1 /*
2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
3 * Copyright (c) 2001 Intel Corp.
4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5 * Copyright (c) 2002 NEC Corp.
6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7 * Copyright (c) 2004 Silicon Graphics, Inc
8 * Russ Anderson <rja@sgi.com>
9 * Jesse Barnes <jbarnes@sgi.com>
10 * Jack Steiner <steiner@sgi.com>
11 */
12
13 /*
14 * Platform initialization for Discontig Memory
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/nmi.h>
20 #include <linux/swap.h>
21 #include <linux/bootmem.h>
22 #include <linux/acpi.h>
23 #include <linux/efi.h>
24 #include <linux/nodemask.h>
25 #include <linux/slab.h>
26 #include <asm/pgalloc.h>
27 #include <asm/tlb.h>
28 #include <asm/meminit.h>
29 #include <asm/numa.h>
30 #include <asm/sections.h>
31
32 /*
33 * Track per-node information needed to setup the boot memory allocator, the
34 * per-node areas, and the real VM.
35 */
36 struct early_node_data {
37 struct ia64_node_data *node_data;
38 unsigned long pernode_addr;
39 unsigned long pernode_size;
40 unsigned long num_physpages;
41 #ifdef CONFIG_ZONE_DMA
42 unsigned long num_dma_physpages;
43 #endif
44 unsigned long min_pfn;
45 unsigned long max_pfn;
46 };
47
48 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
49 static nodemask_t memory_less_mask __initdata;
50
51 pg_data_t *pgdat_list[MAX_NUMNODES];
52
53 /*
54 * To prevent cache aliasing effects, align per-node structures so that they
55 * start at addresses that are strided by node number.
56 */
57 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
58 #define NODEDATA_ALIGN(addr, node) \
59 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
60 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
61
62 /**
63 * build_node_maps - callback to setup bootmem structs for each node
64 * @start: physical start of range
65 * @len: length of range
66 * @node: node where this range resides
67 *
68 * We allocate a struct bootmem_data for each piece of memory that we wish to
69 * treat as a virtually contiguous block (i.e. each node). Each such block
70 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
71 * if necessary. Any non-existent pages will simply be part of the virtual
72 * memmap. We also update min_low_pfn and max_low_pfn here as we receive
73 * memory ranges from the caller.
74 */
build_node_maps(unsigned long start,unsigned long len,int node)75 static int __init build_node_maps(unsigned long start, unsigned long len,
76 int node)
77 {
78 unsigned long spfn, epfn, end = start + len;
79 struct bootmem_data *bdp = &bootmem_node_data[node];
80
81 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
82 spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
83
84 if (!bdp->node_low_pfn) {
85 bdp->node_min_pfn = spfn;
86 bdp->node_low_pfn = epfn;
87 } else {
88 bdp->node_min_pfn = min(spfn, bdp->node_min_pfn);
89 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
90 }
91
92 return 0;
93 }
94
95 /**
96 * early_nr_cpus_node - return number of cpus on a given node
97 * @node: node to check
98 *
99 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
100 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
101 * called yet. Note that node 0 will also count all non-existent cpus.
102 */
early_nr_cpus_node(int node)103 static int __meminit early_nr_cpus_node(int node)
104 {
105 int cpu, n = 0;
106
107 for_each_possible_early_cpu(cpu)
108 if (node == node_cpuid[cpu].nid)
109 n++;
110
111 return n;
112 }
113
114 /**
115 * compute_pernodesize - compute size of pernode data
116 * @node: the node id.
117 */
compute_pernodesize(int node)118 static unsigned long __meminit compute_pernodesize(int node)
119 {
120 unsigned long pernodesize = 0, cpus;
121
122 cpus = early_nr_cpus_node(node);
123 pernodesize += PERCPU_PAGE_SIZE * cpus;
124 pernodesize += node * L1_CACHE_BYTES;
125 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
126 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
127 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
128 pernodesize = PAGE_ALIGN(pernodesize);
129 return pernodesize;
130 }
131
132 /**
133 * per_cpu_node_setup - setup per-cpu areas on each node
134 * @cpu_data: per-cpu area on this node
135 * @node: node to setup
136 *
137 * Copy the static per-cpu data into the region we just set aside and then
138 * setup __per_cpu_offset for each CPU on this node. Return a pointer to
139 * the end of the area.
140 */
per_cpu_node_setup(void * cpu_data,int node)141 static void *per_cpu_node_setup(void *cpu_data, int node)
142 {
143 #ifdef CONFIG_SMP
144 int cpu;
145
146 for_each_possible_early_cpu(cpu) {
147 void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
148
149 if (node != node_cpuid[cpu].nid)
150 continue;
151
152 memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
153 __per_cpu_offset[cpu] = (char *)__va(cpu_data) -
154 __per_cpu_start;
155
156 /*
157 * percpu area for cpu0 is moved from the __init area
158 * which is setup by head.S and used till this point.
159 * Update ar.k3. This move is ensures that percpu
160 * area for cpu0 is on the correct node and its
161 * virtual address isn't insanely far from other
162 * percpu areas which is important for congruent
163 * percpu allocator.
164 */
165 if (cpu == 0)
166 ia64_set_kr(IA64_KR_PER_CPU_DATA,
167 (unsigned long)cpu_data -
168 (unsigned long)__per_cpu_start);
169
170 cpu_data += PERCPU_PAGE_SIZE;
171 }
172 #endif
173 return cpu_data;
174 }
175
176 #ifdef CONFIG_SMP
177 /**
178 * setup_per_cpu_areas - setup percpu areas
179 *
180 * Arch code has already allocated and initialized percpu areas. All
181 * this function has to do is to teach the determined layout to the
182 * dynamic percpu allocator, which happens to be more complex than
183 * creating whole new ones using helpers.
184 */
setup_per_cpu_areas(void)185 void __init setup_per_cpu_areas(void)
186 {
187 struct pcpu_alloc_info *ai;
188 struct pcpu_group_info *uninitialized_var(gi);
189 unsigned int *cpu_map;
190 void *base;
191 unsigned long base_offset;
192 unsigned int cpu;
193 ssize_t static_size, reserved_size, dyn_size;
194 int node, prev_node, unit, nr_units, rc;
195
196 ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
197 if (!ai)
198 panic("failed to allocate pcpu_alloc_info");
199 cpu_map = ai->groups[0].cpu_map;
200
201 /* determine base */
202 base = (void *)ULONG_MAX;
203 for_each_possible_cpu(cpu)
204 base = min(base,
205 (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
206 base_offset = (void *)__per_cpu_start - base;
207
208 /* build cpu_map, units are grouped by node */
209 unit = 0;
210 for_each_node(node)
211 for_each_possible_cpu(cpu)
212 if (node == node_cpuid[cpu].nid)
213 cpu_map[unit++] = cpu;
214 nr_units = unit;
215
216 /* set basic parameters */
217 static_size = __per_cpu_end - __per_cpu_start;
218 reserved_size = PERCPU_MODULE_RESERVE;
219 dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
220 if (dyn_size < 0)
221 panic("percpu area overflow static=%zd reserved=%zd\n",
222 static_size, reserved_size);
223
224 ai->static_size = static_size;
225 ai->reserved_size = reserved_size;
226 ai->dyn_size = dyn_size;
227 ai->unit_size = PERCPU_PAGE_SIZE;
228 ai->atom_size = PAGE_SIZE;
229 ai->alloc_size = PERCPU_PAGE_SIZE;
230
231 /*
232 * CPUs are put into groups according to node. Walk cpu_map
233 * and create new groups at node boundaries.
234 */
235 prev_node = -1;
236 ai->nr_groups = 0;
237 for (unit = 0; unit < nr_units; unit++) {
238 cpu = cpu_map[unit];
239 node = node_cpuid[cpu].nid;
240
241 if (node == prev_node) {
242 gi->nr_units++;
243 continue;
244 }
245 prev_node = node;
246
247 gi = &ai->groups[ai->nr_groups++];
248 gi->nr_units = 1;
249 gi->base_offset = __per_cpu_offset[cpu] + base_offset;
250 gi->cpu_map = &cpu_map[unit];
251 }
252
253 rc = pcpu_setup_first_chunk(ai, base);
254 if (rc)
255 panic("failed to setup percpu area (err=%d)", rc);
256
257 pcpu_free_alloc_info(ai);
258 }
259 #endif
260
261 /**
262 * fill_pernode - initialize pernode data.
263 * @node: the node id.
264 * @pernode: physical address of pernode data
265 * @pernodesize: size of the pernode data
266 */
fill_pernode(int node,unsigned long pernode,unsigned long pernodesize)267 static void __init fill_pernode(int node, unsigned long pernode,
268 unsigned long pernodesize)
269 {
270 void *cpu_data;
271 int cpus = early_nr_cpus_node(node);
272 struct bootmem_data *bdp = &bootmem_node_data[node];
273
274 mem_data[node].pernode_addr = pernode;
275 mem_data[node].pernode_size = pernodesize;
276 memset(__va(pernode), 0, pernodesize);
277
278 cpu_data = (void *)pernode;
279 pernode += PERCPU_PAGE_SIZE * cpus;
280 pernode += node * L1_CACHE_BYTES;
281
282 pgdat_list[node] = __va(pernode);
283 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
284
285 mem_data[node].node_data = __va(pernode);
286 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
287
288 pgdat_list[node]->bdata = bdp;
289 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
290
291 cpu_data = per_cpu_node_setup(cpu_data, node);
292
293 return;
294 }
295
296 /**
297 * find_pernode_space - allocate memory for memory map and per-node structures
298 * @start: physical start of range
299 * @len: length of range
300 * @node: node where this range resides
301 *
302 * This routine reserves space for the per-cpu data struct, the list of
303 * pg_data_ts and the per-node data struct. Each node will have something like
304 * the following in the first chunk of addr. space large enough to hold it.
305 *
306 * ________________________
307 * | |
308 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
309 * | PERCPU_PAGE_SIZE * | start and length big enough
310 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
311 * |------------------------|
312 * | local pg_data_t * |
313 * |------------------------|
314 * | local ia64_node_data |
315 * |------------------------|
316 * | ??? |
317 * |________________________|
318 *
319 * Once this space has been set aside, the bootmem maps are initialized. We
320 * could probably move the allocation of the per-cpu and ia64_node_data space
321 * outside of this function and use alloc_bootmem_node(), but doing it here
322 * is straightforward and we get the alignments we want so...
323 */
find_pernode_space(unsigned long start,unsigned long len,int node)324 static int __init find_pernode_space(unsigned long start, unsigned long len,
325 int node)
326 {
327 unsigned long spfn, epfn;
328 unsigned long pernodesize = 0, pernode, pages, mapsize;
329 struct bootmem_data *bdp = &bootmem_node_data[node];
330
331 spfn = start >> PAGE_SHIFT;
332 epfn = (start + len) >> PAGE_SHIFT;
333
334 pages = bdp->node_low_pfn - bdp->node_min_pfn;
335 mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
336
337 /*
338 * Make sure this memory falls within this node's usable memory
339 * since we may have thrown some away in build_maps().
340 */
341 if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn)
342 return 0;
343
344 /* Don't setup this node's local space twice... */
345 if (mem_data[node].pernode_addr)
346 return 0;
347
348 /*
349 * Calculate total size needed, incl. what's necessary
350 * for good alignment and alias prevention.
351 */
352 pernodesize = compute_pernodesize(node);
353 pernode = NODEDATA_ALIGN(start, node);
354
355 /* Is this range big enough for what we want to store here? */
356 if (start + len > (pernode + pernodesize + mapsize))
357 fill_pernode(node, pernode, pernodesize);
358
359 return 0;
360 }
361
362 /**
363 * free_node_bootmem - free bootmem allocator memory for use
364 * @start: physical start of range
365 * @len: length of range
366 * @node: node where this range resides
367 *
368 * Simply calls the bootmem allocator to free the specified ranged from
369 * the given pg_data_t's bdata struct. After this function has been called
370 * for all the entries in the EFI memory map, the bootmem allocator will
371 * be ready to service allocation requests.
372 */
free_node_bootmem(unsigned long start,unsigned long len,int node)373 static int __init free_node_bootmem(unsigned long start, unsigned long len,
374 int node)
375 {
376 free_bootmem_node(pgdat_list[node], start, len);
377
378 return 0;
379 }
380
381 /**
382 * reserve_pernode_space - reserve memory for per-node space
383 *
384 * Reserve the space used by the bootmem maps & per-node space in the boot
385 * allocator so that when we actually create the real mem maps we don't
386 * use their memory.
387 */
reserve_pernode_space(void)388 static void __init reserve_pernode_space(void)
389 {
390 unsigned long base, size, pages;
391 struct bootmem_data *bdp;
392 int node;
393
394 for_each_online_node(node) {
395 pg_data_t *pdp = pgdat_list[node];
396
397 if (node_isset(node, memory_less_mask))
398 continue;
399
400 bdp = pdp->bdata;
401
402 /* First the bootmem_map itself */
403 pages = bdp->node_low_pfn - bdp->node_min_pfn;
404 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
405 base = __pa(bdp->node_bootmem_map);
406 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
407
408 /* Now the per-node space */
409 size = mem_data[node].pernode_size;
410 base = __pa(mem_data[node].pernode_addr);
411 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
412 }
413 }
414
scatter_node_data(void)415 static void __meminit scatter_node_data(void)
416 {
417 pg_data_t **dst;
418 int node;
419
420 /*
421 * for_each_online_node() can't be used at here.
422 * node_online_map is not set for hot-added nodes at this time,
423 * because we are halfway through initialization of the new node's
424 * structures. If for_each_online_node() is used, a new node's
425 * pg_data_ptrs will be not initialized. Instead of using it,
426 * pgdat_list[] is checked.
427 */
428 for_each_node(node) {
429 if (pgdat_list[node]) {
430 dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
431 memcpy(dst, pgdat_list, sizeof(pgdat_list));
432 }
433 }
434 }
435
436 /**
437 * initialize_pernode_data - fixup per-cpu & per-node pointers
438 *
439 * Each node's per-node area has a copy of the global pg_data_t list, so
440 * we copy that to each node here, as well as setting the per-cpu pointer
441 * to the local node data structure. The active_cpus field of the per-node
442 * structure gets setup by the platform_cpu_init() function later.
443 */
initialize_pernode_data(void)444 static void __init initialize_pernode_data(void)
445 {
446 int cpu, node;
447
448 scatter_node_data();
449
450 #ifdef CONFIG_SMP
451 /* Set the node_data pointer for each per-cpu struct */
452 for_each_possible_early_cpu(cpu) {
453 node = node_cpuid[cpu].nid;
454 per_cpu(ia64_cpu_info, cpu).node_data =
455 mem_data[node].node_data;
456 }
457 #else
458 {
459 struct cpuinfo_ia64 *cpu0_cpu_info;
460 cpu = 0;
461 node = node_cpuid[cpu].nid;
462 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
463 ((char *)&ia64_cpu_info - __per_cpu_start));
464 cpu0_cpu_info->node_data = mem_data[node].node_data;
465 }
466 #endif /* CONFIG_SMP */
467 }
468
469 /**
470 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
471 * node but fall back to any other node when __alloc_bootmem_node fails
472 * for best.
473 * @nid: node id
474 * @pernodesize: size of this node's pernode data
475 */
memory_less_node_alloc(int nid,unsigned long pernodesize)476 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
477 {
478 void *ptr = NULL;
479 u8 best = 0xff;
480 int bestnode = -1, node, anynode = 0;
481
482 for_each_online_node(node) {
483 if (node_isset(node, memory_less_mask))
484 continue;
485 else if (node_distance(nid, node) < best) {
486 best = node_distance(nid, node);
487 bestnode = node;
488 }
489 anynode = node;
490 }
491
492 if (bestnode == -1)
493 bestnode = anynode;
494
495 ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
496 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
497
498 return ptr;
499 }
500
501 /**
502 * memory_less_nodes - allocate and initialize CPU only nodes pernode
503 * information.
504 */
memory_less_nodes(void)505 static void __init memory_less_nodes(void)
506 {
507 unsigned long pernodesize;
508 void *pernode;
509 int node;
510
511 for_each_node_mask(node, memory_less_mask) {
512 pernodesize = compute_pernodesize(node);
513 pernode = memory_less_node_alloc(node, pernodesize);
514 fill_pernode(node, __pa(pernode), pernodesize);
515 }
516
517 return;
518 }
519
520 /**
521 * find_memory - walk the EFI memory map and setup the bootmem allocator
522 *
523 * Called early in boot to setup the bootmem allocator, and to
524 * allocate the per-cpu and per-node structures.
525 */
find_memory(void)526 void __init find_memory(void)
527 {
528 int node;
529
530 reserve_memory();
531
532 if (num_online_nodes() == 0) {
533 printk(KERN_ERR "node info missing!\n");
534 node_set_online(0);
535 }
536
537 nodes_or(memory_less_mask, memory_less_mask, node_online_map);
538 min_low_pfn = -1;
539 max_low_pfn = 0;
540
541 /* These actually end up getting called by call_pernode_memory() */
542 efi_memmap_walk(filter_rsvd_memory, build_node_maps);
543 efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
544 efi_memmap_walk(find_max_min_low_pfn, NULL);
545
546 for_each_online_node(node)
547 if (bootmem_node_data[node].node_low_pfn) {
548 node_clear(node, memory_less_mask);
549 mem_data[node].min_pfn = ~0UL;
550 }
551
552 efi_memmap_walk(filter_memory, register_active_ranges);
553
554 /*
555 * Initialize the boot memory maps in reverse order since that's
556 * what the bootmem allocator expects
557 */
558 for (node = MAX_NUMNODES - 1; node >= 0; node--) {
559 unsigned long pernode, pernodesize, map;
560 struct bootmem_data *bdp;
561
562 if (!node_online(node))
563 continue;
564 else if (node_isset(node, memory_less_mask))
565 continue;
566
567 bdp = &bootmem_node_data[node];
568 pernode = mem_data[node].pernode_addr;
569 pernodesize = mem_data[node].pernode_size;
570 map = pernode + pernodesize;
571
572 init_bootmem_node(pgdat_list[node],
573 map>>PAGE_SHIFT,
574 bdp->node_min_pfn,
575 bdp->node_low_pfn);
576 }
577
578 efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
579
580 reserve_pernode_space();
581 memory_less_nodes();
582 initialize_pernode_data();
583
584 max_pfn = max_low_pfn;
585
586 find_initrd();
587 }
588
589 #ifdef CONFIG_SMP
590 /**
591 * per_cpu_init - setup per-cpu variables
592 *
593 * find_pernode_space() does most of this already, we just need to set
594 * local_per_cpu_offset
595 */
per_cpu_init(void)596 void __cpuinit *per_cpu_init(void)
597 {
598 int cpu;
599 static int first_time = 1;
600
601 if (first_time) {
602 first_time = 0;
603 for_each_possible_early_cpu(cpu)
604 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
605 }
606
607 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
608 }
609 #endif /* CONFIG_SMP */
610
611 /**
612 * show_mem - give short summary of memory stats
613 *
614 * Shows a simple page count of reserved and used pages in the system.
615 * For discontig machines, it does this on a per-pgdat basis.
616 */
show_mem(unsigned int filter)617 void show_mem(unsigned int filter)
618 {
619 int i, total_reserved = 0;
620 int total_shared = 0, total_cached = 0;
621 unsigned long total_present = 0;
622 pg_data_t *pgdat;
623
624 printk(KERN_INFO "Mem-info:\n");
625 show_free_areas();
626 printk(KERN_INFO "Node memory in pages:\n");
627 for_each_online_pgdat(pgdat) {
628 unsigned long present;
629 unsigned long flags;
630 int shared = 0, cached = 0, reserved = 0;
631
632 pgdat_resize_lock(pgdat, &flags);
633 present = pgdat->node_present_pages;
634 for(i = 0; i < pgdat->node_spanned_pages; i++) {
635 struct page *page;
636 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
637 touch_nmi_watchdog();
638 if (pfn_valid(pgdat->node_start_pfn + i))
639 page = pfn_to_page(pgdat->node_start_pfn + i);
640 else {
641 i = vmemmap_find_next_valid_pfn(pgdat->node_id,
642 i) - 1;
643 continue;
644 }
645 if (PageReserved(page))
646 reserved++;
647 else if (PageSwapCache(page))
648 cached++;
649 else if (page_count(page))
650 shared += page_count(page)-1;
651 }
652 pgdat_resize_unlock(pgdat, &flags);
653 total_present += present;
654 total_reserved += reserved;
655 total_cached += cached;
656 total_shared += shared;
657 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
658 "shrd: %10d, swpd: %10d\n", pgdat->node_id,
659 present, reserved, shared, cached);
660 }
661 printk(KERN_INFO "%ld pages of RAM\n", total_present);
662 printk(KERN_INFO "%d reserved pages\n", total_reserved);
663 printk(KERN_INFO "%d pages shared\n", total_shared);
664 printk(KERN_INFO "%d pages swap cached\n", total_cached);
665 printk(KERN_INFO "Total of %ld pages in page table cache\n",
666 quicklist_total_size());
667 printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
668 }
669
670 /**
671 * call_pernode_memory - use SRAT to call callback functions with node info
672 * @start: physical start of range
673 * @len: length of range
674 * @arg: function to call for each range
675 *
676 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
677 * out to which node a block of memory belongs. Ignore memory that we cannot
678 * identify, and split blocks that run across multiple nodes.
679 *
680 * Take this opportunity to round the start address up and the end address
681 * down to page boundaries.
682 */
call_pernode_memory(unsigned long start,unsigned long len,void * arg)683 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
684 {
685 unsigned long rs, re, end = start + len;
686 void (*func)(unsigned long, unsigned long, int);
687 int i;
688
689 start = PAGE_ALIGN(start);
690 end &= PAGE_MASK;
691 if (start >= end)
692 return;
693
694 func = arg;
695
696 if (!num_node_memblks) {
697 /* No SRAT table, so assume one node (node 0) */
698 if (start < end)
699 (*func)(start, end - start, 0);
700 return;
701 }
702
703 for (i = 0; i < num_node_memblks; i++) {
704 rs = max(start, node_memblk[i].start_paddr);
705 re = min(end, node_memblk[i].start_paddr +
706 node_memblk[i].size);
707
708 if (rs < re)
709 (*func)(rs, re - rs, node_memblk[i].nid);
710
711 if (re == end)
712 break;
713 }
714 }
715
716 /**
717 * count_node_pages - callback to build per-node memory info structures
718 * @start: physical start of range
719 * @len: length of range
720 * @node: node where this range resides
721 *
722 * Each node has it's own number of physical pages, DMAable pages, start, and
723 * end page frame number. This routine will be called by call_pernode_memory()
724 * for each piece of usable memory and will setup these values for each node.
725 * Very similar to build_maps().
726 */
count_node_pages(unsigned long start,unsigned long len,int node)727 static __init int count_node_pages(unsigned long start, unsigned long len, int node)
728 {
729 unsigned long end = start + len;
730
731 mem_data[node].num_physpages += len >> PAGE_SHIFT;
732 #ifdef CONFIG_ZONE_DMA
733 if (start <= __pa(MAX_DMA_ADDRESS))
734 mem_data[node].num_dma_physpages +=
735 (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
736 #endif
737 start = GRANULEROUNDDOWN(start);
738 end = GRANULEROUNDUP(end);
739 mem_data[node].max_pfn = max(mem_data[node].max_pfn,
740 end >> PAGE_SHIFT);
741 mem_data[node].min_pfn = min(mem_data[node].min_pfn,
742 start >> PAGE_SHIFT);
743
744 return 0;
745 }
746
747 /**
748 * paging_init - setup page tables
749 *
750 * paging_init() sets up the page tables for each node of the system and frees
751 * the bootmem allocator memory for general use.
752 */
paging_init(void)753 void __init paging_init(void)
754 {
755 unsigned long max_dma;
756 unsigned long pfn_offset = 0;
757 unsigned long max_pfn = 0;
758 int node;
759 unsigned long max_zone_pfns[MAX_NR_ZONES];
760
761 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
762
763 efi_memmap_walk(filter_rsvd_memory, count_node_pages);
764
765 sparse_memory_present_with_active_regions(MAX_NUMNODES);
766 sparse_init();
767
768 #ifdef CONFIG_VIRTUAL_MEM_MAP
769 VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
770 sizeof(struct page));
771 vmem_map = (struct page *) VMALLOC_END;
772 efi_memmap_walk(create_mem_map_page_table, NULL);
773 printk("Virtual mem_map starts at 0x%p\n", vmem_map);
774 #endif
775
776 for_each_online_node(node) {
777 num_physpages += mem_data[node].num_physpages;
778 pfn_offset = mem_data[node].min_pfn;
779
780 #ifdef CONFIG_VIRTUAL_MEM_MAP
781 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
782 #endif
783 if (mem_data[node].max_pfn > max_pfn)
784 max_pfn = mem_data[node].max_pfn;
785 }
786
787 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
788 #ifdef CONFIG_ZONE_DMA
789 max_zone_pfns[ZONE_DMA] = max_dma;
790 #endif
791 max_zone_pfns[ZONE_NORMAL] = max_pfn;
792 free_area_init_nodes(max_zone_pfns);
793
794 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
795 }
796
797 #ifdef CONFIG_MEMORY_HOTPLUG
arch_alloc_nodedata(int nid)798 pg_data_t *arch_alloc_nodedata(int nid)
799 {
800 unsigned long size = compute_pernodesize(nid);
801
802 return kzalloc(size, GFP_KERNEL);
803 }
804
arch_free_nodedata(pg_data_t * pgdat)805 void arch_free_nodedata(pg_data_t *pgdat)
806 {
807 kfree(pgdat);
808 }
809
arch_refresh_nodedata(int update_node,pg_data_t * update_pgdat)810 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
811 {
812 pgdat_list[update_node] = update_pgdat;
813 scatter_node_data();
814 }
815 #endif
816
817 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmemmap_populate(struct page * start_page,unsigned long size,int node)818 int __meminit vmemmap_populate(struct page *start_page,
819 unsigned long size, int node)
820 {
821 return vmemmap_populate_basepages(start_page, size, node);
822 }
823 #endif
824