1 /*
2 * linux/arch/alpha/kernel/process.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 */
6
7 /*
8 * This file handles the architecture-dependent parts of process handling.
9 */
10
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/time.h>
22 #include <linux/major.h>
23 #include <linux/stat.h>
24 #include <linux/vt.h>
25 #include <linux/mman.h>
26 #include <linux/elfcore.h>
27 #include <linux/reboot.h>
28 #include <linux/tty.h>
29 #include <linux/console.h>
30 #include <linux/slab.h>
31
32 #include <asm/reg.h>
33 #include <asm/uaccess.h>
34 #include <asm/system.h>
35 #include <asm/io.h>
36 #include <asm/pgtable.h>
37 #include <asm/hwrpb.h>
38 #include <asm/fpu.h>
39
40 #include "proto.h"
41 #include "pci_impl.h"
42
43 /*
44 * Power off function, if any
45 */
46 void (*pm_power_off)(void) = machine_power_off;
47 EXPORT_SYMBOL(pm_power_off);
48
49 void
cpu_idle(void)50 cpu_idle(void)
51 {
52 set_thread_flag(TIF_POLLING_NRFLAG);
53
54 while (1) {
55 /* FIXME -- EV6 and LCA45 know how to power down
56 the CPU. */
57
58 while (!need_resched())
59 cpu_relax();
60 schedule();
61 }
62 }
63
64
65 struct halt_info {
66 int mode;
67 char *restart_cmd;
68 };
69
70 static void
common_shutdown_1(void * generic_ptr)71 common_shutdown_1(void *generic_ptr)
72 {
73 struct halt_info *how = (struct halt_info *)generic_ptr;
74 struct percpu_struct *cpup;
75 unsigned long *pflags, flags;
76 int cpuid = smp_processor_id();
77
78 /* No point in taking interrupts anymore. */
79 local_irq_disable();
80
81 cpup = (struct percpu_struct *)
82 ((unsigned long)hwrpb + hwrpb->processor_offset
83 + hwrpb->processor_size * cpuid);
84 pflags = &cpup->flags;
85 flags = *pflags;
86
87 /* Clear reason to "default"; clear "bootstrap in progress". */
88 flags &= ~0x00ff0001UL;
89
90 #ifdef CONFIG_SMP
91 /* Secondaries halt here. */
92 if (cpuid != boot_cpuid) {
93 flags |= 0x00040000UL; /* "remain halted" */
94 *pflags = flags;
95 set_cpu_present(cpuid, false);
96 set_cpu_possible(cpuid, false);
97 halt();
98 }
99 #endif
100
101 if (how->mode == LINUX_REBOOT_CMD_RESTART) {
102 if (!how->restart_cmd) {
103 flags |= 0x00020000UL; /* "cold bootstrap" */
104 } else {
105 /* For SRM, we could probably set environment
106 variables to get this to work. We'd have to
107 delay this until after srm_paging_stop unless
108 we ever got srm_fixup working.
109
110 At the moment, SRM will use the last boot device,
111 but the file and flags will be the defaults, when
112 doing a "warm" bootstrap. */
113 flags |= 0x00030000UL; /* "warm bootstrap" */
114 }
115 } else {
116 flags |= 0x00040000UL; /* "remain halted" */
117 }
118 *pflags = flags;
119
120 #ifdef CONFIG_SMP
121 /* Wait for the secondaries to halt. */
122 set_cpu_present(boot_cpuid, false);
123 set_cpu_possible(boot_cpuid, false);
124 while (cpus_weight(cpu_present_map))
125 barrier();
126 #endif
127
128 /* If booted from SRM, reset some of the original environment. */
129 if (alpha_using_srm) {
130 #ifdef CONFIG_DUMMY_CONSOLE
131 /* If we've gotten here after SysRq-b, leave interrupt
132 context before taking over the console. */
133 if (in_interrupt())
134 irq_exit();
135 /* This has the effect of resetting the VGA video origin. */
136 take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
137 #endif
138 pci_restore_srm_config();
139 set_hae(srm_hae);
140 }
141
142 if (alpha_mv.kill_arch)
143 alpha_mv.kill_arch(how->mode);
144
145 if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
146 /* Unfortunately, since MILO doesn't currently understand
147 the hwrpb bits above, we can't reliably halt the
148 processor and keep it halted. So just loop. */
149 return;
150 }
151
152 if (alpha_using_srm)
153 srm_paging_stop();
154
155 halt();
156 }
157
158 static void
common_shutdown(int mode,char * restart_cmd)159 common_shutdown(int mode, char *restart_cmd)
160 {
161 struct halt_info args;
162 args.mode = mode;
163 args.restart_cmd = restart_cmd;
164 on_each_cpu(common_shutdown_1, &args, 0);
165 }
166
167 void
machine_restart(char * restart_cmd)168 machine_restart(char *restart_cmd)
169 {
170 common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
171 }
172
173
174 void
machine_halt(void)175 machine_halt(void)
176 {
177 common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
178 }
179
180
181 void
machine_power_off(void)182 machine_power_off(void)
183 {
184 common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
185 }
186
187
188 /* Used by sysrq-p, among others. I don't believe r9-r15 are ever
189 saved in the context it's used. */
190
191 void
show_regs(struct pt_regs * regs)192 show_regs(struct pt_regs *regs)
193 {
194 dik_show_regs(regs, NULL);
195 }
196
197 /*
198 * Re-start a thread when doing execve()
199 */
200 void
start_thread(struct pt_regs * regs,unsigned long pc,unsigned long sp)201 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
202 {
203 set_fs(USER_DS);
204 regs->pc = pc;
205 regs->ps = 8;
206 wrusp(sp);
207 }
208 EXPORT_SYMBOL(start_thread);
209
210 /*
211 * Free current thread data structures etc..
212 */
213 void
exit_thread(void)214 exit_thread(void)
215 {
216 }
217
218 void
flush_thread(void)219 flush_thread(void)
220 {
221 /* Arrange for each exec'ed process to start off with a clean slate
222 with respect to the FPU. This is all exceptions disabled. */
223 current_thread_info()->ieee_state = 0;
224 wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
225
226 /* Clean slate for TLS. */
227 current_thread_info()->pcb.unique = 0;
228 }
229
230 void
release_thread(struct task_struct * dead_task)231 release_thread(struct task_struct *dead_task)
232 {
233 }
234
235 /*
236 * "alpha_clone()".. By the time we get here, the
237 * non-volatile registers have also been saved on the
238 * stack. We do some ugly pointer stuff here.. (see
239 * also copy_thread)
240 *
241 * Notice that "fork()" is implemented in terms of clone,
242 * with parameters (SIGCHLD, 0).
243 */
244 int
alpha_clone(unsigned long clone_flags,unsigned long usp,int __user * parent_tid,int __user * child_tid,unsigned long tls_value,struct pt_regs * regs)245 alpha_clone(unsigned long clone_flags, unsigned long usp,
246 int __user *parent_tid, int __user *child_tid,
247 unsigned long tls_value, struct pt_regs *regs)
248 {
249 if (!usp)
250 usp = rdusp();
251
252 return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid);
253 }
254
255 int
alpha_vfork(struct pt_regs * regs)256 alpha_vfork(struct pt_regs *regs)
257 {
258 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
259 regs, 0, NULL, NULL);
260 }
261
262 /*
263 * Copy an alpha thread..
264 *
265 * Note the "stack_offset" stuff: when returning to kernel mode, we need
266 * to have some extra stack-space for the kernel stack that still exists
267 * after the "ret_from_fork". When returning to user mode, we only want
268 * the space needed by the syscall stack frame (ie "struct pt_regs").
269 * Use the passed "regs" pointer to determine how much space we need
270 * for a kernel fork().
271 */
272
273 int
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long unused,struct task_struct * p,struct pt_regs * regs)274 copy_thread(unsigned long clone_flags, unsigned long usp,
275 unsigned long unused,
276 struct task_struct * p, struct pt_regs * regs)
277 {
278 extern void ret_from_fork(void);
279
280 struct thread_info *childti = task_thread_info(p);
281 struct pt_regs * childregs;
282 struct switch_stack * childstack, *stack;
283 unsigned long stack_offset, settls;
284
285 stack_offset = PAGE_SIZE - sizeof(struct pt_regs);
286 if (!(regs->ps & 8))
287 stack_offset = (PAGE_SIZE-1) & (unsigned long) regs;
288 childregs = (struct pt_regs *)
289 (stack_offset + PAGE_SIZE + task_stack_page(p));
290
291 *childregs = *regs;
292 settls = regs->r20;
293 childregs->r0 = 0;
294 childregs->r19 = 0;
295 childregs->r20 = 1; /* OSF/1 has some strange fork() semantics. */
296 regs->r20 = 0;
297 stack = ((struct switch_stack *) regs) - 1;
298 childstack = ((struct switch_stack *) childregs) - 1;
299 *childstack = *stack;
300 childstack->r26 = (unsigned long) ret_from_fork;
301 childti->pcb.usp = usp;
302 childti->pcb.ksp = (unsigned long) childstack;
303 childti->pcb.flags = 1; /* set FEN, clear everything else */
304
305 /* Set a new TLS for the child thread? Peek back into the
306 syscall arguments that we saved on syscall entry. Oops,
307 except we'd have clobbered it with the parent/child set
308 of r20. Read the saved copy. */
309 /* Note: if CLONE_SETTLS is not set, then we must inherit the
310 value from the parent, which will have been set by the block
311 copy in dup_task_struct. This is non-intuitive, but is
312 required for proper operation in the case of a threaded
313 application calling fork. */
314 if (clone_flags & CLONE_SETTLS)
315 childti->pcb.unique = settls;
316
317 return 0;
318 }
319
320 /*
321 * Fill in the user structure for a ELF core dump.
322 */
323 void
dump_elf_thread(elf_greg_t * dest,struct pt_regs * pt,struct thread_info * ti)324 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
325 {
326 /* switch stack follows right below pt_regs: */
327 struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
328
329 dest[ 0] = pt->r0;
330 dest[ 1] = pt->r1;
331 dest[ 2] = pt->r2;
332 dest[ 3] = pt->r3;
333 dest[ 4] = pt->r4;
334 dest[ 5] = pt->r5;
335 dest[ 6] = pt->r6;
336 dest[ 7] = pt->r7;
337 dest[ 8] = pt->r8;
338 dest[ 9] = sw->r9;
339 dest[10] = sw->r10;
340 dest[11] = sw->r11;
341 dest[12] = sw->r12;
342 dest[13] = sw->r13;
343 dest[14] = sw->r14;
344 dest[15] = sw->r15;
345 dest[16] = pt->r16;
346 dest[17] = pt->r17;
347 dest[18] = pt->r18;
348 dest[19] = pt->r19;
349 dest[20] = pt->r20;
350 dest[21] = pt->r21;
351 dest[22] = pt->r22;
352 dest[23] = pt->r23;
353 dest[24] = pt->r24;
354 dest[25] = pt->r25;
355 dest[26] = pt->r26;
356 dest[27] = pt->r27;
357 dest[28] = pt->r28;
358 dest[29] = pt->gp;
359 dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
360 dest[31] = pt->pc;
361
362 /* Once upon a time this was the PS value. Which is stupid
363 since that is always 8 for usermode. Usurped for the more
364 useful value of the thread's UNIQUE field. */
365 dest[32] = ti->pcb.unique;
366 }
367 EXPORT_SYMBOL(dump_elf_thread);
368
369 int
dump_elf_task(elf_greg_t * dest,struct task_struct * task)370 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
371 {
372 dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
373 return 1;
374 }
375 EXPORT_SYMBOL(dump_elf_task);
376
377 int
dump_elf_task_fp(elf_fpreg_t * dest,struct task_struct * task)378 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
379 {
380 struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
381 memcpy(dest, sw->fp, 32 * 8);
382 return 1;
383 }
384 EXPORT_SYMBOL(dump_elf_task_fp);
385
386 /*
387 * sys_execve() executes a new program.
388 */
389 asmlinkage int
do_sys_execve(const char __user * ufilename,const char __user * const __user * argv,const char __user * const __user * envp,struct pt_regs * regs)390 do_sys_execve(const char __user *ufilename,
391 const char __user *const __user *argv,
392 const char __user *const __user *envp, struct pt_regs *regs)
393 {
394 int error;
395 char *filename;
396
397 filename = getname(ufilename);
398 error = PTR_ERR(filename);
399 if (IS_ERR(filename))
400 goto out;
401 error = do_execve(filename, argv, envp, regs);
402 putname(filename);
403 out:
404 return error;
405 }
406
407 /*
408 * Return saved PC of a blocked thread. This assumes the frame
409 * pointer is the 6th saved long on the kernel stack and that the
410 * saved return address is the first long in the frame. This all
411 * holds provided the thread blocked through a call to schedule() ($15
412 * is the frame pointer in schedule() and $15 is saved at offset 48 by
413 * entry.S:do_switch_stack).
414 *
415 * Under heavy swap load I've seen this lose in an ugly way. So do
416 * some extra sanity checking on the ranges we expect these pointers
417 * to be in so that we can fail gracefully. This is just for ps after
418 * all. -- r~
419 */
420
421 unsigned long
thread_saved_pc(struct task_struct * t)422 thread_saved_pc(struct task_struct *t)
423 {
424 unsigned long base = (unsigned long)task_stack_page(t);
425 unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
426
427 if (sp > base && sp+6*8 < base + 16*1024) {
428 fp = ((unsigned long*)sp)[6];
429 if (fp > sp && fp < base + 16*1024)
430 return *(unsigned long *)fp;
431 }
432
433 return 0;
434 }
435
436 unsigned long
get_wchan(struct task_struct * p)437 get_wchan(struct task_struct *p)
438 {
439 unsigned long schedule_frame;
440 unsigned long pc;
441 if (!p || p == current || p->state == TASK_RUNNING)
442 return 0;
443 /*
444 * This one depends on the frame size of schedule(). Do a
445 * "disass schedule" in gdb to find the frame size. Also, the
446 * code assumes that sleep_on() follows immediately after
447 * interruptible_sleep_on() and that add_timer() follows
448 * immediately after interruptible_sleep(). Ugly, isn't it?
449 * Maybe adding a wchan field to task_struct would be better,
450 * after all...
451 */
452
453 pc = thread_saved_pc(p);
454 if (in_sched_functions(pc)) {
455 schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
456 return ((unsigned long *)schedule_frame)[12];
457 }
458 return pc;
459 }
460