n", irq);
100 }
101
102 /*
103 * Find first bit set
104 */
ms1bit(unsigned long x)105 static int ms1bit(unsigned long x)
106 {
107 int b = 0, s;
108
109 s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
110 s = 8; if (x >> 8 == 0) s = 0; b += s; x >>= s;
111 s = 4; if (x >> 4 == 0) s = 0; b += s; x >>= s;
112 s = 2; if (x >> 2 == 0) s = 0; b += s; x >>= s;
113 s = 1; if (x >> 1 == 0) s = 0; b += s;
114
115 return b;
116 }
117
118 /*
119 * This code is unnecessarily complex, because we do IRQF_DISABLED
120 * intr enabling. Basically, once we grab the set of intrs we need
121 * to service, we must mask _all_ these interrupts; firstly, to make
122 * sure the same intr does not intr again, causing recursion that
123 * can lead to stack overflow. Secondly, we can not just mask the
124 * one intr we are do_IRQing, because the non-masked intrs in the
125 * first set might intr again, causing multiple servicings of the
126 * same intr. This effect is mostly seen for intercpu intrs.
127 * Kanoj 05.13.00
128 */
129
ip27_do_irq_mask0(void)130 static void ip27_do_irq_mask0(void)
131 {
132 int irq, swlevel;
133 hubreg_t pend0, mask0;
134 cpuid_t cpu = smp_processor_id();
135 int pi_int_mask0 =
136 (cputoslice(cpu) == 0) ? PI_INT_MASK0_A : PI_INT_MASK0_B;
137
138 /* copied from Irix intpend0() */
139 pend0 = LOCAL_HUB_L(PI_INT_PEND0);
140 mask0 = LOCAL_HUB_L(pi_int_mask0);
141
142 pend0 &= mask0; /* Pick intrs we should look at */
143 if (!pend0)
144 return;
145
146 swlevel = ms1bit(pend0);
147 #ifdef CONFIG_SMP
148 if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
149 LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
150 } else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
151 LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
152 } else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
153 LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
154 smp_call_function_interrupt();
155 } else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
156 LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
157 smp_call_function_interrupt();
158 } else
159 #endif
160 {
161 /* "map" swlevel to irq */
162 struct slice_data *si = cpu_data[cpu].data;
163
164 irq = si->level_to_irq[swlevel];
165 do_IRQ(irq);
166 }
167
168 LOCAL_HUB_L(PI_INT_PEND0);
169 }
170
ip27_do_irq_mask1(void)171 static void ip27_do_irq_mask1(void)
172 {
173 int irq, swlevel;
174 hubreg_t pend1, mask1;
175 cpuid_t cpu = smp_processor_id();
176 int pi_int_mask1 = (cputoslice(cpu) == 0) ? PI_INT_MASK1_A : PI_INT_MASK1_B;
177 struct slice_data *si = cpu_data[cpu].data;
178
179 /* copied from Irix intpend0() */
180 pend1 = LOCAL_HUB_L(PI_INT_PEND1);
181 mask1 = LOCAL_HUB_L(pi_int_mask1);
182
183 pend1 &= mask1; /* Pick intrs we should look at */
184 if (!pend1)
185 return;
186
187 swlevel = ms1bit(pend1);
188 /* "map" swlevel to irq */
189 irq = si->level_to_irq[swlevel];
190 LOCAL_HUB_CLR_INTR(swlevel);
191 do_IRQ(irq);
192
193 LOCAL_HUB_L(PI_INT_PEND1);
194 }
195
ip27_prof_timer(void)196 static void ip27_prof_timer(void)
197 {
198 panic("CPU %d got a profiling interrupt", smp_processor_id());
199 }
200
ip27_hub_error(void)201 static void ip27_hub_error(void)
202 {
203 panic("CPU %d got a hub error interrupt", smp_processor_id());
204 }
205
intr_connect_level(int cpu,int bit)206 static int intr_connect_level(int cpu, int bit)
207 {
208 nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
209 struct slice_data *si = cpu_data[cpu].data;
210
211 set_bit(bit, si->irq_enable_mask);
212
213 if (!cputoslice(cpu)) {
214 REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
215 REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
216 } else {
217 REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
218 REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
219 }
220
221 return 0;
222 }
223
intr_disconnect_level(int cpu,int bit)224 static int intr_disconnect_level(int cpu, int bit)
225 {
226 nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
227 struct slice_data *si = cpu_data[cpu].data;
228
229 clear_bit(bit, si->irq_enable_mask);
230
231 if (!cputoslice(cpu)) {
232 REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
233 REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
234 } else {
235 REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
236 REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
237 }
238
239 return 0;
240 }
241
242 /* Startup one of the (PCI ...) IRQs routes over a bridge. */
startup_bridge_irq(struct irq_data * d)243 static unsigned int startup_bridge_irq(struct irq_data *d)
244 {
245 struct bridge_controller *bc;
246 bridgereg_t device;
247 bridge_t *bridge;
248 int pin, swlevel;
249 cpuid_t cpu;
250
251 pin = SLOT_FROM_PCI_IRQ(d->irq);
252 bc = IRQ_TO_BRIDGE(d->irq);
253 bridge = bc->base;
254
255 pr_debug("bridge_startup(): irq= 0x%x pin=%d\n", d->irq, pin);
256 /*
257 * "map" irq to a swlevel greater than 6 since the first 6 bits
258 * of INT_PEND0 are taken
259 */
260 swlevel = find_level(&cpu, d->irq);
261 bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8));
262 bridge->b_int_enable |= (1 << pin);
263 bridge->b_int_enable |= 0x7ffffe00; /* more stuff in int_enable */
264
265 /*
266 * Enable sending of an interrupt clear packt to the hub on a high to
267 * low transition of the interrupt pin.
268 *
269 * IRIX sets additional bits in the address which are documented as
270 * reserved in the bridge docs.
271 */
272 bridge->b_int_mode |= (1UL << pin);
273
274 /*
275 * We assume the bridge to have a 1:1 mapping between devices
276 * (slots) and intr pins.
277 */
278 device = bridge->b_int_device;
279 device &= ~(7 << (pin*3));
280 device |= (pin << (pin*3));
281 bridge->b_int_device = device;
282
283 bridge->b_wid_tflush;
284
285 intr_connect_level(cpu, swlevel);
286
287 return 0; /* Never anything pending. */
288 }
289
290 /* Shutdown one of the (PCI ...) IRQs routes over a bridge. */
shutdown_bridge_irq(struct irq_data * d)291 static void shutdown_bridge_irq(struct irq_data *d)
292 {
293 struct bridge_controller *bc = IRQ_TO_BRIDGE(d->irq);
294 bridge_t *bridge = bc->base;
295 int pin, swlevel;
296 cpuid_t cpu;
297
298 pr_debug("bridge_shutdown: irq 0x%x\n", d->irq);
299 pin = SLOT_FROM_PCI_IRQ(d->irq);
300
301 /*
302 * map irq to a swlevel greater than 6 since the first 6 bits
303 * of INT_PEND0 are taken
304 */
305 swlevel = find_level(&cpu, d->irq);
306 intr_disconnect_level(cpu, swlevel);
307
308 bridge->b_int_enable &= ~(1 << pin);
309 bridge->b_wid_tflush;
310 }
311
enable_bridge_irq(struct irq_data * d)312 static inline void enable_bridge_irq(struct irq_data *d)
313 {
314 cpuid_t cpu;
315 int swlevel;
316
317 swlevel = find_level(&cpu, d->irq); /* Criminal offence */
318 intr_connect_level(cpu, swlevel);
319 }
320
disable_bridge_irq(struct irq_data * d)321 static inline void disable_bridge_irq(struct irq_data *d)
322 {
323 cpuid_t cpu;
324 int swlevel;
325
326 swlevel = find_level(&cpu, d->irq); /* Criminal offence */
327 intr_disconnect_level(cpu, swlevel);
328 }
329
330 static struct irq_chip bridge_irq_type = {
331 .name = "bridge",
332 .irq_startup = startup_bridge_irq,
333 .irq_shutdown = shutdown_bridge_irq,
334 .irq_mask = disable_bridge_irq,
335 .irq_unmask = enable_bridge_irq,
336 };
337
register_bridge_irq(unsigned int irq)338 void __devinit register_bridge_irq(unsigned int irq)
339 {
340 irq_set_chip_and_handler(irq, &bridge_irq_type, handle_level_irq);
341 }
342
request_bridge_irq(struct bridge_controller * bc)343 int __devinit request_bridge_irq(struct bridge_controller *bc)
344 {
345 int irq = allocate_irqno();
346 int swlevel, cpu;
347 nasid_t nasid;
348
349 if (irq < 0)
350 return irq;
351
352 /*
353 * "map" irq to a swlevel greater than 6 since the first 6 bits
354 * of INT_PEND0 are taken
355 */
356 cpu = bc->irq_cpu;
357 swlevel = alloc_level(cpu, irq);
358 if (unlikely(swlevel < 0)) {
359 free_irqno(irq);
360
361 return -EAGAIN;
362 }
363
364 /* Make sure it's not already pending when we connect it. */
365 nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
366 REMOTE_HUB_CLR_INTR(nasid, swlevel);
367
368 intr_connect_level(cpu, swlevel);
369
370 register_bridge_irq(irq);
371
372 return irq;
373 }
374
plat_irq_dispatch(void)375 asmlinkage void plat_irq_dispatch(void)
376 {
377 unsigned long pending = read_c0_cause() & read_c0_status();
378 extern unsigned int rt_timer_irq;
379
380 if (pending & CAUSEF_IP4)
381 do_IRQ(rt_timer_irq);
382 else if (pending & CAUSEF_IP2) /* PI_INT_PEND_0 or CC_PEND_{A|B} */
383 ip27_do_irq_mask0();
384 else if (pending & CAUSEF_IP3) /* PI_INT_PEND_1 */
385 ip27_do_irq_mask1();
386 else if (pending & CAUSEF_IP5)
387 ip27_prof_timer();
388 else if (pending & CAUSEF_IP6)
389 ip27_hub_error();
390 }
391
arch_init_irq(void)392 void __init arch_init_irq(void)
393 {
394 }
395
install_ipi(void)396 void install_ipi(void)
397 {
398 int slice = LOCAL_HUB_L(PI_CPU_NUM);
399 int cpu = smp_processor_id();
400 struct slice_data *si = cpu_data[cpu].data;
401 struct hub_data *hub = hub_data(cpu_to_node(cpu));
402 int resched, call;
403
404 resched = CPU_RESCHED_A_IRQ + slice;
405 __set_bit(resched, hub->irq_alloc_mask);
406 __set_bit(resched, si->irq_enable_mask);
407 LOCAL_HUB_CLR_INTR(resched);
408
409 call = CPU_CALL_A_IRQ + slice;
410 __set_bit(call, hub->irq_alloc_mask);
411 __set_bit(call, si->irq_enable_mask);
412 LOCAL_HUB_CLR_INTR(call);
413
414 if (slice == 0) {
415 LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
416 LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
417 } else {
418 LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
419 LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);
420 }
421 }
422