1 /*
2  *  linux/arch/alpha/kernel/process.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the architecture-dependent parts of process handling.
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/time.h>
22 #include <linux/major.h>
23 #include <linux/stat.h>
24 #include <linux/vt.h>
25 #include <linux/mman.h>
26 #include <linux/elfcore.h>
27 #include <linux/reboot.h>
28 #include <linux/tty.h>
29 #include <linux/console.h>
30 #include <linux/slab.h>
31 
32 #include <asm/reg.h>
33 #include <asm/uaccess.h>
34 #include <asm/system.h>
35 #include <asm/io.h>
36 #include <asm/pgtable.h>
37 #include <asm/hwrpb.h>
38 #include <asm/fpu.h>
39 
40 #include "proto.h"
41 #include "pci_impl.h"
42 
43 /*
44  * Power off function, if any
45  */
46 void (*pm_power_off)(void) = machine_power_off;
47 EXPORT_SYMBOL(pm_power_off);
48 
49 void
cpu_idle(void)50 cpu_idle(void)
51 {
52 	set_thread_flag(TIF_POLLING_NRFLAG);
53 
54 	while (1) {
55 		/* FIXME -- EV6 and LCA45 know how to power down
56 		   the CPU.  */
57 
58 		while (!need_resched())
59 			cpu_relax();
60 		schedule();
61 	}
62 }
63 
64 
65 struct halt_info {
66 	int mode;
67 	char *restart_cmd;
68 };
69 
70 static void
common_shutdown_1(void * generic_ptr)71 common_shutdown_1(void *generic_ptr)
72 {
73 	struct halt_info *how = (struct halt_info *)generic_ptr;
74 	struct percpu_struct *cpup;
75 	unsigned long *pflags, flags;
76 	int cpuid = smp_processor_id();
77 
78 	/* No point in taking interrupts anymore. */
79 	local_irq_disable();
80 
81 	cpup = (struct percpu_struct *)
82 			((unsigned long)hwrpb + hwrpb->processor_offset
83 			 + hwrpb->processor_size * cpuid);
84 	pflags = &cpup->flags;
85 	flags = *pflags;
86 
87 	/* Clear reason to "default"; clear "bootstrap in progress". */
88 	flags &= ~0x00ff0001UL;
89 
90 #ifdef CONFIG_SMP
91 	/* Secondaries halt here. */
92 	if (cpuid != boot_cpuid) {
93 		flags |= 0x00040000UL; /* "remain halted" */
94 		*pflags = flags;
95 		set_cpu_present(cpuid, false);
96 		set_cpu_possible(cpuid, false);
97 		halt();
98 	}
99 #endif
100 
101 	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
102 		if (!how->restart_cmd) {
103 			flags |= 0x00020000UL; /* "cold bootstrap" */
104 		} else {
105 			/* For SRM, we could probably set environment
106 			   variables to get this to work.  We'd have to
107 			   delay this until after srm_paging_stop unless
108 			   we ever got srm_fixup working.
109 
110 			   At the moment, SRM will use the last boot device,
111 			   but the file and flags will be the defaults, when
112 			   doing a "warm" bootstrap.  */
113 			flags |= 0x00030000UL; /* "warm bootstrap" */
114 		}
115 	} else {
116 		flags |= 0x00040000UL; /* "remain halted" */
117 	}
118 	*pflags = flags;
119 
120 #ifdef CONFIG_SMP
121 	/* Wait for the secondaries to halt. */
122 	set_cpu_present(boot_cpuid, false);
123 	set_cpu_possible(boot_cpuid, false);
124 	while (cpus_weight(cpu_present_map))
125 		barrier();
126 #endif
127 
128 	/* If booted from SRM, reset some of the original environment. */
129 	if (alpha_using_srm) {
130 #ifdef CONFIG_DUMMY_CONSOLE
131 		/* If we've gotten here after SysRq-b, leave interrupt
132 		   context before taking over the console. */
133 		if (in_interrupt())
134 			irq_exit();
135 		/* This has the effect of resetting the VGA video origin.  */
136 		take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
137 #endif
138 		pci_restore_srm_config();
139 		set_hae(srm_hae);
140 	}
141 
142 	if (alpha_mv.kill_arch)
143 		alpha_mv.kill_arch(how->mode);
144 
145 	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
146 		/* Unfortunately, since MILO doesn't currently understand
147 		   the hwrpb bits above, we can't reliably halt the
148 		   processor and keep it halted.  So just loop.  */
149 		return;
150 	}
151 
152 	if (alpha_using_srm)
153 		srm_paging_stop();
154 
155 	halt();
156 }
157 
158 static void
common_shutdown(int mode,char * restart_cmd)159 common_shutdown(int mode, char *restart_cmd)
160 {
161 	struct halt_info args;
162 	args.mode = mode;
163 	args.restart_cmd = restart_cmd;
164 	on_each_cpu(common_shutdown_1, &args, 0);
165 }
166 
167 void
machine_restart(char * restart_cmd)168 machine_restart(char *restart_cmd)
169 {
170 	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
171 }
172 
173 
174 void
machine_halt(void)175 machine_halt(void)
176 {
177 	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
178 }
179 
180 
181 void
machine_power_off(void)182 machine_power_off(void)
183 {
184 	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
185 }
186 
187 
188 /* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
189    saved in the context it's used.  */
190 
191 void
show_regs(struct pt_regs * regs)192 show_regs(struct pt_regs *regs)
193 {
194 	dik_show_regs(regs, NULL);
195 }
196 
197 /*
198  * Re-start a thread when doing execve()
199  */
200 void
start_thread(struct pt_regs * regs,unsigned long pc,unsigned long sp)201 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
202 {
203 	set_fs(USER_DS);
204 	regs->pc = pc;
205 	regs->ps = 8;
206 	wrusp(sp);
207 }
208 EXPORT_SYMBOL(start_thread);
209 
210 /*
211  * Free current thread data structures etc..
212  */
213 void
exit_thread(void)214 exit_thread(void)
215 {
216 }
217 
218 void
flush_thread(void)219 flush_thread(void)
220 {
221 	/* Arrange for each exec'ed process to start off with a clean slate
222 	   with respect to the FPU.  This is all exceptions disabled.  */
223 	current_thread_info()->ieee_state = 0;
224 	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
225 
226 	/* Clean slate for TLS.  */
227 	current_thread_info()->pcb.unique = 0;
228 }
229 
230 void
release_thread(struct task_struct * dead_task)231 release_thread(struct task_struct *dead_task)
232 {
233 }
234 
235 /*
236  * "alpha_clone()".. By the time we get here, the
237  * non-volatile registers have also been saved on the
238  * stack. We do some ugly pointer stuff here.. (see
239  * also copy_thread)
240  *
241  * Notice that "fork()" is implemented in terms of clone,
242  * with parameters (SIGCHLD, 0).
243  */
244 int
alpha_clone(unsigned long clone_flags,unsigned long usp,int __user * parent_tid,int __user * child_tid,unsigned long tls_value,struct pt_regs * regs)245 alpha_clone(unsigned long clone_flags, unsigned long usp,
246 	    int __user *parent_tid, int __user *child_tid,
247 	    unsigned long tls_value, struct pt_regs *regs)
248 {
249 	if (!usp)
250 		usp = rdusp();
251 
252 	return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid);
253 }
254 
255 int
alpha_vfork(struct pt_regs * regs)256 alpha_vfork(struct pt_regs *regs)
257 {
258 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
259 		       regs, 0, NULL, NULL);
260 }
261 
262 /*
263  * Copy an alpha thread..
264  *
265  * Note the "stack_offset" stuff: when returning to kernel mode, we need
266  * to have some extra stack-space for the kernel stack that still exists
267  * after the "ret_from_fork".  When returning to user mode, we only want
268  * the space needed by the syscall stack frame (ie "struct pt_regs").
269  * Use the passed "regs" pointer to determine how much space we need
270  * for a kernel fork().
271  */
272 
273 int
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long unused,struct task_struct * p,struct pt_regs * regs)274 copy_thread(unsigned long clone_flags, unsigned long usp,
275 	    unsigned long unused,
276 	    struct task_struct * p, struct pt_regs * regs)
277 {
278 	extern void ret_from_fork(void);
279 
280 	struct thread_info *childti = task_thread_info(p);
281 	struct pt_regs * childregs;
282 	struct switch_stack * childstack, *stack;
283 	unsigned long stack_offset, settls;
284 
285 	stack_offset = PAGE_SIZE - sizeof(struct pt_regs);
286 	if (!(regs->ps & 8))
287 		stack_offset = (PAGE_SIZE-1) & (unsigned long) regs;
288 	childregs = (struct pt_regs *)
289 	  (stack_offset + PAGE_SIZE + task_stack_page(p));
290 
291 	*childregs = *regs;
292 	settls = regs->r20;
293 	childregs->r0 = 0;
294 	childregs->r19 = 0;
295 	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
296 	regs->r20 = 0;
297 	stack = ((struct switch_stack *) regs) - 1;
298 	childstack = ((struct switch_stack *) childregs) - 1;
299 	*childstack = *stack;
300 	childstack->r26 = (unsigned long) ret_from_fork;
301 	childti->pcb.usp = usp;
302 	childti->pcb.ksp = (unsigned long) childstack;
303 	childti->pcb.flags = 1;	/* set FEN, clear everything else */
304 
305 	/* Set a new TLS for the child thread?  Peek back into the
306 	   syscall arguments that we saved on syscall entry.  Oops,
307 	   except we'd have clobbered it with the parent/child set
308 	   of r20.  Read the saved copy.  */
309 	/* Note: if CLONE_SETTLS is not set, then we must inherit the
310 	   value from the parent, which will have been set by the block
311 	   copy in dup_task_struct.  This is non-intuitive, but is
312 	   required for proper operation in the case of a threaded
313 	   application calling fork.  */
314 	if (clone_flags & CLONE_SETTLS)
315 		childti->pcb.unique = settls;
316 
317 	return 0;
318 }
319 
320 /*
321  * Fill in the user structure for a ELF core dump.
322  */
323 void
dump_elf_thread(elf_greg_t * dest,struct pt_regs * pt,struct thread_info * ti)324 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
325 {
326 	/* switch stack follows right below pt_regs: */
327 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
328 
329 	dest[ 0] = pt->r0;
330 	dest[ 1] = pt->r1;
331 	dest[ 2] = pt->r2;
332 	dest[ 3] = pt->r3;
333 	dest[ 4] = pt->r4;
334 	dest[ 5] = pt->r5;
335 	dest[ 6] = pt->r6;
336 	dest[ 7] = pt->r7;
337 	dest[ 8] = pt->r8;
338 	dest[ 9] = sw->r9;
339 	dest[10] = sw->r10;
340 	dest[11] = sw->r11;
341 	dest[12] = sw->r12;
342 	dest[13] = sw->r13;
343 	dest[14] = sw->r14;
344 	dest[15] = sw->r15;
345 	dest[16] = pt->r16;
346 	dest[17] = pt->r17;
347 	dest[18] = pt->r18;
348 	dest[19] = pt->r19;
349 	dest[20] = pt->r20;
350 	dest[21] = pt->r21;
351 	dest[22] = pt->r22;
352 	dest[23] = pt->r23;
353 	dest[24] = pt->r24;
354 	dest[25] = pt->r25;
355 	dest[26] = pt->r26;
356 	dest[27] = pt->r27;
357 	dest[28] = pt->r28;
358 	dest[29] = pt->gp;
359 	dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
360 	dest[31] = pt->pc;
361 
362 	/* Once upon a time this was the PS value.  Which is stupid
363 	   since that is always 8 for usermode.  Usurped for the more
364 	   useful value of the thread's UNIQUE field.  */
365 	dest[32] = ti->pcb.unique;
366 }
367 EXPORT_SYMBOL(dump_elf_thread);
368 
369 int
dump_elf_task(elf_greg_t * dest,struct task_struct * task)370 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
371 {
372 	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
373 	return 1;
374 }
375 EXPORT_SYMBOL(dump_elf_task);
376 
377 int
dump_elf_task_fp(elf_fpreg_t * dest,struct task_struct * task)378 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
379 {
380 	struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
381 	memcpy(dest, sw->fp, 32 * 8);
382 	return 1;
383 }
384 EXPORT_SYMBOL(dump_elf_task_fp);
385 
386 /*
387  * sys_execve() executes a new program.
388  */
389 asmlinkage int
do_sys_execve(const char __user * ufilename,const char __user * const __user * argv,const char __user * const __user * envp,struct pt_regs * regs)390 do_sys_execve(const char __user *ufilename,
391 	      const char __user *const __user *argv,
392 	      const char __user *const __user *envp, struct pt_regs *regs)
393 {
394 	int error;
395 	char *filename;
396 
397 	filename = getname(ufilename);
398 	error = PTR_ERR(filename);
399 	if (IS_ERR(filename))
400 		goto out;
401 	error = do_execve(filename, argv, envp, regs);
402 	putname(filename);
403 out:
404 	return error;
405 }
406 
407 /*
408  * Return saved PC of a blocked thread.  This assumes the frame
409  * pointer is the 6th saved long on the kernel stack and that the
410  * saved return address is the first long in the frame.  This all
411  * holds provided the thread blocked through a call to schedule() ($15
412  * is the frame pointer in schedule() and $15 is saved at offset 48 by
413  * entry.S:do_switch_stack).
414  *
415  * Under heavy swap load I've seen this lose in an ugly way.  So do
416  * some extra sanity checking on the ranges we expect these pointers
417  * to be in so that we can fail gracefully.  This is just for ps after
418  * all.  -- r~
419  */
420 
421 unsigned long
thread_saved_pc(struct task_struct * t)422 thread_saved_pc(struct task_struct *t)
423 {
424 	unsigned long base = (unsigned long)task_stack_page(t);
425 	unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
426 
427 	if (sp > base && sp+6*8 < base + 16*1024) {
428 		fp = ((unsigned long*)sp)[6];
429 		if (fp > sp && fp < base + 16*1024)
430 			return *(unsigned long *)fp;
431 	}
432 
433 	return 0;
434 }
435 
436 unsigned long
get_wchan(struct task_struct * p)437 get_wchan(struct task_struct *p)
438 {
439 	unsigned long schedule_frame;
440 	unsigned long pc;
441 	if (!p || p == current || p->state == TASK_RUNNING)
442 		return 0;
443 	/*
444 	 * This one depends on the frame size of schedule().  Do a
445 	 * "disass schedule" in gdb to find the frame size.  Also, the
446 	 * code assumes that sleep_on() follows immediately after
447 	 * interruptible_sleep_on() and that add_timer() follows
448 	 * immediately after interruptible_sleep().  Ugly, isn't it?
449 	 * Maybe adding a wchan field to task_struct would be better,
450 	 * after all...
451 	 */
452 
453 	pc = thread_saved_pc(p);
454 	if (in_sched_functions(pc)) {
455 		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
456 		return ((unsigned long *)schedule_frame)[12];
457 	}
458 	return pc;
459 }
460