1 /*
2  * SN2 Platform specific SMP Support
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/threads.h>
15 #include <linux/sched.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/mmzone.h>
20 #include <linux/module.h>
21 #include <linux/bitops.h>
22 #include <linux/nodemask.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 
26 #include <asm/processor.h>
27 #include <asm/irq.h>
28 #include <asm/sal.h>
29 #include <asm/system.h>
30 #include <asm/delay.h>
31 #include <asm/io.h>
32 #include <asm/smp.h>
33 #include <asm/tlb.h>
34 #include <asm/numa.h>
35 #include <asm/hw_irq.h>
36 #include <asm/current.h>
37 #include <asm/sn/sn_cpuid.h>
38 #include <asm/sn/sn_sal.h>
39 #include <asm/sn/addrs.h>
40 #include <asm/sn/shub_mmr.h>
41 #include <asm/sn/nodepda.h>
42 #include <asm/sn/rw_mmr.h>
43 #include <asm/sn/sn_feature_sets.h>
44 
45 DEFINE_PER_CPU(struct ptc_stats, ptcstats);
46 DECLARE_PER_CPU(struct ptc_stats, ptcstats);
47 
48 static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
49 
50 /* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
51 static int sn2_flush_opt = 0;
52 
53 extern unsigned long
54 sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
55 			       volatile unsigned long *, unsigned long,
56 			       volatile unsigned long *, unsigned long);
57 void
58 sn2_ptc_deadlock_recovery(short *, short, short, int,
59 			  volatile unsigned long *, unsigned long,
60 			  volatile unsigned long *, unsigned long);
61 
62 /*
63  * Note: some is the following is captured here to make degugging easier
64  * (the macros make more sense if you see the debug patch - not posted)
65  */
66 #define sn2_ptctest	0
67 #define local_node_uses_ptc_ga(sh1)	((sh1) ? 1 : 0)
68 #define max_active_pio(sh1)		((sh1) ? 32 : 7)
69 #define reset_max_active_on_deadlock()	1
70 #define PTC_LOCK(sh1)			((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
71 
72 struct ptc_stats {
73 	unsigned long ptc_l;
74 	unsigned long change_rid;
75 	unsigned long shub_ptc_flushes;
76 	unsigned long nodes_flushed;
77 	unsigned long deadlocks;
78 	unsigned long deadlocks2;
79 	unsigned long lock_itc_clocks;
80 	unsigned long shub_itc_clocks;
81 	unsigned long shub_itc_clocks_max;
82 	unsigned long shub_ptc_flushes_not_my_mm;
83 	unsigned long shub_ipi_flushes;
84 	unsigned long shub_ipi_flushes_itc_clocks;
85 };
86 
87 #define sn2_ptctest	0
88 
wait_piowc(void)89 static inline unsigned long wait_piowc(void)
90 {
91 	volatile unsigned long *piows;
92 	unsigned long zeroval, ws;
93 
94 	piows = pda->pio_write_status_addr;
95 	zeroval = pda->pio_write_status_val;
96 	do {
97 		cpu_relax();
98 	} while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
99 	return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
100 }
101 
102 /**
103  * sn_migrate - SN-specific task migration actions
104  * @task: Task being migrated to new CPU
105  *
106  * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
107  * Context switching user threads which have memory-mapped MMIO may cause
108  * PIOs to issue from separate CPUs, thus the PIO writes must be drained
109  * from the previous CPU's Shub before execution resumes on the new CPU.
110  */
sn_migrate(struct task_struct * task)111 void sn_migrate(struct task_struct *task)
112 {
113 	pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
114 	volatile unsigned long *adr = last_pda->pio_write_status_addr;
115 	unsigned long val = last_pda->pio_write_status_val;
116 
117 	/* Drain PIO writes from old CPU's Shub */
118 	while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
119 			!= val))
120 		cpu_relax();
121 }
122 
sn_tlb_migrate_finish(struct mm_struct * mm)123 void sn_tlb_migrate_finish(struct mm_struct *mm)
124 {
125 	/* flush_tlb_mm is inefficient if more than 1 users of mm */
126 	if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
127 		flush_tlb_mm(mm);
128 }
129 
130 static void
sn2_ipi_flush_all_tlb(struct mm_struct * mm)131 sn2_ipi_flush_all_tlb(struct mm_struct *mm)
132 {
133 	unsigned long itc;
134 
135 	itc = ia64_get_itc();
136 	smp_flush_tlb_cpumask(*mm_cpumask(mm));
137 	itc = ia64_get_itc() - itc;
138 	__get_cpu_var(ptcstats).shub_ipi_flushes_itc_clocks += itc;
139 	__get_cpu_var(ptcstats).shub_ipi_flushes++;
140 }
141 
142 /**
143  * sn2_global_tlb_purge - globally purge translation cache of virtual address range
144  * @mm: mm_struct containing virtual address range
145  * @start: start of virtual address range
146  * @end: end of virtual address range
147  * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
148  *
149  * Purges the translation caches of all processors of the given virtual address
150  * range.
151  *
152  * Note:
153  * 	- cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
154  * 	- cpu_vm_mask is converted into a nodemask of the nodes containing the
155  * 	  cpus in cpu_vm_mask.
156  *	- if only one bit is set in cpu_vm_mask & it is the current cpu & the
157  *	  process is purging its own virtual address range, then only the
158  *	  local TLB needs to be flushed. This flushing can be done using
159  *	  ptc.l. This is the common case & avoids the global spinlock.
160  *	- if multiple cpus have loaded the context, then flushing has to be
161  *	  done with ptc.g/MMRs under protection of the global ptc_lock.
162  */
163 
164 void
sn2_global_tlb_purge(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long nbits)165 sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
166 		     unsigned long end, unsigned long nbits)
167 {
168 	int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
169 	int mymm = (mm == current->active_mm && mm == current->mm);
170 	int use_cpu_ptcga;
171 	volatile unsigned long *ptc0, *ptc1;
172 	unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
173 	short nasids[MAX_NUMNODES], nix;
174 	nodemask_t nodes_flushed;
175 	int active, max_active, deadlock, flush_opt = sn2_flush_opt;
176 
177 	if (flush_opt > 2) {
178 		sn2_ipi_flush_all_tlb(mm);
179 		return;
180 	}
181 
182 	nodes_clear(nodes_flushed);
183 	i = 0;
184 
185 	for_each_cpu(cpu, mm_cpumask(mm)) {
186 		cnode = cpu_to_node(cpu);
187 		node_set(cnode, nodes_flushed);
188 		lcpu = cpu;
189 		i++;
190 	}
191 
192 	if (i == 0)
193 		return;
194 
195 	preempt_disable();
196 
197 	if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
198 		do {
199 			ia64_ptcl(start, nbits << 2);
200 			start += (1UL << nbits);
201 		} while (start < end);
202 		ia64_srlz_i();
203 		__get_cpu_var(ptcstats).ptc_l++;
204 		preempt_enable();
205 		return;
206 	}
207 
208 	if (atomic_read(&mm->mm_users) == 1 && mymm) {
209 		flush_tlb_mm(mm);
210 		__get_cpu_var(ptcstats).change_rid++;
211 		preempt_enable();
212 		return;
213 	}
214 
215 	if (flush_opt == 2) {
216 		sn2_ipi_flush_all_tlb(mm);
217 		preempt_enable();
218 		return;
219 	}
220 
221 	itc = ia64_get_itc();
222 	nix = 0;
223 	for_each_node_mask(cnode, nodes_flushed)
224 		nasids[nix++] = cnodeid_to_nasid(cnode);
225 
226 	rr_value = (mm->context << 3) | REGION_NUMBER(start);
227 
228 	shub1 = is_shub1();
229 	if (shub1) {
230 		data0 = (1UL << SH1_PTC_0_A_SHFT) |
231 		    	(nbits << SH1_PTC_0_PS_SHFT) |
232 			(rr_value << SH1_PTC_0_RID_SHFT) |
233 		    	(1UL << SH1_PTC_0_START_SHFT);
234 		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
235 		ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
236 	} else {
237 		data0 = (1UL << SH2_PTC_A_SHFT) |
238 			(nbits << SH2_PTC_PS_SHFT) |
239 		    	(1UL << SH2_PTC_START_SHFT);
240 		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC +
241 			(rr_value << SH2_PTC_RID_SHFT));
242 		ptc1 = NULL;
243 	}
244 
245 
246 	mynasid = get_nasid();
247 	use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
248 	max_active = max_active_pio(shub1);
249 
250 	itc = ia64_get_itc();
251 	spin_lock_irqsave(PTC_LOCK(shub1), flags);
252 	itc2 = ia64_get_itc();
253 
254 	__get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc;
255 	__get_cpu_var(ptcstats).shub_ptc_flushes++;
256 	__get_cpu_var(ptcstats).nodes_flushed += nix;
257 	if (!mymm)
258 		 __get_cpu_var(ptcstats).shub_ptc_flushes_not_my_mm++;
259 
260 	if (use_cpu_ptcga && !mymm) {
261 		old_rr = ia64_get_rr(start);
262 		ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
263 		ia64_srlz_d();
264 	}
265 
266 	wait_piowc();
267 	do {
268 		if (shub1)
269 			data1 = start | (1UL << SH1_PTC_1_START_SHFT);
270 		else
271 			data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
272 		deadlock = 0;
273 		active = 0;
274 		for (ibegin = 0, i = 0; i < nix; i++) {
275 			nasid = nasids[i];
276 			if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
277 				ia64_ptcga(start, nbits << 2);
278 				ia64_srlz_i();
279 			} else {
280 				ptc0 = CHANGE_NASID(nasid, ptc0);
281 				if (ptc1)
282 					ptc1 = CHANGE_NASID(nasid, ptc1);
283 				pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
284 				active++;
285 			}
286 			if (active >= max_active || i == (nix - 1)) {
287 				if ((deadlock = wait_piowc())) {
288 					if (flush_opt == 1)
289 						goto done;
290 					sn2_ptc_deadlock_recovery(nasids, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
291 					if (reset_max_active_on_deadlock())
292 						max_active = 1;
293 				}
294 				active = 0;
295 				ibegin = i + 1;
296 			}
297 		}
298 		start += (1UL << nbits);
299 	} while (start < end);
300 
301 done:
302 	itc2 = ia64_get_itc() - itc2;
303 	__get_cpu_var(ptcstats).shub_itc_clocks += itc2;
304 	if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max)
305 		__get_cpu_var(ptcstats).shub_itc_clocks_max = itc2;
306 
307 	if (old_rr) {
308 		ia64_set_rr(start, old_rr);
309 		ia64_srlz_d();
310 	}
311 
312 	spin_unlock_irqrestore(PTC_LOCK(shub1), flags);
313 
314 	if (flush_opt == 1 && deadlock) {
315 		__get_cpu_var(ptcstats).deadlocks++;
316 		sn2_ipi_flush_all_tlb(mm);
317 	}
318 
319 	preempt_enable();
320 }
321 
322 /*
323  * sn2_ptc_deadlock_recovery
324  *
325  * Recover from PTC deadlocks conditions. Recovery requires stepping thru each
326  * TLB flush transaction.  The recovery sequence is somewhat tricky & is
327  * coded in assembly language.
328  */
329 
330 void
sn2_ptc_deadlock_recovery(short * nasids,short ib,short ie,int mynasid,volatile unsigned long * ptc0,unsigned long data0,volatile unsigned long * ptc1,unsigned long data1)331 sn2_ptc_deadlock_recovery(short *nasids, short ib, short ie, int mynasid,
332 			  volatile unsigned long *ptc0, unsigned long data0,
333 			  volatile unsigned long *ptc1, unsigned long data1)
334 {
335 	short nasid, i;
336 	unsigned long *piows, zeroval, n;
337 
338 	__get_cpu_var(ptcstats).deadlocks++;
339 
340 	piows = (unsigned long *) pda->pio_write_status_addr;
341 	zeroval = pda->pio_write_status_val;
342 
343 
344 	for (i=ib; i <= ie; i++) {
345 		nasid = nasids[i];
346 		if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
347 			continue;
348 		ptc0 = CHANGE_NASID(nasid, ptc0);
349 		if (ptc1)
350 			ptc1 = CHANGE_NASID(nasid, ptc1);
351 
352 		n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
353 		__get_cpu_var(ptcstats).deadlocks2 += n;
354 	}
355 
356 }
357 
358 /**
359  * sn_send_IPI_phys - send an IPI to a Nasid and slice
360  * @nasid: nasid to receive the interrupt (may be outside partition)
361  * @physid: physical cpuid to receive the interrupt.
362  * @vector: command to send
363  * @delivery_mode: delivery mechanism
364  *
365  * Sends an IPI (interprocessor interrupt) to the processor specified by
366  * @physid
367  *
368  * @delivery_mode can be one of the following
369  *
370  * %IA64_IPI_DM_INT - pend an interrupt
371  * %IA64_IPI_DM_PMI - pend a PMI
372  * %IA64_IPI_DM_NMI - pend an NMI
373  * %IA64_IPI_DM_INIT - pend an INIT interrupt
374  */
sn_send_IPI_phys(int nasid,long physid,int vector,int delivery_mode)375 void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
376 {
377 	long val;
378 	unsigned long flags = 0;
379 	volatile long *p;
380 
381 	p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
382 	val = (1UL << SH_IPI_INT_SEND_SHFT) |
383 	    (physid << SH_IPI_INT_PID_SHFT) |
384 	    ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
385 	    ((long)vector << SH_IPI_INT_IDX_SHFT) |
386 	    (0x000feeUL << SH_IPI_INT_BASE_SHFT);
387 
388 	mb();
389 	if (enable_shub_wars_1_1()) {
390 		spin_lock_irqsave(&sn2_global_ptc_lock, flags);
391 	}
392 	pio_phys_write_mmr(p, val);
393 	if (enable_shub_wars_1_1()) {
394 		wait_piowc();
395 		spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
396 	}
397 
398 }
399 
400 EXPORT_SYMBOL(sn_send_IPI_phys);
401 
402 /**
403  * sn2_send_IPI - send an IPI to a processor
404  * @cpuid: target of the IPI
405  * @vector: command to send
406  * @delivery_mode: delivery mechanism
407  * @redirect: redirect the IPI?
408  *
409  * Sends an IPI (InterProcessor Interrupt) to the processor specified by
410  * @cpuid.  @vector specifies the command to send, while @delivery_mode can
411  * be one of the following
412  *
413  * %IA64_IPI_DM_INT - pend an interrupt
414  * %IA64_IPI_DM_PMI - pend a PMI
415  * %IA64_IPI_DM_NMI - pend an NMI
416  * %IA64_IPI_DM_INIT - pend an INIT interrupt
417  */
sn2_send_IPI(int cpuid,int vector,int delivery_mode,int redirect)418 void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
419 {
420 	long physid;
421 	int nasid;
422 
423 	physid = cpu_physical_id(cpuid);
424 	nasid = cpuid_to_nasid(cpuid);
425 
426 	/* the following is used only when starting cpus at boot time */
427 	if (unlikely(nasid == -1))
428 		ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
429 
430 	sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
431 }
432 
433 #ifdef CONFIG_HOTPLUG_CPU
434 /**
435  * sn_cpu_disable_allowed - Determine if a CPU can be disabled.
436  * @cpu - CPU that is requested to be disabled.
437  *
438  * CPU disable is only allowed on SHub2 systems running with a PROM
439  * that supports CPU disable. It is not permitted to disable the boot processor.
440  */
sn_cpu_disable_allowed(int cpu)441 bool sn_cpu_disable_allowed(int cpu)
442 {
443 	if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT)) {
444 		if (cpu != 0)
445 			return true;
446 		else
447 			printk(KERN_WARNING
448 			      "Disabling the boot processor is not allowed.\n");
449 
450 	} else
451 		printk(KERN_WARNING
452 		       "CPU disable is not supported on this system.\n");
453 
454 	return false;
455 }
456 #endif /* CONFIG_HOTPLUG_CPU */
457 
458 #ifdef CONFIG_PROC_FS
459 
460 #define PTC_BASENAME	"sgi_sn/ptc_statistics"
461 
sn2_ptc_seq_start(struct seq_file * file,loff_t * offset)462 static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
463 {
464 	if (*offset < nr_cpu_ids)
465 		return offset;
466 	return NULL;
467 }
468 
sn2_ptc_seq_next(struct seq_file * file,void * data,loff_t * offset)469 static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
470 {
471 	(*offset)++;
472 	if (*offset < nr_cpu_ids)
473 		return offset;
474 	return NULL;
475 }
476 
sn2_ptc_seq_stop(struct seq_file * file,void * data)477 static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
478 {
479 }
480 
sn2_ptc_seq_show(struct seq_file * file,void * data)481 static int sn2_ptc_seq_show(struct seq_file *file, void *data)
482 {
483 	struct ptc_stats *stat;
484 	int cpu;
485 
486 	cpu = *(loff_t *) data;
487 
488 	if (!cpu) {
489 		seq_printf(file,
490 			   "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
491 		seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt);
492 	}
493 
494 	if (cpu < nr_cpu_ids && cpu_online(cpu)) {
495 		stat = &per_cpu(ptcstats, cpu);
496 		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
497 				stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
498 				stat->deadlocks,
499 				1000 * stat->lock_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
500 				1000 * stat->shub_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
501 				1000 * stat->shub_itc_clocks_max / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
502 				stat->shub_ptc_flushes_not_my_mm,
503 				stat->deadlocks2,
504 				stat->shub_ipi_flushes,
505 				1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec);
506 	}
507 	return 0;
508 }
509 
sn2_ptc_proc_write(struct file * file,const char __user * user,size_t count,loff_t * data)510 static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data)
511 {
512 	int cpu;
513 	char optstr[64];
514 
515 	if (count == 0 || count > sizeof(optstr))
516 		return -EINVAL;
517 	if (copy_from_user(optstr, user, count))
518 		return -EFAULT;
519 	optstr[count - 1] = '\0';
520 	sn2_flush_opt = simple_strtoul(optstr, NULL, 0);
521 
522 	for_each_online_cpu(cpu)
523 		memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats));
524 
525 	return count;
526 }
527 
528 static const struct seq_operations sn2_ptc_seq_ops = {
529 	.start = sn2_ptc_seq_start,
530 	.next = sn2_ptc_seq_next,
531 	.stop = sn2_ptc_seq_stop,
532 	.show = sn2_ptc_seq_show
533 };
534 
sn2_ptc_proc_open(struct inode * inode,struct file * file)535 static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
536 {
537 	return seq_open(file, &sn2_ptc_seq_ops);
538 }
539 
540 static const struct file_operations proc_sn2_ptc_operations = {
541 	.open = sn2_ptc_proc_open,
542 	.read = seq_read,
543 	.write = sn2_ptc_proc_write,
544 	.llseek = seq_lseek,
545 	.release = seq_release,
546 };
547 
548 static struct proc_dir_entry *proc_sn2_ptc;
549 
sn2_ptc_init(void)550 static int __init sn2_ptc_init(void)
551 {
552 	if (!ia64_platform_is("sn2"))
553 		return 0;
554 
555 	proc_sn2_ptc = proc_create(PTC_BASENAME, 0444,
556 				   NULL, &proc_sn2_ptc_operations);
557 	if (!proc_sn2_ptc) {
558 		printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
559 		return -EINVAL;
560 	}
561 	spin_lock_init(&sn2_global_ptc_lock);
562 	return 0;
563 }
564 
sn2_ptc_exit(void)565 static void __exit sn2_ptc_exit(void)
566 {
567 	remove_proc_entry(PTC_BASENAME, NULL);
568 }
569 
570 module_init(sn2_ptc_init);
571 module_exit(sn2_ptc_exit);
572 #endif /* CONFIG_PROC_FS */
573 
574