1 /*
2  *  linux/arch/cris/arch-v10/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Copyright (C) 1999-2002 Axis Communications AB
6  *
7  */
8 
9 #include <linux/timex.h>
10 #include <linux/time.h>
11 #include <linux/jiffies.h>
12 #include <linux/interrupt.h>
13 #include <linux/swap.h>
14 #include <linux/sched.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <arch/svinto.h>
18 #include <asm/types.h>
19 #include <asm/signal.h>
20 #include <asm/io.h>
21 #include <asm/delay.h>
22 #include <asm/rtc.h>
23 #include <asm/irq_regs.h>
24 
25 /* define this if you need to use print_timestamp */
26 /* it will make jiffies at 96 hz instead of 100 hz though */
27 #undef USE_CASCADE_TIMERS
28 
29 extern int set_rtc_mmss(unsigned long nowtime);
30 extern int have_rtc;
31 
get_ns_in_jiffie(void)32 unsigned long get_ns_in_jiffie(void)
33 {
34 	unsigned char timer_count, t1;
35 	unsigned short presc_count;
36 	unsigned long ns;
37 	unsigned long flags;
38 
39 	local_irq_save(flags);
40 	timer_count = *R_TIMER0_DATA;
41 	presc_count = *R_TIM_PRESC_STATUS;
42 	/* presc_count might be wrapped */
43 	t1 = *R_TIMER0_DATA;
44 
45 	if (timer_count != t1){
46 		/* it wrapped, read prescaler again...  */
47 		presc_count = *R_TIM_PRESC_STATUS;
48 		timer_count = t1;
49 	}
50 	local_irq_restore(flags);
51 	if (presc_count >= PRESCALE_VALUE/2 ){
52 		presc_count =  PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
53 	} else {
54 		presc_count =  PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
55 	}
56 
57 	ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) +
58 	     ( (presc_count) * (1000000000/PRESCALE_FREQ));
59 	return ns;
60 }
61 
do_slow_gettimeoffset(void)62 unsigned long do_slow_gettimeoffset(void)
63 {
64 	unsigned long count;
65 
66 	/* The timer interrupt comes from Etrax timer 0. In order to get
67 	 * better precision, we check the current value. It might have
68 	 * underflowed already though.
69 	 */
70 	count = *R_TIMER0_DATA;
71 
72 	/* Convert timer value to usec */
73 	return (TIMER0_DIV - count) * ((NSEC_PER_SEC/1000)/HZ)/TIMER0_DIV;
74 }
75 
76 /* Excerpt from the Etrax100 HSDD about the built-in watchdog:
77  *
78  * 3.10.4 Watchdog timer
79 
80  * When the watchdog timer is started, it generates an NMI if the watchdog
81  * isn't restarted or stopped within 0.1 s. If it still isn't restarted or
82  * stopped after an additional 3.3 ms, the watchdog resets the chip.
83  * The watchdog timer is stopped after reset. The watchdog timer is controlled
84  * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit
85  * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is
86  * described in the table below:
87  *
88  *   Watchdog    Value written:
89  *   state:      To enable:  To key:      Operation:
90  *   --------    ----------  -------      ----------
91  *   stopped         0         X          No effect.
92  *   stopped         1       key_val      Start watchdog with key = key_val.
93  *   started         0       ~key         Stop watchdog
94  *   started         1       ~key         Restart watchdog with key = ~key.
95  *   started         X       new_key_val  Change key to new_key_val.
96  *
97  * Note: '~' is the bitwise NOT operator.
98  *
99  */
100 
101 /* right now, starting the watchdog is the same as resetting it */
102 #define start_watchdog reset_watchdog
103 
104 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
105 static int watchdog_key = 0;  /* arbitrary number */
106 #endif
107 
108 /* number of pages to consider "out of memory". it is normal that the memory
109  * is used though, so put this really low.
110  */
111 
112 #define WATCHDOG_MIN_FREE_PAGES 8
113 
114 void
reset_watchdog(void)115 reset_watchdog(void)
116 {
117 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
118 	/* only keep watchdog happy as long as we have memory left! */
119 	if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
120 		/* reset the watchdog with the inverse of the old key */
121 		watchdog_key ^= 0x7; /* invert key, which is 3 bits */
122 		*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
123 			IO_STATE(R_WATCHDOG, enable, start);
124 	}
125 #endif
126 }
127 
128 /* stop the watchdog - we still need the correct key */
129 
130 void
stop_watchdog(void)131 stop_watchdog(void)
132 {
133 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
134 	watchdog_key ^= 0x7; /* invert key, which is 3 bits */
135 	*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
136 		IO_STATE(R_WATCHDOG, enable, stop);
137 #endif
138 }
139 
140 
141 /*
142  * timer_interrupt() needs to keep up the real-time clock,
143  * as well as call the "xtime_update()" routine every clocktick
144  */
145 
146 //static unsigned short myjiff; /* used by our debug routine print_timestamp */
147 
148 extern void cris_do_profile(struct pt_regs *regs);
149 
150 static inline irqreturn_t
timer_interrupt(int irq,void * dev_id)151 timer_interrupt(int irq, void *dev_id)
152 {
153 	struct pt_regs *regs = get_irq_regs();
154 	/* acknowledge the timer irq */
155 
156 #ifdef USE_CASCADE_TIMERS
157 	*R_TIMER_CTRL =
158 		IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
159 		IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
160 		IO_STATE( R_TIMER_CTRL, i1, clr) |
161 		IO_STATE( R_TIMER_CTRL, tm1, run) |
162 		IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
163 		IO_STATE( R_TIMER_CTRL, i0, clr) |
164 		IO_STATE( R_TIMER_CTRL, tm0, run) |
165 		IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
166 #else
167 	*R_TIMER_CTRL = r_timer_ctrl_shadow |
168 		IO_STATE(R_TIMER_CTRL, i0, clr);
169 #endif
170 
171 	/* reset watchdog otherwise it resets us! */
172 	reset_watchdog();
173 
174 	/* Update statistics. */
175 	update_process_times(user_mode(regs));
176 
177 	/* call the real timer interrupt handler */
178 
179 	xtime_update(1);
180 
181         cris_do_profile(regs); /* Save profiling information */
182         return IRQ_HANDLED;
183 }
184 
185 /* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain
186  * it needs to be IRQF_DISABLED to make the jiffies update work properly
187  */
188 
189 static struct irqaction irq2  = {
190 	.handler = timer_interrupt,
191 	.flags = IRQF_SHARED | IRQF_DISABLED,
192 	.name = "timer",
193 };
194 
195 void __init
time_init(void)196 time_init(void)
197 {
198 	/* probe for the RTC and read it if it exists
199 	 * Before the RTC can be probed the loops_per_usec variable needs
200 	 * to be initialized to make usleep work. A better value for
201 	 * loops_per_usec is calculated by the kernel later once the
202 	 * clock has started.
203 	 */
204 	loops_per_usec = 50;
205 
206 	if(RTC_INIT() < 0)
207 		have_rtc = 0;
208 	else
209 		have_rtc = 1;
210 
211 	/* Setup the etrax timers
212 	 * Base frequency is 25000 hz, divider 250 -> 100 HZ
213 	 * In normal mode, we use timer0, so timer1 is free. In cascade
214 	 * mode (which we sometimes use for debugging) both timers are used.
215 	 * Remember that linux/timex.h contains #defines that rely on the
216 	 * timer settings below (hz and divide factor) !!!
217 	 */
218 
219 #ifdef USE_CASCADE_TIMERS
220 	*R_TIMER_CTRL =
221 		IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
222 		IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
223 		IO_STATE( R_TIMER_CTRL, i1, nop) |
224 		IO_STATE( R_TIMER_CTRL, tm1, stop_ld) |
225 		IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
226 		IO_STATE( R_TIMER_CTRL, i0, nop) |
227 		IO_STATE( R_TIMER_CTRL, tm0, stop_ld) |
228 		IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
229 
230 	*R_TIMER_CTRL = r_timer_ctrl_shadow =
231 		IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
232 		IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
233 		IO_STATE( R_TIMER_CTRL, i1, nop) |
234 		IO_STATE( R_TIMER_CTRL, tm1, run) |
235 		IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
236 		IO_STATE( R_TIMER_CTRL, i0, nop) |
237 		IO_STATE( R_TIMER_CTRL, tm0, run) |
238 		IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
239 #else
240 	*R_TIMER_CTRL =
241 		IO_FIELD(R_TIMER_CTRL, timerdiv1, 192)      |
242 		IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV)      |
243 		IO_STATE(R_TIMER_CTRL, i1,        nop)      |
244 		IO_STATE(R_TIMER_CTRL, tm1,       stop_ld)  |
245 		IO_STATE(R_TIMER_CTRL, clksel1,   c19k2Hz)  |
246 		IO_STATE(R_TIMER_CTRL, i0,        nop)      |
247 		IO_STATE(R_TIMER_CTRL, tm0,       stop_ld)  |
248 		IO_STATE(R_TIMER_CTRL, clksel0,   flexible);
249 
250 	*R_TIMER_CTRL = r_timer_ctrl_shadow =
251 		IO_FIELD(R_TIMER_CTRL, timerdiv1, 192)      |
252 		IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV)      |
253 		IO_STATE(R_TIMER_CTRL, i1,        nop)      |
254 		IO_STATE(R_TIMER_CTRL, tm1,       run)      |
255 		IO_STATE(R_TIMER_CTRL, clksel1,   c19k2Hz)  |
256 		IO_STATE(R_TIMER_CTRL, i0,        nop)      |
257 		IO_STATE(R_TIMER_CTRL, tm0,       run)      |
258 		IO_STATE(R_TIMER_CTRL, clksel0,   flexible);
259 
260 	*R_TIMER_PRESCALE = PRESCALE_VALUE;
261 #endif
262 
263 	*R_IRQ_MASK0_SET =
264 		IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */
265 
266 	/* now actually register the timer irq handler that calls timer_interrupt() */
267 
268 	setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */
269 
270 	/* enable watchdog if we should use one */
271 
272 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
273 	printk("Enabling watchdog...\n");
274 	start_watchdog();
275 
276 	/* If we use the hardware watchdog, we want to trap it as an NMI
277 	   and dump registers before it resets us.  For this to happen, we
278 	   must set the "m" NMI enable flag (which once set, is unset only
279 	   when an NMI is taken).
280 
281 	   The same goes for the external NMI, but that doesn't have any
282 	   driver or infrastructure support yet.  */
283 	asm ("setf m");
284 
285 	*R_IRQ_MASK0_SET =
286 		IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set);
287 	*R_VECT_MASK_SET =
288 		IO_STATE(R_VECT_MASK_SET, nmi, set);
289 #endif
290 }
291