1 /*
2  * Architecture-specific unaligned trap handling.
3  *
4  * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
5  *	Stephane Eranian <eranian@hpl.hp.com>
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  *
8  * 2002/12/09   Fix rotating register handling (off-by-1 error, missing fr-rotation).  Fix
9  *		get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
10  *		stacked register returns an undefined value; it does NOT trigger a
11  *		"rsvd register fault").
12  * 2001/10/11	Fix unaligned access to rotating registers in s/w pipelined loops.
13  * 2001/08/13	Correct size of extended floats (float_fsz) from 16 to 10 bytes.
14  * 2001/01/17	Add support emulation of unaligned kernel accesses.
15  */
16 #include <linux/jiffies.h>
17 #include <linux/kernel.h>
18 #include <linux/sched.h>
19 #include <linux/tty.h>
20 #include <linux/ratelimit.h>
21 
22 #include <asm/intrinsics.h>
23 #include <asm/processor.h>
24 #include <asm/rse.h>
25 #include <asm/uaccess.h>
26 #include <asm/unaligned.h>
27 
28 extern int die_if_kernel(char *str, struct pt_regs *regs, long err);
29 
30 #undef DEBUG_UNALIGNED_TRAP
31 
32 #ifdef DEBUG_UNALIGNED_TRAP
33 # define DPRINT(a...)	do { printk("%s %u: ", __func__, __LINE__); printk (a); } while (0)
34 # define DDUMP(str,vp,len)	dump(str, vp, len)
35 
36 static void
dump(const char * str,void * vp,size_t len)37 dump (const char *str, void *vp, size_t len)
38 {
39 	unsigned char *cp = vp;
40 	int i;
41 
42 	printk("%s", str);
43 	for (i = 0; i < len; ++i)
44 		printk (" %02x", *cp++);
45 	printk("\n");
46 }
47 #else
48 # define DPRINT(a...)
49 # define DDUMP(str,vp,len)
50 #endif
51 
52 #define IA64_FIRST_STACKED_GR	32
53 #define IA64_FIRST_ROTATING_FR	32
54 #define SIGN_EXT9		0xffffffffffffff00ul
55 
56 /*
57  *  sysctl settable hook which tells the kernel whether to honor the
58  *  IA64_THREAD_UAC_NOPRINT prctl.  Because this is user settable, we want
59  *  to allow the super user to enable/disable this for security reasons
60  *  (i.e. don't allow attacker to fill up logs with unaligned accesses).
61  */
62 int no_unaligned_warning;
63 int unaligned_dump_stack;
64 
65 /*
66  * For M-unit:
67  *
68  *  opcode |   m  |   x6    |
69  * --------|------|---------|
70  * [40-37] | [36] | [35:30] |
71  * --------|------|---------|
72  *     4   |   1  |    6    | = 11 bits
73  * --------------------------
74  * However bits [31:30] are not directly useful to distinguish between
75  * load/store so we can use [35:32] instead, which gives the following
76  * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
77  * checking the m-bit until later in the load/store emulation.
78  */
79 #define IA64_OPCODE_MASK	0x1ef
80 #define IA64_OPCODE_SHIFT	32
81 
82 /*
83  * Table C-28 Integer Load/Store
84  *
85  * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
86  *
87  * ld8.fill, st8.fill  MUST be aligned because the RNATs are based on
88  * the address (bits [8:3]), so we must failed.
89  */
90 #define LD_OP            0x080
91 #define LDS_OP           0x081
92 #define LDA_OP           0x082
93 #define LDSA_OP          0x083
94 #define LDBIAS_OP        0x084
95 #define LDACQ_OP         0x085
96 /* 0x086, 0x087 are not relevant */
97 #define LDCCLR_OP        0x088
98 #define LDCNC_OP         0x089
99 #define LDCCLRACQ_OP     0x08a
100 #define ST_OP            0x08c
101 #define STREL_OP         0x08d
102 /* 0x08e,0x8f are not relevant */
103 
104 /*
105  * Table C-29 Integer Load +Reg
106  *
107  * we use the ld->m (bit [36:36]) field to determine whether or not we have
108  * a load/store of this form.
109  */
110 
111 /*
112  * Table C-30 Integer Load/Store +Imm
113  *
114  * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
115  *
116  * ld8.fill, st8.fill  must be aligned because the Nat register are based on
117  * the address, so we must fail and the program must be fixed.
118  */
119 #define LD_IMM_OP            0x0a0
120 #define LDS_IMM_OP           0x0a1
121 #define LDA_IMM_OP           0x0a2
122 #define LDSA_IMM_OP          0x0a3
123 #define LDBIAS_IMM_OP        0x0a4
124 #define LDACQ_IMM_OP         0x0a5
125 /* 0x0a6, 0xa7 are not relevant */
126 #define LDCCLR_IMM_OP        0x0a8
127 #define LDCNC_IMM_OP         0x0a9
128 #define LDCCLRACQ_IMM_OP     0x0aa
129 #define ST_IMM_OP            0x0ac
130 #define STREL_IMM_OP         0x0ad
131 /* 0x0ae,0xaf are not relevant */
132 
133 /*
134  * Table C-32 Floating-point Load/Store
135  */
136 #define LDF_OP           0x0c0
137 #define LDFS_OP          0x0c1
138 #define LDFA_OP          0x0c2
139 #define LDFSA_OP         0x0c3
140 /* 0x0c6 is irrelevant */
141 #define LDFCCLR_OP       0x0c8
142 #define LDFCNC_OP        0x0c9
143 /* 0x0cb is irrelevant  */
144 #define STF_OP           0x0cc
145 
146 /*
147  * Table C-33 Floating-point Load +Reg
148  *
149  * we use the ld->m (bit [36:36]) field to determine whether or not we have
150  * a load/store of this form.
151  */
152 
153 /*
154  * Table C-34 Floating-point Load/Store +Imm
155  */
156 #define LDF_IMM_OP       0x0e0
157 #define LDFS_IMM_OP      0x0e1
158 #define LDFA_IMM_OP      0x0e2
159 #define LDFSA_IMM_OP     0x0e3
160 /* 0x0e6 is irrelevant */
161 #define LDFCCLR_IMM_OP   0x0e8
162 #define LDFCNC_IMM_OP    0x0e9
163 #define STF_IMM_OP       0x0ec
164 
165 typedef struct {
166 	unsigned long	 qp:6;	/* [0:5]   */
167 	unsigned long    r1:7;	/* [6:12]  */
168 	unsigned long   imm:7;	/* [13:19] */
169 	unsigned long    r3:7;	/* [20:26] */
170 	unsigned long     x:1;  /* [27:27] */
171 	unsigned long  hint:2;	/* [28:29] */
172 	unsigned long x6_sz:2;	/* [30:31] */
173 	unsigned long x6_op:4;	/* [32:35], x6 = x6_sz|x6_op */
174 	unsigned long     m:1;	/* [36:36] */
175 	unsigned long    op:4;	/* [37:40] */
176 	unsigned long   pad:23; /* [41:63] */
177 } load_store_t;
178 
179 
180 typedef enum {
181 	UPD_IMMEDIATE,	/* ldXZ r1=[r3],imm(9) */
182 	UPD_REG		/* ldXZ r1=[r3],r2     */
183 } update_t;
184 
185 /*
186  * We use tables to keep track of the offsets of registers in the saved state.
187  * This way we save having big switch/case statements.
188  *
189  * We use bit 0 to indicate switch_stack or pt_regs.
190  * The offset is simply shifted by 1 bit.
191  * A 2-byte value should be enough to hold any kind of offset
192  *
193  * In case the calling convention changes (and thus pt_regs/switch_stack)
194  * simply use RSW instead of RPT or vice-versa.
195  */
196 
197 #define RPO(x)	((size_t) &((struct pt_regs *)0)->x)
198 #define RSO(x)	((size_t) &((struct switch_stack *)0)->x)
199 
200 #define RPT(x)		(RPO(x) << 1)
201 #define RSW(x)		(1| RSO(x)<<1)
202 
203 #define GR_OFFS(x)	(gr_info[x]>>1)
204 #define GR_IN_SW(x)	(gr_info[x] & 0x1)
205 
206 #define FR_OFFS(x)	(fr_info[x]>>1)
207 #define FR_IN_SW(x)	(fr_info[x] & 0x1)
208 
209 static u16 gr_info[32]={
210 	0,			/* r0 is read-only : WE SHOULD NEVER GET THIS */
211 
212 	RPT(r1), RPT(r2), RPT(r3),
213 
214 	RSW(r4), RSW(r5), RSW(r6), RSW(r7),
215 
216 	RPT(r8), RPT(r9), RPT(r10), RPT(r11),
217 	RPT(r12), RPT(r13), RPT(r14), RPT(r15),
218 
219 	RPT(r16), RPT(r17), RPT(r18), RPT(r19),
220 	RPT(r20), RPT(r21), RPT(r22), RPT(r23),
221 	RPT(r24), RPT(r25), RPT(r26), RPT(r27),
222 	RPT(r28), RPT(r29), RPT(r30), RPT(r31)
223 };
224 
225 static u16 fr_info[32]={
226 	0,			/* constant : WE SHOULD NEVER GET THIS */
227 	0,			/* constant : WE SHOULD NEVER GET THIS */
228 
229 	RSW(f2), RSW(f3), RSW(f4), RSW(f5),
230 
231 	RPT(f6), RPT(f7), RPT(f8), RPT(f9),
232 	RPT(f10), RPT(f11),
233 
234 	RSW(f12), RSW(f13), RSW(f14),
235 	RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19),
236 	RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24),
237 	RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29),
238 	RSW(f30), RSW(f31)
239 };
240 
241 /* Invalidate ALAT entry for integer register REGNO.  */
242 static void
invala_gr(int regno)243 invala_gr (int regno)
244 {
245 #	define F(reg)	case reg: ia64_invala_gr(reg); break
246 
247 	switch (regno) {
248 		F(  0); F(  1); F(  2); F(  3); F(  4); F(  5); F(  6); F(  7);
249 		F(  8); F(  9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
250 		F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
251 		F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
252 		F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
253 		F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
254 		F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
255 		F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
256 		F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
257 		F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
258 		F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
259 		F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
260 		F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
261 		F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
262 		F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
263 		F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
264 	}
265 #	undef F
266 }
267 
268 /* Invalidate ALAT entry for floating-point register REGNO.  */
269 static void
invala_fr(int regno)270 invala_fr (int regno)
271 {
272 #	define F(reg)	case reg: ia64_invala_fr(reg); break
273 
274 	switch (regno) {
275 		F(  0); F(  1); F(  2); F(  3); F(  4); F(  5); F(  6); F(  7);
276 		F(  8); F(  9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
277 		F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
278 		F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
279 		F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
280 		F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
281 		F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
282 		F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
283 		F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
284 		F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
285 		F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
286 		F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
287 		F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
288 		F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
289 		F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
290 		F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
291 	}
292 #	undef F
293 }
294 
295 static inline unsigned long
rotate_reg(unsigned long sor,unsigned long rrb,unsigned long reg)296 rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg)
297 {
298 	reg += rrb;
299 	if (reg >= sor)
300 		reg -= sor;
301 	return reg;
302 }
303 
304 static void
set_rse_reg(struct pt_regs * regs,unsigned long r1,unsigned long val,int nat)305 set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat)
306 {
307 	struct switch_stack *sw = (struct switch_stack *) regs - 1;
308 	unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end;
309 	unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
310 	unsigned long rnats, nat_mask;
311 	unsigned long on_kbs;
312 	long sof = (regs->cr_ifs) & 0x7f;
313 	long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
314 	long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
315 	long ridx = r1 - 32;
316 
317 	if (ridx >= sof) {
318 		/* this should never happen, as the "rsvd register fault" has higher priority */
319 		DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof);
320 		return;
321 	}
322 
323 	if (ridx < sor)
324 		ridx = rotate_reg(sor, rrb_gr, ridx);
325 
326 	DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
327 	       r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
328 
329 	on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
330 	addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
331 	if (addr >= kbs) {
332 		/* the register is on the kernel backing store: easy... */
333 		rnat_addr = ia64_rse_rnat_addr(addr);
334 		if ((unsigned long) rnat_addr >= sw->ar_bspstore)
335 			rnat_addr = &sw->ar_rnat;
336 		nat_mask = 1UL << ia64_rse_slot_num(addr);
337 
338 		*addr = val;
339 		if (nat)
340 			*rnat_addr |=  nat_mask;
341 		else
342 			*rnat_addr &= ~nat_mask;
343 		return;
344 	}
345 
346 	if (!user_stack(current, regs)) {
347 		DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1);
348 		return;
349 	}
350 
351 	bspstore = (unsigned long *)regs->ar_bspstore;
352 	ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
353 	bsp     = ia64_rse_skip_regs(ubs_end, -sof);
354 	addr    = ia64_rse_skip_regs(bsp, ridx);
355 
356 	DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
357 
358 	ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
359 
360 	rnat_addr = ia64_rse_rnat_addr(addr);
361 
362 	ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
363 	DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
364 	       (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1);
365 
366 	nat_mask = 1UL << ia64_rse_slot_num(addr);
367 	if (nat)
368 		rnats |=  nat_mask;
369 	else
370 		rnats &= ~nat_mask;
371 	ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats);
372 
373 	DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats);
374 }
375 
376 
377 static void
get_rse_reg(struct pt_regs * regs,unsigned long r1,unsigned long * val,int * nat)378 get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat)
379 {
380 	struct switch_stack *sw = (struct switch_stack *) regs - 1;
381 	unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore;
382 	unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
383 	unsigned long rnats, nat_mask;
384 	unsigned long on_kbs;
385 	long sof = (regs->cr_ifs) & 0x7f;
386 	long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
387 	long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
388 	long ridx = r1 - 32;
389 
390 	if (ridx >= sof) {
391 		/* read of out-of-frame register returns an undefined value; 0 in our case.  */
392 		DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof);
393 		goto fail;
394 	}
395 
396 	if (ridx < sor)
397 		ridx = rotate_reg(sor, rrb_gr, ridx);
398 
399 	DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
400 	       r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
401 
402 	on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
403 	addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
404 	if (addr >= kbs) {
405 		/* the register is on the kernel backing store: easy... */
406 		*val = *addr;
407 		if (nat) {
408 			rnat_addr = ia64_rse_rnat_addr(addr);
409 			if ((unsigned long) rnat_addr >= sw->ar_bspstore)
410 				rnat_addr = &sw->ar_rnat;
411 			nat_mask = 1UL << ia64_rse_slot_num(addr);
412 			*nat = (*rnat_addr & nat_mask) != 0;
413 		}
414 		return;
415 	}
416 
417 	if (!user_stack(current, regs)) {
418 		DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1);
419 		goto fail;
420 	}
421 
422 	bspstore = (unsigned long *)regs->ar_bspstore;
423 	ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
424 	bsp     = ia64_rse_skip_regs(ubs_end, -sof);
425 	addr    = ia64_rse_skip_regs(bsp, ridx);
426 
427 	DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
428 
429 	ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
430 
431 	if (nat) {
432 		rnat_addr = ia64_rse_rnat_addr(addr);
433 		nat_mask = 1UL << ia64_rse_slot_num(addr);
434 
435 		DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats);
436 
437 		ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
438 		*nat = (rnats & nat_mask) != 0;
439 	}
440 	return;
441 
442   fail:
443 	*val = 0;
444 	if (nat)
445 		*nat = 0;
446 	return;
447 }
448 
449 
450 static void
setreg(unsigned long regnum,unsigned long val,int nat,struct pt_regs * regs)451 setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs)
452 {
453 	struct switch_stack *sw = (struct switch_stack *) regs - 1;
454 	unsigned long addr;
455 	unsigned long bitmask;
456 	unsigned long *unat;
457 
458 	/*
459 	 * First takes care of stacked registers
460 	 */
461 	if (regnum >= IA64_FIRST_STACKED_GR) {
462 		set_rse_reg(regs, regnum, val, nat);
463 		return;
464 	}
465 
466 	/*
467 	 * Using r0 as a target raises a General Exception fault which has higher priority
468 	 * than the Unaligned Reference fault.
469 	 */
470 
471 	/*
472 	 * Now look at registers in [0-31] range and init correct UNAT
473 	 */
474 	if (GR_IN_SW(regnum)) {
475 		addr = (unsigned long)sw;
476 		unat = &sw->ar_unat;
477 	} else {
478 		addr = (unsigned long)regs;
479 		unat = &sw->caller_unat;
480 	}
481 	DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
482 	       addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum));
483 	/*
484 	 * add offset from base of struct
485 	 * and do it !
486 	 */
487 	addr += GR_OFFS(regnum);
488 
489 	*(unsigned long *)addr = val;
490 
491 	/*
492 	 * We need to clear the corresponding UNAT bit to fully emulate the load
493 	 * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
494 	 */
495 	bitmask   = 1UL << (addr >> 3 & 0x3f);
496 	DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat);
497 	if (nat) {
498 		*unat |= bitmask;
499 	} else {
500 		*unat &= ~bitmask;
501 	}
502 	DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat);
503 }
504 
505 /*
506  * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
507  * range from 32-127, result is in the range from 0-95.
508  */
509 static inline unsigned long
fph_index(struct pt_regs * regs,long regnum)510 fph_index (struct pt_regs *regs, long regnum)
511 {
512 	unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
513 	return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
514 }
515 
516 static void
setfpreg(unsigned long regnum,struct ia64_fpreg * fpval,struct pt_regs * regs)517 setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
518 {
519 	struct switch_stack *sw = (struct switch_stack *)regs - 1;
520 	unsigned long addr;
521 
522 	/*
523 	 * From EAS-2.5: FPDisableFault has higher priority than Unaligned
524 	 * Fault. Thus, when we get here, we know the partition is enabled.
525 	 * To update f32-f127, there are three choices:
526 	 *
527 	 *	(1) save f32-f127 to thread.fph and update the values there
528 	 *	(2) use a gigantic switch statement to directly access the registers
529 	 *	(3) generate code on the fly to update the desired register
530 	 *
531 	 * For now, we are using approach (1).
532 	 */
533 	if (regnum >= IA64_FIRST_ROTATING_FR) {
534 		ia64_sync_fph(current);
535 		current->thread.fph[fph_index(regs, regnum)] = *fpval;
536 	} else {
537 		/*
538 		 * pt_regs or switch_stack ?
539 		 */
540 		if (FR_IN_SW(regnum)) {
541 			addr = (unsigned long)sw;
542 		} else {
543 			addr = (unsigned long)regs;
544 		}
545 
546 		DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum));
547 
548 		addr += FR_OFFS(regnum);
549 		*(struct ia64_fpreg *)addr = *fpval;
550 
551 		/*
552 		 * mark the low partition as being used now
553 		 *
554 		 * It is highly unlikely that this bit is not already set, but
555 		 * let's do it for safety.
556 		 */
557 		regs->cr_ipsr |= IA64_PSR_MFL;
558 	}
559 }
560 
561 /*
562  * Those 2 inline functions generate the spilled versions of the constant floating point
563  * registers which can be used with stfX
564  */
565 static inline void
float_spill_f0(struct ia64_fpreg * final)566 float_spill_f0 (struct ia64_fpreg *final)
567 {
568 	ia64_stf_spill(final, 0);
569 }
570 
571 static inline void
float_spill_f1(struct ia64_fpreg * final)572 float_spill_f1 (struct ia64_fpreg *final)
573 {
574 	ia64_stf_spill(final, 1);
575 }
576 
577 static void
getfpreg(unsigned long regnum,struct ia64_fpreg * fpval,struct pt_regs * regs)578 getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
579 {
580 	struct switch_stack *sw = (struct switch_stack *) regs - 1;
581 	unsigned long addr;
582 
583 	/*
584 	 * From EAS-2.5: FPDisableFault has higher priority than
585 	 * Unaligned Fault. Thus, when we get here, we know the partition is
586 	 * enabled.
587 	 *
588 	 * When regnum > 31, the register is still live and we need to force a save
589 	 * to current->thread.fph to get access to it.  See discussion in setfpreg()
590 	 * for reasons and other ways of doing this.
591 	 */
592 	if (regnum >= IA64_FIRST_ROTATING_FR) {
593 		ia64_flush_fph(current);
594 		*fpval = current->thread.fph[fph_index(regs, regnum)];
595 	} else {
596 		/*
597 		 * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
598 		 * not saved, we must generate their spilled form on the fly
599 		 */
600 		switch(regnum) {
601 		case 0:
602 			float_spill_f0(fpval);
603 			break;
604 		case 1:
605 			float_spill_f1(fpval);
606 			break;
607 		default:
608 			/*
609 			 * pt_regs or switch_stack ?
610 			 */
611 			addr =  FR_IN_SW(regnum) ? (unsigned long)sw
612 						 : (unsigned long)regs;
613 
614 			DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
615 			       FR_IN_SW(regnum), addr, FR_OFFS(regnum));
616 
617 			addr  += FR_OFFS(regnum);
618 			*fpval = *(struct ia64_fpreg *)addr;
619 		}
620 	}
621 }
622 
623 
624 static void
getreg(unsigned long regnum,unsigned long * val,int * nat,struct pt_regs * regs)625 getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs)
626 {
627 	struct switch_stack *sw = (struct switch_stack *) regs - 1;
628 	unsigned long addr, *unat;
629 
630 	if (regnum >= IA64_FIRST_STACKED_GR) {
631 		get_rse_reg(regs, regnum, val, nat);
632 		return;
633 	}
634 
635 	/*
636 	 * take care of r0 (read-only always evaluate to 0)
637 	 */
638 	if (regnum == 0) {
639 		*val = 0;
640 		if (nat)
641 			*nat = 0;
642 		return;
643 	}
644 
645 	/*
646 	 * Now look at registers in [0-31] range and init correct UNAT
647 	 */
648 	if (GR_IN_SW(regnum)) {
649 		addr = (unsigned long)sw;
650 		unat = &sw->ar_unat;
651 	} else {
652 		addr = (unsigned long)regs;
653 		unat = &sw->caller_unat;
654 	}
655 
656 	DPRINT("addr_base=%lx offset=0x%x\n", addr,  GR_OFFS(regnum));
657 
658 	addr += GR_OFFS(regnum);
659 
660 	*val  = *(unsigned long *)addr;
661 
662 	/*
663 	 * do it only when requested
664 	 */
665 	if (nat)
666 		*nat  = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL;
667 }
668 
669 static void
emulate_load_updates(update_t type,load_store_t ld,struct pt_regs * regs,unsigned long ifa)670 emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa)
671 {
672 	/*
673 	 * IMPORTANT:
674 	 * Given the way we handle unaligned speculative loads, we should
675 	 * not get to this point in the code but we keep this sanity check,
676 	 * just in case.
677 	 */
678 	if (ld.x6_op == 1 || ld.x6_op == 3) {
679 		printk(KERN_ERR "%s: register update on speculative load, error\n", __func__);
680 		if (die_if_kernel("unaligned reference on speculative load with register update\n",
681 				  regs, 30))
682 			return;
683 	}
684 
685 
686 	/*
687 	 * at this point, we know that the base register to update is valid i.e.,
688 	 * it's not r0
689 	 */
690 	if (type == UPD_IMMEDIATE) {
691 		unsigned long imm;
692 
693 		/*
694 		 * Load +Imm: ldXZ r1=[r3],imm(9)
695 		 *
696 		 *
697 		 * form imm9: [13:19] contain the first 7 bits
698 		 */
699 		imm = ld.x << 7 | ld.imm;
700 
701 		/*
702 		 * sign extend (1+8bits) if m set
703 		 */
704 		if (ld.m) imm |= SIGN_EXT9;
705 
706 		/*
707 		 * ifa == r3 and we know that the NaT bit on r3 was clear so
708 		 * we can directly use ifa.
709 		 */
710 		ifa += imm;
711 
712 		setreg(ld.r3, ifa, 0, regs);
713 
714 		DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa);
715 
716 	} else if (ld.m) {
717 		unsigned long r2;
718 		int nat_r2;
719 
720 		/*
721 		 * Load +Reg Opcode: ldXZ r1=[r3],r2
722 		 *
723 		 * Note: that we update r3 even in the case of ldfX.a
724 		 * (where the load does not happen)
725 		 *
726 		 * The way the load algorithm works, we know that r3 does not
727 		 * have its NaT bit set (would have gotten NaT consumption
728 		 * before getting the unaligned fault). So we can use ifa
729 		 * which equals r3 at this point.
730 		 *
731 		 * IMPORTANT:
732 		 * The above statement holds ONLY because we know that we
733 		 * never reach this code when trying to do a ldX.s.
734 		 * If we ever make it to here on an ldfX.s then
735 		 */
736 		getreg(ld.imm, &r2, &nat_r2, regs);
737 
738 		ifa += r2;
739 
740 		/*
741 		 * propagate Nat r2 -> r3
742 		 */
743 		setreg(ld.r3, ifa, nat_r2, regs);
744 
745 		DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2);
746 	}
747 }
748 
749 
750 static int
emulate_load_int(unsigned long ifa,load_store_t ld,struct pt_regs * regs)751 emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
752 {
753 	unsigned int len = 1 << ld.x6_sz;
754 	unsigned long val = 0;
755 
756 	/*
757 	 * r0, as target, doesn't need to be checked because Illegal Instruction
758 	 * faults have higher priority than unaligned faults.
759 	 *
760 	 * r0 cannot be found as the base as it would never generate an
761 	 * unaligned reference.
762 	 */
763 
764 	/*
765 	 * ldX.a we will emulate load and also invalidate the ALAT entry.
766 	 * See comment below for explanation on how we handle ldX.a
767 	 */
768 
769 	if (len != 2 && len != 4 && len != 8) {
770 		DPRINT("unknown size: x6=%d\n", ld.x6_sz);
771 		return -1;
772 	}
773 	/* this assumes little-endian byte-order: */
774 	if (copy_from_user(&val, (void __user *) ifa, len))
775 		return -1;
776 	setreg(ld.r1, val, 0, regs);
777 
778 	/*
779 	 * check for updates on any kind of loads
780 	 */
781 	if (ld.op == 0x5 || ld.m)
782 		emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
783 
784 	/*
785 	 * handling of various loads (based on EAS2.4):
786 	 *
787 	 * ldX.acq (ordered load):
788 	 *	- acquire semantics would have been used, so force fence instead.
789 	 *
790 	 * ldX.c.clr (check load and clear):
791 	 *	- if we get to this handler, it's because the entry was not in the ALAT.
792 	 *	  Therefore the operation reverts to a normal load
793 	 *
794 	 * ldX.c.nc (check load no clear):
795 	 *	- same as previous one
796 	 *
797 	 * ldX.c.clr.acq (ordered check load and clear):
798 	 *	- same as above for c.clr part. The load needs to have acquire semantics. So
799 	 *	  we use the fence semantics which is stronger and thus ensures correctness.
800 	 *
801 	 * ldX.a (advanced load):
802 	 *	- suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
803 	 *	  address doesn't match requested size alignment. This means that we would
804 	 *	  possibly need more than one load to get the result.
805 	 *
806 	 *	  The load part can be handled just like a normal load, however the difficult
807 	 *	  part is to get the right thing into the ALAT. The critical piece of information
808 	 *	  in the base address of the load & size. To do that, a ld.a must be executed,
809 	 *	  clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
810 	 *	  if we use the same target register, we will be okay for the check.a instruction.
811 	 *	  If we look at the store, basically a stX [r3]=r1 checks the ALAT  for any entry
812 	 *	  which would overlap within [r3,r3+X] (the size of the load was store in the
813 	 *	  ALAT). If such an entry is found the entry is invalidated. But this is not good
814 	 *	  enough, take the following example:
815 	 *		r3=3
816 	 *		ld4.a r1=[r3]
817 	 *
818 	 *	  Could be emulated by doing:
819 	 *		ld1.a r1=[r3],1
820 	 *		store to temporary;
821 	 *		ld1.a r1=[r3],1
822 	 *		store & shift to temporary;
823 	 *		ld1.a r1=[r3],1
824 	 *		store & shift to temporary;
825 	 *		ld1.a r1=[r3]
826 	 *		store & shift to temporary;
827 	 *		r1=temporary
828 	 *
829 	 *	  So in this case, you would get the right value is r1 but the wrong info in
830 	 *	  the ALAT.  Notice that you could do it in reverse to finish with address 3
831 	 *	  but you would still get the size wrong.  To get the size right, one needs to
832 	 *	  execute exactly the same kind of load. You could do it from a aligned
833 	 *	  temporary location, but you would get the address wrong.
834 	 *
835 	 *	  So no matter what, it is not possible to emulate an advanced load
836 	 *	  correctly. But is that really critical ?
837 	 *
838 	 *	  We will always convert ld.a into a normal load with ALAT invalidated.  This
839 	 *	  will enable compiler to do optimization where certain code path after ld.a
840 	 *	  is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
841 	 *
842 	 *	  If there is a store after the advanced load, one must either do a ld.c.* or
843 	 *	  chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
844 	 *	  entry found in ALAT), and that's perfectly ok because:
845 	 *
846 	 *		- ld.c.*, if the entry is not present a  normal load is executed
847 	 *		- chk.a.*, if the entry is not present, execution jumps to recovery code
848 	 *
849 	 *	  In either case, the load can be potentially retried in another form.
850 	 *
851 	 *	  ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
852 	 *	  up a stale entry later). The register base update MUST also be performed.
853 	 */
854 
855 	/*
856 	 * when the load has the .acq completer then
857 	 * use ordering fence.
858 	 */
859 	if (ld.x6_op == 0x5 || ld.x6_op == 0xa)
860 		mb();
861 
862 	/*
863 	 * invalidate ALAT entry in case of advanced load
864 	 */
865 	if (ld.x6_op == 0x2)
866 		invala_gr(ld.r1);
867 
868 	return 0;
869 }
870 
871 static int
emulate_store_int(unsigned long ifa,load_store_t ld,struct pt_regs * regs)872 emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
873 {
874 	unsigned long r2;
875 	unsigned int len = 1 << ld.x6_sz;
876 
877 	/*
878 	 * if we get to this handler, Nat bits on both r3 and r2 have already
879 	 * been checked. so we don't need to do it
880 	 *
881 	 * extract the value to be stored
882 	 */
883 	getreg(ld.imm, &r2, NULL, regs);
884 
885 	/*
886 	 * we rely on the macros in unaligned.h for now i.e.,
887 	 * we let the compiler figure out how to read memory gracefully.
888 	 *
889 	 * We need this switch/case because the way the inline function
890 	 * works. The code is optimized by the compiler and looks like
891 	 * a single switch/case.
892 	 */
893 	DPRINT("st%d [%lx]=%lx\n", len, ifa, r2);
894 
895 	if (len != 2 && len != 4 && len != 8) {
896 		DPRINT("unknown size: x6=%d\n", ld.x6_sz);
897 		return -1;
898 	}
899 
900 	/* this assumes little-endian byte-order: */
901 	if (copy_to_user((void __user *) ifa, &r2, len))
902 		return -1;
903 
904 	/*
905 	 * stX [r3]=r2,imm(9)
906 	 *
907 	 * NOTE:
908 	 * ld.r3 can never be r0, because r0 would not generate an
909 	 * unaligned access.
910 	 */
911 	if (ld.op == 0x5) {
912 		unsigned long imm;
913 
914 		/*
915 		 * form imm9: [12:6] contain first 7bits
916 		 */
917 		imm = ld.x << 7 | ld.r1;
918 		/*
919 		 * sign extend (8bits) if m set
920 		 */
921 		if (ld.m) imm |= SIGN_EXT9;
922 		/*
923 		 * ifa == r3 (NaT is necessarily cleared)
924 		 */
925 		ifa += imm;
926 
927 		DPRINT("imm=%lx r3=%lx\n", imm, ifa);
928 
929 		setreg(ld.r3, ifa, 0, regs);
930 	}
931 	/*
932 	 * we don't have alat_invalidate_multiple() so we need
933 	 * to do the complete flush :-<<
934 	 */
935 	ia64_invala();
936 
937 	/*
938 	 * stX.rel: use fence instead of release
939 	 */
940 	if (ld.x6_op == 0xd)
941 		mb();
942 
943 	return 0;
944 }
945 
946 /*
947  * floating point operations sizes in bytes
948  */
949 static const unsigned char float_fsz[4]={
950 	10, /* extended precision (e) */
951 	8,  /* integer (8)            */
952 	4,  /* single precision (s)   */
953 	8   /* double precision (d)   */
954 };
955 
956 static inline void
mem2float_extended(struct ia64_fpreg * init,struct ia64_fpreg * final)957 mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
958 {
959 	ia64_ldfe(6, init);
960 	ia64_stop();
961 	ia64_stf_spill(final, 6);
962 }
963 
964 static inline void
mem2float_integer(struct ia64_fpreg * init,struct ia64_fpreg * final)965 mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
966 {
967 	ia64_ldf8(6, init);
968 	ia64_stop();
969 	ia64_stf_spill(final, 6);
970 }
971 
972 static inline void
mem2float_single(struct ia64_fpreg * init,struct ia64_fpreg * final)973 mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
974 {
975 	ia64_ldfs(6, init);
976 	ia64_stop();
977 	ia64_stf_spill(final, 6);
978 }
979 
980 static inline void
mem2float_double(struct ia64_fpreg * init,struct ia64_fpreg * final)981 mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
982 {
983 	ia64_ldfd(6, init);
984 	ia64_stop();
985 	ia64_stf_spill(final, 6);
986 }
987 
988 static inline void
float2mem_extended(struct ia64_fpreg * init,struct ia64_fpreg * final)989 float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
990 {
991 	ia64_ldf_fill(6, init);
992 	ia64_stop();
993 	ia64_stfe(final, 6);
994 }
995 
996 static inline void
float2mem_integer(struct ia64_fpreg * init,struct ia64_fpreg * final)997 float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
998 {
999 	ia64_ldf_fill(6, init);
1000 	ia64_stop();
1001 	ia64_stf8(final, 6);
1002 }
1003 
1004 static inline void
float2mem_single(struct ia64_fpreg * init,struct ia64_fpreg * final)1005 float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
1006 {
1007 	ia64_ldf_fill(6, init);
1008 	ia64_stop();
1009 	ia64_stfs(final, 6);
1010 }
1011 
1012 static inline void
float2mem_double(struct ia64_fpreg * init,struct ia64_fpreg * final)1013 float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
1014 {
1015 	ia64_ldf_fill(6, init);
1016 	ia64_stop();
1017 	ia64_stfd(final, 6);
1018 }
1019 
1020 static int
emulate_load_floatpair(unsigned long ifa,load_store_t ld,struct pt_regs * regs)1021 emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1022 {
1023 	struct ia64_fpreg fpr_init[2];
1024 	struct ia64_fpreg fpr_final[2];
1025 	unsigned long len = float_fsz[ld.x6_sz];
1026 
1027 	/*
1028 	 * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
1029 	 * higher priority than unaligned faults.
1030 	 *
1031 	 * r0 cannot be found as the base as it would never generate an unaligned
1032 	 * reference.
1033 	 */
1034 
1035 	/*
1036 	 * make sure we get clean buffers
1037 	 */
1038 	memset(&fpr_init, 0, sizeof(fpr_init));
1039 	memset(&fpr_final, 0, sizeof(fpr_final));
1040 
1041 	/*
1042 	 * ldfpX.a: we don't try to emulate anything but we must
1043 	 * invalidate the ALAT entry and execute updates, if any.
1044 	 */
1045 	if (ld.x6_op != 0x2) {
1046 		/*
1047 		 * This assumes little-endian byte-order.  Note that there is no "ldfpe"
1048 		 * instruction:
1049 		 */
1050 		if (copy_from_user(&fpr_init[0], (void __user *) ifa, len)
1051 		    || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len))
1052 			return -1;
1053 
1054 		DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz);
1055 		DDUMP("frp_init =", &fpr_init, 2*len);
1056 		/*
1057 		 * XXX fixme
1058 		 * Could optimize inlines by using ldfpX & 2 spills
1059 		 */
1060 		switch( ld.x6_sz ) {
1061 			case 0:
1062 				mem2float_extended(&fpr_init[0], &fpr_final[0]);
1063 				mem2float_extended(&fpr_init[1], &fpr_final[1]);
1064 				break;
1065 			case 1:
1066 				mem2float_integer(&fpr_init[0], &fpr_final[0]);
1067 				mem2float_integer(&fpr_init[1], &fpr_final[1]);
1068 				break;
1069 			case 2:
1070 				mem2float_single(&fpr_init[0], &fpr_final[0]);
1071 				mem2float_single(&fpr_init[1], &fpr_final[1]);
1072 				break;
1073 			case 3:
1074 				mem2float_double(&fpr_init[0], &fpr_final[0]);
1075 				mem2float_double(&fpr_init[1], &fpr_final[1]);
1076 				break;
1077 		}
1078 		DDUMP("fpr_final =", &fpr_final, 2*len);
1079 		/*
1080 		 * XXX fixme
1081 		 *
1082 		 * A possible optimization would be to drop fpr_final and directly
1083 		 * use the storage from the saved context i.e., the actual final
1084 		 * destination (pt_regs, switch_stack or thread structure).
1085 		 */
1086 		setfpreg(ld.r1, &fpr_final[0], regs);
1087 		setfpreg(ld.imm, &fpr_final[1], regs);
1088 	}
1089 
1090 	/*
1091 	 * Check for updates: only immediate updates are available for this
1092 	 * instruction.
1093 	 */
1094 	if (ld.m) {
1095 		/*
1096 		 * the immediate is implicit given the ldsz of the operation:
1097 		 * single: 8 (2x4) and for  all others it's 16 (2x8)
1098 		 */
1099 		ifa += len<<1;
1100 
1101 		/*
1102 		 * IMPORTANT:
1103 		 * the fact that we force the NaT of r3 to zero is ONLY valid
1104 		 * as long as we don't come here with a ldfpX.s.
1105 		 * For this reason we keep this sanity check
1106 		 */
1107 		if (ld.x6_op == 1 || ld.x6_op == 3)
1108 			printk(KERN_ERR "%s: register update on speculative load pair, error\n",
1109 			       __func__);
1110 
1111 		setreg(ld.r3, ifa, 0, regs);
1112 	}
1113 
1114 	/*
1115 	 * Invalidate ALAT entries, if any, for both registers.
1116 	 */
1117 	if (ld.x6_op == 0x2) {
1118 		invala_fr(ld.r1);
1119 		invala_fr(ld.imm);
1120 	}
1121 	return 0;
1122 }
1123 
1124 
1125 static int
emulate_load_float(unsigned long ifa,load_store_t ld,struct pt_regs * regs)1126 emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1127 {
1128 	struct ia64_fpreg fpr_init;
1129 	struct ia64_fpreg fpr_final;
1130 	unsigned long len = float_fsz[ld.x6_sz];
1131 
1132 	/*
1133 	 * fr0 & fr1 don't need to be checked because Illegal Instruction
1134 	 * faults have higher priority than unaligned faults.
1135 	 *
1136 	 * r0 cannot be found as the base as it would never generate an
1137 	 * unaligned reference.
1138 	 */
1139 
1140 	/*
1141 	 * make sure we get clean buffers
1142 	 */
1143 	memset(&fpr_init,0, sizeof(fpr_init));
1144 	memset(&fpr_final,0, sizeof(fpr_final));
1145 
1146 	/*
1147 	 * ldfX.a we don't try to emulate anything but we must
1148 	 * invalidate the ALAT entry.
1149 	 * See comments in ldX for descriptions on how the various loads are handled.
1150 	 */
1151 	if (ld.x6_op != 0x2) {
1152 		if (copy_from_user(&fpr_init, (void __user *) ifa, len))
1153 			return -1;
1154 
1155 		DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1156 		DDUMP("fpr_init =", &fpr_init, len);
1157 		/*
1158 		 * we only do something for x6_op={0,8,9}
1159 		 */
1160 		switch( ld.x6_sz ) {
1161 			case 0:
1162 				mem2float_extended(&fpr_init, &fpr_final);
1163 				break;
1164 			case 1:
1165 				mem2float_integer(&fpr_init, &fpr_final);
1166 				break;
1167 			case 2:
1168 				mem2float_single(&fpr_init, &fpr_final);
1169 				break;
1170 			case 3:
1171 				mem2float_double(&fpr_init, &fpr_final);
1172 				break;
1173 		}
1174 		DDUMP("fpr_final =", &fpr_final, len);
1175 		/*
1176 		 * XXX fixme
1177 		 *
1178 		 * A possible optimization would be to drop fpr_final and directly
1179 		 * use the storage from the saved context i.e., the actual final
1180 		 * destination (pt_regs, switch_stack or thread structure).
1181 		 */
1182 		setfpreg(ld.r1, &fpr_final, regs);
1183 	}
1184 
1185 	/*
1186 	 * check for updates on any loads
1187 	 */
1188 	if (ld.op == 0x7 || ld.m)
1189 		emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
1190 
1191 	/*
1192 	 * invalidate ALAT entry in case of advanced floating point loads
1193 	 */
1194 	if (ld.x6_op == 0x2)
1195 		invala_fr(ld.r1);
1196 
1197 	return 0;
1198 }
1199 
1200 
1201 static int
emulate_store_float(unsigned long ifa,load_store_t ld,struct pt_regs * regs)1202 emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1203 {
1204 	struct ia64_fpreg fpr_init;
1205 	struct ia64_fpreg fpr_final;
1206 	unsigned long len = float_fsz[ld.x6_sz];
1207 
1208 	/*
1209 	 * make sure we get clean buffers
1210 	 */
1211 	memset(&fpr_init,0, sizeof(fpr_init));
1212 	memset(&fpr_final,0, sizeof(fpr_final));
1213 
1214 	/*
1215 	 * if we get to this handler, Nat bits on both r3 and r2 have already
1216 	 * been checked. so we don't need to do it
1217 	 *
1218 	 * extract the value to be stored
1219 	 */
1220 	getfpreg(ld.imm, &fpr_init, regs);
1221 	/*
1222 	 * during this step, we extract the spilled registers from the saved
1223 	 * context i.e., we refill. Then we store (no spill) to temporary
1224 	 * aligned location
1225 	 */
1226 	switch( ld.x6_sz ) {
1227 		case 0:
1228 			float2mem_extended(&fpr_init, &fpr_final);
1229 			break;
1230 		case 1:
1231 			float2mem_integer(&fpr_init, &fpr_final);
1232 			break;
1233 		case 2:
1234 			float2mem_single(&fpr_init, &fpr_final);
1235 			break;
1236 		case 3:
1237 			float2mem_double(&fpr_init, &fpr_final);
1238 			break;
1239 	}
1240 	DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1241 	DDUMP("fpr_init =", &fpr_init, len);
1242 	DDUMP("fpr_final =", &fpr_final, len);
1243 
1244 	if (copy_to_user((void __user *) ifa, &fpr_final, len))
1245 		return -1;
1246 
1247 	/*
1248 	 * stfX [r3]=r2,imm(9)
1249 	 *
1250 	 * NOTE:
1251 	 * ld.r3 can never be r0, because r0 would not generate an
1252 	 * unaligned access.
1253 	 */
1254 	if (ld.op == 0x7) {
1255 		unsigned long imm;
1256 
1257 		/*
1258 		 * form imm9: [12:6] contain first 7bits
1259 		 */
1260 		imm = ld.x << 7 | ld.r1;
1261 		/*
1262 		 * sign extend (8bits) if m set
1263 		 */
1264 		if (ld.m)
1265 			imm |= SIGN_EXT9;
1266 		/*
1267 		 * ifa == r3 (NaT is necessarily cleared)
1268 		 */
1269 		ifa += imm;
1270 
1271 		DPRINT("imm=%lx r3=%lx\n", imm, ifa);
1272 
1273 		setreg(ld.r3, ifa, 0, regs);
1274 	}
1275 	/*
1276 	 * we don't have alat_invalidate_multiple() so we need
1277 	 * to do the complete flush :-<<
1278 	 */
1279 	ia64_invala();
1280 
1281 	return 0;
1282 }
1283 
1284 /*
1285  * Make sure we log the unaligned access, so that user/sysadmin can notice it and
1286  * eventually fix the program.  However, we don't want to do that for every access so we
1287  * pace it with jiffies.
1288  */
1289 static DEFINE_RATELIMIT_STATE(logging_rate_limit, 5 * HZ, 5);
1290 
1291 void
ia64_handle_unaligned(unsigned long ifa,struct pt_regs * regs)1292 ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs)
1293 {
1294 	struct ia64_psr *ipsr = ia64_psr(regs);
1295 	mm_segment_t old_fs = get_fs();
1296 	unsigned long bundle[2];
1297 	unsigned long opcode;
1298 	struct siginfo si;
1299 	const struct exception_table_entry *eh = NULL;
1300 	union {
1301 		unsigned long l;
1302 		load_store_t insn;
1303 	} u;
1304 	int ret = -1;
1305 
1306 	if (ia64_psr(regs)->be) {
1307 		/* we don't support big-endian accesses */
1308 		if (die_if_kernel("big-endian unaligned accesses are not supported", regs, 0))
1309 			return;
1310 		goto force_sigbus;
1311 	}
1312 
1313 	/*
1314 	 * Treat kernel accesses for which there is an exception handler entry the same as
1315 	 * user-level unaligned accesses.  Otherwise, a clever program could trick this
1316 	 * handler into reading an arbitrary kernel addresses...
1317 	 */
1318 	if (!user_mode(regs))
1319 		eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
1320 	if (user_mode(regs) || eh) {
1321 		if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0)
1322 			goto force_sigbus;
1323 
1324 		if (!no_unaligned_warning &&
1325 		    !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) &&
1326 		    __ratelimit(&logging_rate_limit))
1327 		{
1328 			char buf[200];	/* comm[] is at most 16 bytes... */
1329 			size_t len;
1330 
1331 			len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, "
1332 				      "ip=0x%016lx\n\r", current->comm,
1333 				      task_pid_nr(current),
1334 				      ifa, regs->cr_iip + ipsr->ri);
1335 			/*
1336 			 * Don't call tty_write_message() if we're in the kernel; we might
1337 			 * be holding locks...
1338 			 */
1339 			if (user_mode(regs))
1340 				tty_write_message(current->signal->tty, buf);
1341 			buf[len-1] = '\0';	/* drop '\r' */
1342 			/* watch for command names containing %s */
1343 			printk(KERN_WARNING "%s", buf);
1344 		} else {
1345 			if (no_unaligned_warning) {
1346 				printk_once(KERN_WARNING "%s(%d) encountered an "
1347 				       "unaligned exception which required\n"
1348 				       "kernel assistance, which degrades "
1349 				       "the performance of the application.\n"
1350 				       "Unaligned exception warnings have "
1351 				       "been disabled by the system "
1352 				       "administrator\n"
1353 				       "echo 0 > /proc/sys/kernel/ignore-"
1354 				       "unaligned-usertrap to re-enable\n",
1355 				       current->comm, task_pid_nr(current));
1356 			}
1357 		}
1358 	} else {
1359 		if (__ratelimit(&logging_rate_limit)) {
1360 			printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
1361 			       ifa, regs->cr_iip + ipsr->ri);
1362 			if (unaligned_dump_stack)
1363 				dump_stack();
1364 		}
1365 		set_fs(KERNEL_DS);
1366 	}
1367 
1368 	DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
1369 	       regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it);
1370 
1371 	if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16))
1372 		goto failure;
1373 
1374 	/*
1375 	 * extract the instruction from the bundle given the slot number
1376 	 */
1377 	switch (ipsr->ri) {
1378 	      case 0: u.l = (bundle[0] >>  5); break;
1379 	      case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break;
1380 	      case 2: u.l = (bundle[1] >> 23); break;
1381 	}
1382 	opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK;
1383 
1384 	DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
1385 	       "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm,
1386 	       u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op);
1387 
1388 	/*
1389 	 * IMPORTANT:
1390 	 * Notice that the switch statement DOES not cover all possible instructions
1391 	 * that DO generate unaligned references. This is made on purpose because for some
1392 	 * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
1393 	 * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
1394 	 * the program will get a signal and die:
1395 	 *
1396 	 *	load/store:
1397 	 *		- ldX.spill
1398 	 *		- stX.spill
1399 	 *	Reason: RNATs are based on addresses
1400 	 *		- ld16
1401 	 *		- st16
1402 	 *	Reason: ld16 and st16 are supposed to occur in a single
1403 	 *		memory op
1404 	 *
1405 	 *	synchronization:
1406 	 *		- cmpxchg
1407 	 *		- fetchadd
1408 	 *		- xchg
1409 	 *	Reason: ATOMIC operations cannot be emulated properly using multiple
1410 	 *	        instructions.
1411 	 *
1412 	 *	speculative loads:
1413 	 *		- ldX.sZ
1414 	 *	Reason: side effects, code must be ready to deal with failure so simpler
1415 	 *		to let the load fail.
1416 	 * ---------------------------------------------------------------------------------
1417 	 * XXX fixme
1418 	 *
1419 	 * I would like to get rid of this switch case and do something
1420 	 * more elegant.
1421 	 */
1422 	switch (opcode) {
1423 	      case LDS_OP:
1424 	      case LDSA_OP:
1425 		if (u.insn.x)
1426 			/* oops, really a semaphore op (cmpxchg, etc) */
1427 			goto failure;
1428 		/* no break */
1429 	      case LDS_IMM_OP:
1430 	      case LDSA_IMM_OP:
1431 	      case LDFS_OP:
1432 	      case LDFSA_OP:
1433 	      case LDFS_IMM_OP:
1434 		/*
1435 		 * The instruction will be retried with deferred exceptions turned on, and
1436 		 * we should get Nat bit installed
1437 		 *
1438 		 * IMPORTANT: When PSR_ED is set, the register & immediate update forms
1439 		 * are actually executed even though the operation failed. So we don't
1440 		 * need to take care of this.
1441 		 */
1442 		DPRINT("forcing PSR_ED\n");
1443 		regs->cr_ipsr |= IA64_PSR_ED;
1444 		goto done;
1445 
1446 	      case LD_OP:
1447 	      case LDA_OP:
1448 	      case LDBIAS_OP:
1449 	      case LDACQ_OP:
1450 	      case LDCCLR_OP:
1451 	      case LDCNC_OP:
1452 	      case LDCCLRACQ_OP:
1453 		if (u.insn.x)
1454 			/* oops, really a semaphore op (cmpxchg, etc) */
1455 			goto failure;
1456 		/* no break */
1457 	      case LD_IMM_OP:
1458 	      case LDA_IMM_OP:
1459 	      case LDBIAS_IMM_OP:
1460 	      case LDACQ_IMM_OP:
1461 	      case LDCCLR_IMM_OP:
1462 	      case LDCNC_IMM_OP:
1463 	      case LDCCLRACQ_IMM_OP:
1464 		ret = emulate_load_int(ifa, u.insn, regs);
1465 		break;
1466 
1467 	      case ST_OP:
1468 	      case STREL_OP:
1469 		if (u.insn.x)
1470 			/* oops, really a semaphore op (cmpxchg, etc) */
1471 			goto failure;
1472 		/* no break */
1473 	      case ST_IMM_OP:
1474 	      case STREL_IMM_OP:
1475 		ret = emulate_store_int(ifa, u.insn, regs);
1476 		break;
1477 
1478 	      case LDF_OP:
1479 	      case LDFA_OP:
1480 	      case LDFCCLR_OP:
1481 	      case LDFCNC_OP:
1482 		if (u.insn.x)
1483 			ret = emulate_load_floatpair(ifa, u.insn, regs);
1484 		else
1485 			ret = emulate_load_float(ifa, u.insn, regs);
1486 		break;
1487 
1488 	      case LDF_IMM_OP:
1489 	      case LDFA_IMM_OP:
1490 	      case LDFCCLR_IMM_OP:
1491 	      case LDFCNC_IMM_OP:
1492 		ret = emulate_load_float(ifa, u.insn, regs);
1493 		break;
1494 
1495 	      case STF_OP:
1496 	      case STF_IMM_OP:
1497 		ret = emulate_store_float(ifa, u.insn, regs);
1498 		break;
1499 
1500 	      default:
1501 		goto failure;
1502 	}
1503 	DPRINT("ret=%d\n", ret);
1504 	if (ret)
1505 		goto failure;
1506 
1507 	if (ipsr->ri == 2)
1508 		/*
1509 		 * given today's architecture this case is not likely to happen because a
1510 		 * memory access instruction (M) can never be in the last slot of a
1511 		 * bundle. But let's keep it for now.
1512 		 */
1513 		regs->cr_iip += 16;
1514 	ipsr->ri = (ipsr->ri + 1) & 0x3;
1515 
1516 	DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip);
1517   done:
1518 	set_fs(old_fs);		/* restore original address limit */
1519 	return;
1520 
1521   failure:
1522 	/* something went wrong... */
1523 	if (!user_mode(regs)) {
1524 		if (eh) {
1525 			ia64_handle_exception(regs, eh);
1526 			goto done;
1527 		}
1528 		if (die_if_kernel("error during unaligned kernel access\n", regs, ret))
1529 			return;
1530 		/* NOT_REACHED */
1531 	}
1532   force_sigbus:
1533 	si.si_signo = SIGBUS;
1534 	si.si_errno = 0;
1535 	si.si_code = BUS_ADRALN;
1536 	si.si_addr = (void __user *) ifa;
1537 	si.si_flags = 0;
1538 	si.si_isr = 0;
1539 	si.si_imm = 0;
1540 	force_sig_info(SIGBUS, &si, current);
1541 	goto done;
1542 }
1543