1 /*
2  * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
3  *
4  * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6  * Copyright (C) 1999 - 2001 Kanoj Sarcar
7  */
8 
9 #undef DEBUG
10 
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/errno.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/timex.h>
20 #include <linux/smp.h>
21 #include <linux/random.h>
22 #include <linux/kernel.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/delay.h>
25 #include <linux/bitops.h>
26 
27 #include <asm/bootinfo.h>
28 #include <asm/io.h>
29 #include <asm/mipsregs.h>
30 #include <asm/system.h>
31 
32 #include <asm/processor.h>
33 #include <asm/pci/bridge.h>
34 #include <asm/sn/addrs.h>
35 #include <asm/sn/agent.h>
36 #include <asm/sn/arch.h>
37 #include <asm/sn/hub.h>
38 #include <asm/sn/intr.h>
39 
40 /*
41  * Linux has a controller-independent x86 interrupt architecture.
42  * every controller has a 'controller-template', that is used
43  * by the main code to do the right thing. Each driver-visible
44  * interrupt source is transparently wired to the appropriate
45  * controller. Thus drivers need not be aware of the
46  * interrupt-controller.
47  *
48  * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
49  * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
50  * (IO-APICs assumed to be messaging to Pentium local-APICs)
51  *
52  * the code is designed to be easily extended with new/different
53  * interrupt controllers, without having to do assembly magic.
54  */
55 
56 extern asmlinkage void ip27_irq(void);
57 
58 extern struct bridge_controller *irq_to_bridge[];
59 extern int irq_to_slot[];
60 
61 /*
62  * use these macros to get the encoded nasid and widget id
63  * from the irq value
64  */
65 #define IRQ_TO_BRIDGE(i)		irq_to_bridge[(i)]
66 #define	SLOT_FROM_PCI_IRQ(i)		irq_to_slot[i]
67 
alloc_level(int cpu,int irq)68 static inline int alloc_level(int cpu, int irq)
69 {
70 	struct hub_data *hub = hub_data(cpu_to_node(cpu));
71 	struct slice_data *si = cpu_data[cpu].data;
72 	int level;
73 
74 	level = find_first_zero_bit(hub->irq_alloc_mask, LEVELS_PER_SLICE);
75 	if (level >= LEVELS_PER_SLICE)
76 		panic("Cpu %d flooded with devices\n", cpu);
77 
78 	__set_bit(level, hub->irq_alloc_mask);
79 	si->level_to_irq[level] = irq;
80 
81 	return level;
82 }
83 
find_level(cpuid_t * cpunum,int irq)84 static inline int find_level(cpuid_t *cpunum, int irq)
85 {
86 	int cpu, i;
87 
88 	for_each_online_cpu(cpu) {
89 		struct slice_data *si = cpu_data[cpu].data;
90 
91 		for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++)
92 			if (si->level_to_irq[i] == irq) {
93 				*cpunum = cpu;
94 
95 				return i;
96 			}
97 	}
98 
99 	panic("Could not identify cpu/level for irq %d\n", irq);
100 }
101 
102 /*
103  * Find first bit set
104  */
ms1bit(unsigned long x)105 static int ms1bit(unsigned long x)
106 {
107 	int b = 0, s;
108 
109 	s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
110 	s =  8; if (x >>  8 == 0) s = 0; b += s; x >>= s;
111 	s =  4; if (x >>  4 == 0) s = 0; b += s; x >>= s;
112 	s =  2; if (x >>  2 == 0) s = 0; b += s; x >>= s;
113 	s =  1; if (x >>  1 == 0) s = 0; b += s;
114 
115 	return b;
116 }
117 
118 /*
119  * This code is unnecessarily complex, because we do IRQF_DISABLED
120  * intr enabling. Basically, once we grab the set of intrs we need
121  * to service, we must mask _all_ these interrupts; firstly, to make
122  * sure the same intr does not intr again, causing recursion that
123  * can lead to stack overflow. Secondly, we can not just mask the
124  * one intr we are do_IRQing, because the non-masked intrs in the
125  * first set might intr again, causing multiple servicings of the
126  * same intr. This effect is mostly seen for intercpu intrs.
127  * Kanoj 05.13.00
128  */
129 
ip27_do_irq_mask0(void)130 static void ip27_do_irq_mask0(void)
131 {
132 	int irq, swlevel;
133 	hubreg_t pend0, mask0;
134 	cpuid_t cpu = smp_processor_id();
135 	int pi_int_mask0 =
136 		(cputoslice(cpu) == 0) ?  PI_INT_MASK0_A : PI_INT_MASK0_B;
137 
138 	/* copied from Irix intpend0() */
139 	pend0 = LOCAL_HUB_L(PI_INT_PEND0);
140 	mask0 = LOCAL_HUB_L(pi_int_mask0);
141 
142 	pend0 &= mask0;		/* Pick intrs we should look at */
143 	if (!pend0)
144 		return;
145 
146 	swlevel = ms1bit(pend0);
147 #ifdef CONFIG_SMP
148 	if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
149 		LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
150 	} else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
151 		LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
152 	} else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
153 		LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
154 		smp_call_function_interrupt();
155 	} else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
156 		LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
157 		smp_call_function_interrupt();
158 	} else
159 #endif
160 	{
161 		/* "map" swlevel to irq */
162 		struct slice_data *si = cpu_data[cpu].data;
163 
164 		irq = si->level_to_irq[swlevel];
165 		do_IRQ(irq);
166 	}
167 
168 	LOCAL_HUB_L(PI_INT_PEND0);
169 }
170 
ip27_do_irq_mask1(void)171 static void ip27_do_irq_mask1(void)
172 {
173 	int irq, swlevel;
174 	hubreg_t pend1, mask1;
175 	cpuid_t cpu = smp_processor_id();
176 	int pi_int_mask1 = (cputoslice(cpu) == 0) ?  PI_INT_MASK1_A : PI_INT_MASK1_B;
177 	struct slice_data *si = cpu_data[cpu].data;
178 
179 	/* copied from Irix intpend0() */
180 	pend1 = LOCAL_HUB_L(PI_INT_PEND1);
181 	mask1 = LOCAL_HUB_L(pi_int_mask1);
182 
183 	pend1 &= mask1;		/* Pick intrs we should look at */
184 	if (!pend1)
185 		return;
186 
187 	swlevel = ms1bit(pend1);
188 	/* "map" swlevel to irq */
189 	irq = si->level_to_irq[swlevel];
190 	LOCAL_HUB_CLR_INTR(swlevel);
191 	do_IRQ(irq);
192 
193 	LOCAL_HUB_L(PI_INT_PEND1);
194 }
195 
ip27_prof_timer(void)196 static void ip27_prof_timer(void)
197 {
198 	panic("CPU %d got a profiling interrupt", smp_processor_id());
199 }
200 
ip27_hub_error(void)201 static void ip27_hub_error(void)
202 {
203 	panic("CPU %d got a hub error interrupt", smp_processor_id());
204 }
205 
intr_connect_level(int cpu,int bit)206 static int intr_connect_level(int cpu, int bit)
207 {
208 	nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
209 	struct slice_data *si = cpu_data[cpu].data;
210 
211 	set_bit(bit, si->irq_enable_mask);
212 
213 	if (!cputoslice(cpu)) {
214 		REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
215 		REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
216 	} else {
217 		REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
218 		REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
219 	}
220 
221 	return 0;
222 }
223 
intr_disconnect_level(int cpu,int bit)224 static int intr_disconnect_level(int cpu, int bit)
225 {
226 	nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
227 	struct slice_data *si = cpu_data[cpu].data;
228 
229 	clear_bit(bit, si->irq_enable_mask);
230 
231 	if (!cputoslice(cpu)) {
232 		REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
233 		REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
234 	} else {
235 		REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
236 		REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
237 	}
238 
239 	return 0;
240 }
241 
242 /* Startup one of the (PCI ...) IRQs routes over a bridge.  */
startup_bridge_irq(struct irq_data * d)243 static unsigned int startup_bridge_irq(struct irq_data *d)
244 {
245 	struct bridge_controller *bc;
246 	bridgereg_t device;
247 	bridge_t *bridge;
248 	int pin, swlevel;
249 	cpuid_t cpu;
250 
251 	pin = SLOT_FROM_PCI_IRQ(d->irq);
252 	bc = IRQ_TO_BRIDGE(d->irq);
253 	bridge = bc->base;
254 
255 	pr_debug("bridge_startup(): irq= 0x%x  pin=%d\n", d->irq, pin);
256 	/*
257 	 * "map" irq to a swlevel greater than 6 since the first 6 bits
258 	 * of INT_PEND0 are taken
259 	 */
260 	swlevel = find_level(&cpu, d->irq);
261 	bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8));
262 	bridge->b_int_enable |= (1 << pin);
263 	bridge->b_int_enable |= 0x7ffffe00;	/* more stuff in int_enable */
264 
265 	/*
266 	 * Enable sending of an interrupt clear packt to the hub on a high to
267 	 * low transition of the interrupt pin.
268 	 *
269 	 * IRIX sets additional bits in the address which are documented as
270 	 * reserved in the bridge docs.
271 	 */
272 	bridge->b_int_mode |= (1UL << pin);
273 
274 	/*
275 	 * We assume the bridge to have a 1:1 mapping between devices
276 	 * (slots) and intr pins.
277 	 */
278 	device = bridge->b_int_device;
279 	device &= ~(7 << (pin*3));
280 	device |= (pin << (pin*3));
281 	bridge->b_int_device = device;
282 
283         bridge->b_wid_tflush;
284 
285 	intr_connect_level(cpu, swlevel);
286 
287         return 0;       /* Never anything pending.  */
288 }
289 
290 /* Shutdown one of the (PCI ...) IRQs routes over a bridge.  */
shutdown_bridge_irq(struct irq_data * d)291 static void shutdown_bridge_irq(struct irq_data *d)
292 {
293 	struct bridge_controller *bc = IRQ_TO_BRIDGE(d->irq);
294 	bridge_t *bridge = bc->base;
295 	int pin, swlevel;
296 	cpuid_t cpu;
297 
298 	pr_debug("bridge_shutdown: irq 0x%x\n", d->irq);
299 	pin = SLOT_FROM_PCI_IRQ(d->irq);
300 
301 	/*
302 	 * map irq to a swlevel greater than 6 since the first 6 bits
303 	 * of INT_PEND0 are taken
304 	 */
305 	swlevel = find_level(&cpu, d->irq);
306 	intr_disconnect_level(cpu, swlevel);
307 
308 	bridge->b_int_enable &= ~(1 << pin);
309 	bridge->b_wid_tflush;
310 }
311 
enable_bridge_irq(struct irq_data * d)312 static inline void enable_bridge_irq(struct irq_data *d)
313 {
314 	cpuid_t cpu;
315 	int swlevel;
316 
317 	swlevel = find_level(&cpu, d->irq);	/* Criminal offence */
318 	intr_connect_level(cpu, swlevel);
319 }
320 
disable_bridge_irq(struct irq_data * d)321 static inline void disable_bridge_irq(struct irq_data *d)
322 {
323 	cpuid_t cpu;
324 	int swlevel;
325 
326 	swlevel = find_level(&cpu, d->irq);	/* Criminal offence */
327 	intr_disconnect_level(cpu, swlevel);
328 }
329 
330 static struct irq_chip bridge_irq_type = {
331 	.name		= "bridge",
332 	.irq_startup	= startup_bridge_irq,
333 	.irq_shutdown	= shutdown_bridge_irq,
334 	.irq_mask	= disable_bridge_irq,
335 	.irq_unmask	= enable_bridge_irq,
336 };
337 
register_bridge_irq(unsigned int irq)338 void __devinit register_bridge_irq(unsigned int irq)
339 {
340 	irq_set_chip_and_handler(irq, &bridge_irq_type, handle_level_irq);
341 }
342 
request_bridge_irq(struct bridge_controller * bc)343 int __devinit request_bridge_irq(struct bridge_controller *bc)
344 {
345 	int irq = allocate_irqno();
346 	int swlevel, cpu;
347 	nasid_t nasid;
348 
349 	if (irq < 0)
350 		return irq;
351 
352 	/*
353 	 * "map" irq to a swlevel greater than 6 since the first 6 bits
354 	 * of INT_PEND0 are taken
355 	 */
356 	cpu = bc->irq_cpu;
357 	swlevel = alloc_level(cpu, irq);
358 	if (unlikely(swlevel < 0)) {
359 		free_irqno(irq);
360 
361 		return -EAGAIN;
362 	}
363 
364 	/* Make sure it's not already pending when we connect it. */
365 	nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
366 	REMOTE_HUB_CLR_INTR(nasid, swlevel);
367 
368 	intr_connect_level(cpu, swlevel);
369 
370 	register_bridge_irq(irq);
371 
372 	return irq;
373 }
374 
plat_irq_dispatch(void)375 asmlinkage void plat_irq_dispatch(void)
376 {
377 	unsigned long pending = read_c0_cause() & read_c0_status();
378 	extern unsigned int rt_timer_irq;
379 
380 	if (pending & CAUSEF_IP4)
381 		do_IRQ(rt_timer_irq);
382 	else if (pending & CAUSEF_IP2)	/* PI_INT_PEND_0 or CC_PEND_{A|B} */
383 		ip27_do_irq_mask0();
384 	else if (pending & CAUSEF_IP3)	/* PI_INT_PEND_1 */
385 		ip27_do_irq_mask1();
386 	else if (pending & CAUSEF_IP5)
387 		ip27_prof_timer();
388 	else if (pending & CAUSEF_IP6)
389 		ip27_hub_error();
390 }
391 
arch_init_irq(void)392 void __init arch_init_irq(void)
393 {
394 }
395 
install_ipi(void)396 void install_ipi(void)
397 {
398 	int slice = LOCAL_HUB_L(PI_CPU_NUM);
399 	int cpu = smp_processor_id();
400 	struct slice_data *si = cpu_data[cpu].data;
401 	struct hub_data *hub = hub_data(cpu_to_node(cpu));
402 	int resched, call;
403 
404 	resched = CPU_RESCHED_A_IRQ + slice;
405 	__set_bit(resched, hub->irq_alloc_mask);
406 	__set_bit(resched, si->irq_enable_mask);
407 	LOCAL_HUB_CLR_INTR(resched);
408 
409 	call = CPU_CALL_A_IRQ + slice;
410 	__set_bit(call, hub->irq_alloc_mask);
411 	__set_bit(call, si->irq_enable_mask);
412 	LOCAL_HUB_CLR_INTR(call);
413 
414 	if (slice == 0) {
415 		LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
416 		LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
417 	} else {
418 		LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
419 		LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);
420 	}
421 }
422