1 /*
2  *
3  *  linux/arch/cris/kernel/setup.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Copyright (c) 2001  Axis Communications AB
7  */
8 
9 /*
10  * This file handles the architecture-dependent parts of initialization
11  */
12 
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/bootmem.h>
16 #include <asm/pgtable.h>
17 #include <linux/seq_file.h>
18 #include <linux/screen_info.h>
19 #include <linux/utsname.h>
20 #include <linux/pfn.h>
21 #include <linux/cpu.h>
22 #include <asm/setup.h>
23 
24 /*
25  * Setup options
26  */
27 struct screen_info screen_info;
28 
29 extern int root_mountflags;
30 extern char _etext, _edata, _end;
31 
32 char __initdata cris_command_line[COMMAND_LINE_SIZE] = { 0, };
33 
34 extern const unsigned long text_start, edata; /* set by the linker script */
35 extern unsigned long dram_start, dram_end;
36 
37 extern unsigned long romfs_start, romfs_length, romfs_in_flash; /* from head.S */
38 
39 static struct cpu cpu_devices[NR_CPUS];
40 
41 extern void show_etrax_copyright(void);		/* arch-vX/kernel/setup.c */
42 
43 /* This mainly sets up the memory area, and can be really confusing.
44  *
45  * The physical DRAM is virtually mapped into dram_start to dram_end
46  * (usually c0000000 to c0000000 + DRAM size). The physical address is
47  * given by the macro __pa().
48  *
49  * In this DRAM, the kernel code and data is loaded, in the beginning.
50  * It really starts at c0004000 to make room for some special pages -
51  * the start address is text_start. The kernel data ends at _end. After
52  * this the ROM filesystem is appended (if there is any).
53  *
54  * Between this address and dram_end, we have RAM pages usable to the
55  * boot code and the system.
56  *
57  */
58 
setup_arch(char ** cmdline_p)59 void __init setup_arch(char **cmdline_p)
60 {
61 	extern void init_etrax_debug(void);
62 	unsigned long bootmap_size;
63 	unsigned long start_pfn, max_pfn;
64 	unsigned long memory_start;
65 
66 	/* register an initial console printing routine for printk's */
67 
68 	init_etrax_debug();
69 
70 	/* we should really poll for DRAM size! */
71 
72 	high_memory = &dram_end;
73 
74 	if(romfs_in_flash || !romfs_length) {
75 		/* if we have the romfs in flash, or if there is no rom filesystem,
76 		 * our free area starts directly after the BSS
77 		 */
78 		memory_start = (unsigned long) &_end;
79 	} else {
80 		/* otherwise the free area starts after the ROM filesystem */
81 		printk("ROM fs in RAM, size %lu bytes\n", romfs_length);
82 		memory_start = romfs_start + romfs_length;
83 	}
84 
85 	/* process 1's initial memory region is the kernel code/data */
86 
87 	init_mm.start_code = (unsigned long) &text_start;
88 	init_mm.end_code =   (unsigned long) &_etext;
89 	init_mm.end_data =   (unsigned long) &_edata;
90 	init_mm.brk =        (unsigned long) &_end;
91 
92 	/* min_low_pfn points to the start of DRAM, start_pfn points
93 	 * to the first DRAM pages after the kernel, and max_low_pfn
94 	 * to the end of DRAM.
95 	 */
96 
97         /*
98          * partially used pages are not usable - thus
99          * we are rounding upwards:
100          */
101 
102         start_pfn = PFN_UP(memory_start);  /* usually c0000000 + kernel + romfs */
103 	max_pfn =   PFN_DOWN((unsigned long)high_memory); /* usually c0000000 + dram size */
104 
105         /*
106          * Initialize the boot-time allocator (start, end)
107 	 *
108 	 * We give it access to all our DRAM, but we could as well just have
109 	 * given it a small slice. No point in doing that though, unless we
110 	 * have non-contiguous memory and want the boot-stuff to be in, say,
111 	 * the smallest area.
112 	 *
113 	 * It will put a bitmap of the allocated pages in the beginning
114 	 * of the range we give it, but it won't mark the bitmaps pages
115 	 * as reserved. We have to do that ourselves below.
116 	 *
117 	 * We need to use init_bootmem_node instead of init_bootmem
118 	 * because our map starts at a quite high address (min_low_pfn).
119          */
120 
121 	max_low_pfn = max_pfn;
122 	min_low_pfn = PAGE_OFFSET >> PAGE_SHIFT;
123 
124 	bootmap_size = init_bootmem_node(NODE_DATA(0), start_pfn,
125 					 min_low_pfn,
126 					 max_low_pfn);
127 
128 	/* And free all memory not belonging to the kernel (addr, size) */
129 
130 	free_bootmem(PFN_PHYS(start_pfn), PFN_PHYS(max_pfn - start_pfn));
131 
132         /*
133          * Reserve the bootmem bitmap itself as well. We do this in two
134          * steps (first step was init_bootmem()) because this catches
135          * the (very unlikely) case of us accidentally initializing the
136          * bootmem allocator with an invalid RAM area.
137 	 *
138 	 * Arguments are start, size
139          */
140 
141 	reserve_bootmem(PFN_PHYS(start_pfn), bootmap_size, BOOTMEM_DEFAULT);
142 
143 	/* paging_init() sets up the MMU and marks all pages as reserved */
144 
145 	paging_init();
146 
147 	*cmdline_p = cris_command_line;
148 
149 #ifdef CONFIG_ETRAX_CMDLINE
150         if (!strcmp(cris_command_line, "")) {
151 		strlcpy(cris_command_line, CONFIG_ETRAX_CMDLINE, COMMAND_LINE_SIZE);
152 		cris_command_line[COMMAND_LINE_SIZE - 1] = '\0';
153 	}
154 #endif
155 
156 	/* Save command line for future references. */
157 	memcpy(boot_command_line, cris_command_line, COMMAND_LINE_SIZE);
158 	boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
159 
160 	/* give credit for the CRIS port */
161 	show_etrax_copyright();
162 
163 	/* Setup utsname */
164 	strcpy(init_utsname()->machine, cris_machine_name);
165 }
166 
c_start(struct seq_file * m,loff_t * pos)167 static void *c_start(struct seq_file *m, loff_t *pos)
168 {
169 	return *pos < nr_cpu_ids ? (void *)(int)(*pos + 1) : NULL;
170 }
171 
c_next(struct seq_file * m,void * v,loff_t * pos)172 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
173 {
174 	++*pos;
175 	return c_start(m, pos);
176 }
177 
c_stop(struct seq_file * m,void * v)178 static void c_stop(struct seq_file *m, void *v)
179 {
180 }
181 
182 extern int show_cpuinfo(struct seq_file *m, void *v);
183 
184 const struct seq_operations cpuinfo_op = {
185 	.start = c_start,
186 	.next  = c_next,
187 	.stop  = c_stop,
188 	.show  = show_cpuinfo,
189 };
190 
topology_init(void)191 static int __init topology_init(void)
192 {
193 	int i;
194 
195 	for_each_possible_cpu(i) {
196 		 return register_cpu(&cpu_devices[i], i);
197 	}
198 
199 	return 0;
200 }
201 
202 subsys_initcall(topology_init);
203 
204