1 /*
2  * net/sched/sch_tbf.c	Token Bucket Filter queue.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10  *		Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11  *						 original idea by Martin Devera
12  *
13  */
14 
15 #include <linux/config.h>
16 #include <linux/module.h>
17 #include <asm/uaccess.h>
18 #include <asm/system.h>
19 #include <asm/bitops.h>
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/socket.h>
26 #include <linux/sockios.h>
27 #include <linux/in.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/if_ether.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/notifier.h>
35 #include <net/ip.h>
36 #include <net/route.h>
37 #include <linux/skbuff.h>
38 #include <net/sock.h>
39 #include <net/pkt_sched.h>
40 
41 
42 /*	Simple Token Bucket Filter.
43 	=======================================
44 
45 	SOURCE.
46 	-------
47 
48 	None.
49 
50 	Description.
51 	------------
52 
53 	A data flow obeys TBF with rate R and depth B, if for any
54 	time interval t_i...t_f the number of transmitted bits
55 	does not exceed B + R*(t_f-t_i).
56 
57 	Packetized version of this definition:
58 	The sequence of packets of sizes s_i served at moments t_i
59 	obeys TBF, if for any i<=k:
60 
61 	s_i+....+s_k <= B + R*(t_k - t_i)
62 
63 	Algorithm.
64 	----------
65 
66 	Let N(t_i) be B/R initially and N(t) grow continuously with time as:
67 
68 	N(t+delta) = min{B/R, N(t) + delta}
69 
70 	If the first packet in queue has length S, it may be
71 	transmitted only at the time t_* when S/R <= N(t_*),
72 	and in this case N(t) jumps:
73 
74 	N(t_* + 0) = N(t_* - 0) - S/R.
75 
76 
77 
78 	Actually, QoS requires two TBF to be applied to a data stream.
79 	One of them controls steady state burst size, another
80 	one with rate P (peak rate) and depth M (equal to link MTU)
81 	limits bursts at a smaller time scale.
82 
83 	It is easy to see that P>R, and B>M. If P is infinity, this double
84 	TBF is equivalent to a single one.
85 
86 	When TBF works in reshaping mode, latency is estimated as:
87 
88 	lat = max ((L-B)/R, (L-M)/P)
89 
90 
91 	NOTES.
92 	------
93 
94 	If TBF throttles, it starts a watchdog timer, which will wake it up
95 	when it is ready to transmit.
96 	Note that the minimal timer resolution is 1/HZ.
97 	If no new packets arrive during this period,
98 	or if the device is not awaken by EOI for some previous packet,
99 	TBF can stop its activity for 1/HZ.
100 
101 
102 	This means, that with depth B, the maximal rate is
103 
104 	R_crit = B*HZ
105 
106 	F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
107 
108 	Note that the peak rate TBF is much more tough: with MTU 1500
109 	P_crit = 150Kbytes/sec. So, if you need greater peak
110 	rates, use alpha with HZ=1000 :-)
111 
112 	With classful TBF, limit is just kept for backwards compatibility.
113 	It is passed to the default bfifo qdisc - if the inner qdisc is
114 	changed the limit is not effective anymore.
115 */
116 
117 struct tbf_sched_data
118 {
119 /* Parameters */
120 	u32		limit;		/* Maximal length of backlog: bytes */
121 	u32		buffer;		/* Token bucket depth/rate: MUST BE >= MTU/B */
122 	u32		mtu;
123 	u32		max_size;
124 	struct qdisc_rate_table	*R_tab;
125 	struct qdisc_rate_table	*P_tab;
126 
127 /* Variables */
128 	long	tokens;			/* Current number of B tokens */
129 	long	ptokens;		/* Current number of P tokens */
130 	psched_time_t	t_c;		/* Time check-point */
131 	struct timer_list wd_timer;	/* Watchdog timer */
132 	struct Qdisc	*qdisc;		/* Inner qdisc, default - bfifo queue */
133 };
134 
135 #define L2T(q,L)   ((q)->R_tab->data[(L)>>(q)->R_tab->rate.cell_log])
136 #define L2T_P(q,L) ((q)->P_tab->data[(L)>>(q)->P_tab->rate.cell_log])
137 
tbf_enqueue(struct sk_buff * skb,struct Qdisc * sch)138 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc* sch)
139 {
140 	struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data;
141 	int ret;
142 
143 	if (skb->len > q->max_size) {
144 		sch->stats.drops++;
145 #ifdef CONFIG_NET_CLS_POLICE
146 		if (sch->reshape_fail == NULL || sch->reshape_fail(skb, sch))
147 #endif
148 			kfree_skb(skb);
149 
150 		return NET_XMIT_DROP;
151 	}
152 
153 	if ((ret = q->qdisc->enqueue(skb, q->qdisc)) != 0) {
154 		sch->stats.drops++;
155 		return ret;
156 	}
157 
158 	sch->q.qlen++;
159 	sch->stats.bytes += skb->len;
160 	sch->stats.packets++;
161 	return 0;
162 }
163 
tbf_requeue(struct sk_buff * skb,struct Qdisc * sch)164 static int tbf_requeue(struct sk_buff *skb, struct Qdisc* sch)
165 {
166 	struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data;
167 	int ret;
168 
169 	if ((ret = q->qdisc->ops->requeue(skb, q->qdisc)) == 0)
170 		sch->q.qlen++;
171 
172 	return ret;
173 }
174 
tbf_drop(struct Qdisc * sch)175 static unsigned int tbf_drop(struct Qdisc* sch)
176 {
177 	struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data;
178 	unsigned int len;
179 
180 	if ((len = q->qdisc->ops->drop(q->qdisc)) != 0) {
181 		sch->q.qlen--;
182 		sch->stats.drops++;
183 	}
184 	return len;
185 }
186 
tbf_watchdog(unsigned long arg)187 static void tbf_watchdog(unsigned long arg)
188 {
189 	struct Qdisc *sch = (struct Qdisc*)arg;
190 
191 	sch->flags &= ~TCQ_F_THROTTLED;
192 	netif_schedule(sch->dev);
193 }
194 
tbf_dequeue(struct Qdisc * sch)195 static struct sk_buff *tbf_dequeue(struct Qdisc* sch)
196 {
197 	struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data;
198 	struct sk_buff *skb;
199 
200 	skb = q->qdisc->dequeue(q->qdisc);
201 
202 	if (skb) {
203 		psched_time_t now;
204 		long toks, delay;
205 		long ptoks = 0;
206 		unsigned int len = skb->len;
207 
208 		PSCHED_GET_TIME(now);
209 
210 		toks = PSCHED_TDIFF_SAFE(now, q->t_c, q->buffer, 0);
211 
212 		if (q->P_tab) {
213 			ptoks = toks + q->ptokens;
214 			if (ptoks > (long)q->mtu)
215 				ptoks = q->mtu;
216 			ptoks -= L2T_P(q, len);
217 		}
218 		toks += q->tokens;
219 		if (toks > (long)q->buffer)
220 			toks = q->buffer;
221 		toks -= L2T(q, len);
222 
223 		if ((toks|ptoks) >= 0) {
224 			q->t_c = now;
225 			q->tokens = toks;
226 			q->ptokens = ptoks;
227 			sch->q.qlen--;
228 			sch->flags &= ~TCQ_F_THROTTLED;
229 			return skb;
230 		}
231 
232 		delay = PSCHED_US2JIFFIE(max_t(long, -toks, -ptoks));
233 
234 		if (delay == 0)
235 			delay = 1;
236 
237 		mod_timer(&q->wd_timer, jiffies+delay);
238 
239 		/* Maybe we have a shorter packet in the queue,
240 		   which can be sent now. It sounds cool,
241 		   but, however, this is wrong in principle.
242 		   We MUST NOT reorder packets under these circumstances.
243 
244 		   Really, if we split the flow into independent
245 		   subflows, it would be a very good solution.
246 		   This is the main idea of all FQ algorithms
247 		   (cf. CSZ, HPFQ, HFSC)
248 		 */
249 
250 		if (q->qdisc->ops->requeue(skb, q->qdisc) != NET_XMIT_SUCCESS) {
251 			/* When requeue fails skb is dropped */
252 			sch->q.qlen--;
253 			sch->stats.drops++;
254 		}
255 
256 		sch->flags |= TCQ_F_THROTTLED;
257 		sch->stats.overlimits++;
258 	}
259 	return NULL;
260 }
261 
tbf_reset(struct Qdisc * sch)262 static void tbf_reset(struct Qdisc* sch)
263 {
264 	struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data;
265 
266 	qdisc_reset(q->qdisc);
267 	sch->q.qlen = 0;
268 	PSCHED_GET_TIME(q->t_c);
269 	q->tokens = q->buffer;
270 	q->ptokens = q->mtu;
271 	sch->flags &= ~TCQ_F_THROTTLED;
272 	del_timer(&q->wd_timer);
273 }
274 
tbf_create_dflt_qdisc(struct net_device * dev,u32 limit)275 static struct Qdisc *tbf_create_dflt_qdisc(struct net_device *dev, u32 limit)
276 {
277 	struct Qdisc *q = qdisc_create_dflt(dev, &bfifo_qdisc_ops);
278         struct rtattr *rta;
279 	int ret;
280 
281 	if (q) {
282 		rta = kmalloc(RTA_LENGTH(sizeof(struct tc_fifo_qopt)), GFP_KERNEL);
283 		if (rta) {
284 			rta->rta_type = RTM_NEWQDISC;
285 			rta->rta_len = RTA_LENGTH(sizeof(struct tc_fifo_qopt));
286 			((struct tc_fifo_qopt *)RTA_DATA(rta))->limit = limit;
287 
288 			ret = q->ops->change(q, rta);
289 			kfree(rta);
290 
291 			if (ret == 0)
292 				return q;
293 		}
294 		qdisc_destroy(q);
295 	}
296 
297 	return NULL;
298 }
299 
tbf_change(struct Qdisc * sch,struct rtattr * opt)300 static int tbf_change(struct Qdisc* sch, struct rtattr *opt)
301 {
302 	int err = -EINVAL;
303 	struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data;
304 	struct rtattr *tb[TCA_TBF_PTAB];
305 	struct tc_tbf_qopt *qopt;
306 	struct qdisc_rate_table *rtab = NULL;
307 	struct qdisc_rate_table *ptab = NULL;
308 	struct Qdisc *child = NULL;
309 	int max_size,n;
310 
311 	if (rtattr_parse(tb, TCA_TBF_PTAB, RTA_DATA(opt), RTA_PAYLOAD(opt)) ||
312 	    tb[TCA_TBF_PARMS-1] == NULL ||
313 	    RTA_PAYLOAD(tb[TCA_TBF_PARMS-1]) < sizeof(*qopt))
314 		goto done;
315 
316 	qopt = RTA_DATA(tb[TCA_TBF_PARMS-1]);
317 	rtab = qdisc_get_rtab(&qopt->rate, tb[TCA_TBF_RTAB-1]);
318 	if (rtab == NULL)
319 		goto done;
320 
321 	if (qopt->peakrate.rate) {
322 		if (qopt->peakrate.rate > qopt->rate.rate)
323 			ptab = qdisc_get_rtab(&qopt->peakrate, tb[TCA_TBF_PTAB-1]);
324 		if (ptab == NULL)
325 			goto done;
326 	}
327 
328 	for (n = 0; n < 256; n++)
329 		if (rtab->data[n] > qopt->buffer) break;
330 	max_size = (n << qopt->rate.cell_log)-1;
331 	if (ptab) {
332 		int size;
333 
334 		for (n = 0; n < 256; n++)
335 			if (ptab->data[n] > qopt->mtu) break;
336 		size = (n << qopt->peakrate.cell_log)-1;
337 		if (size < max_size) max_size = size;
338 	}
339 	if (max_size < 0)
340 		goto done;
341 
342 	if (q->qdisc == &noop_qdisc) {
343 		if ((child = tbf_create_dflt_qdisc(sch->dev, qopt->limit)) == NULL)
344 			goto done;
345 	}
346 
347 	sch_tree_lock(sch);
348 	if (child) q->qdisc = child;
349 	q->limit = qopt->limit;
350 	q->mtu = qopt->mtu;
351 	q->max_size = max_size;
352 	q->buffer = qopt->buffer;
353 	q->tokens = q->buffer;
354 	q->ptokens = q->mtu;
355 	rtab = xchg(&q->R_tab, rtab);
356 	ptab = xchg(&q->P_tab, ptab);
357 	sch_tree_unlock(sch);
358 	err = 0;
359 done:
360 	if (rtab)
361 		qdisc_put_rtab(rtab);
362 	if (ptab)
363 		qdisc_put_rtab(ptab);
364 	return err;
365 }
366 
tbf_init(struct Qdisc * sch,struct rtattr * opt)367 static int tbf_init(struct Qdisc* sch, struct rtattr *opt)
368 {
369 	int err;
370 	struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data;
371 
372 	if (opt == NULL)
373 		return -EINVAL;
374 
375 	MOD_INC_USE_COUNT;
376 
377 	PSCHED_GET_TIME(q->t_c);
378 	init_timer(&q->wd_timer);
379 	q->wd_timer.function = tbf_watchdog;
380 	q->wd_timer.data = (unsigned long)sch;
381 
382 	q->qdisc = &noop_qdisc;
383 
384 	if ((err = tbf_change(sch, opt)) != 0) {
385 		MOD_DEC_USE_COUNT;
386 	}
387 	return err;
388 }
389 
tbf_destroy(struct Qdisc * sch)390 static void tbf_destroy(struct Qdisc *sch)
391 {
392 	struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data;
393 
394 	del_timer(&q->wd_timer);
395 
396 	if (q->P_tab)
397 		qdisc_put_rtab(q->P_tab);
398 	if (q->R_tab)
399 		qdisc_put_rtab(q->R_tab);
400 
401 	qdisc_destroy(q->qdisc);
402 	q->qdisc = &noop_qdisc;
403 
404 	MOD_DEC_USE_COUNT;
405 }
406 
tbf_dump(struct Qdisc * sch,struct sk_buff * skb)407 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
408 {
409 	struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data;
410 	unsigned char	 *b = skb->tail;
411 	struct rtattr *rta;
412 	struct tc_tbf_qopt opt;
413 
414 	rta = (struct rtattr*)b;
415 	RTA_PUT(skb, TCA_OPTIONS, 0, NULL);
416 
417 	opt.limit = q->limit;
418 	opt.rate = q->R_tab->rate;
419 	if (q->P_tab)
420 		opt.peakrate = q->P_tab->rate;
421 	else
422 		memset(&opt.peakrate, 0, sizeof(opt.peakrate));
423 	opt.mtu = q->mtu;
424 	opt.buffer = q->buffer;
425 	RTA_PUT(skb, TCA_TBF_PARMS, sizeof(opt), &opt);
426 	rta->rta_len = skb->tail - b;
427 
428 	return skb->len;
429 
430 rtattr_failure:
431 	skb_trim(skb, b - skb->data);
432 	return -1;
433 }
434 
tbf_dump_class(struct Qdisc * sch,unsigned long cl,struct sk_buff * skb,struct tcmsg * tcm)435 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
436 	       		  struct sk_buff *skb, struct tcmsg *tcm)
437 {
438 	struct tbf_sched_data *q = (struct tbf_sched_data*)sch->data;
439 
440 	if (cl != 1) 	/* only one class */
441 		return -ENOENT;
442 
443 	tcm->tcm_handle |= TC_H_MIN(1);
444 	tcm->tcm_info = q->qdisc->handle;
445 
446 	return 0;
447 }
448 
tbf_graft(struct Qdisc * sch,unsigned long arg,struct Qdisc * new,struct Qdisc ** old)449 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
450 		     struct Qdisc **old)
451 {
452 	struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data;
453 
454 	if (new == NULL)
455 		new = &noop_qdisc;
456 
457 	sch_tree_lock(sch);
458 	*old = xchg(&q->qdisc, new);
459 	qdisc_reset(*old);
460 	sch->q.qlen = 0;
461 	sch_tree_unlock(sch);
462 
463 	return 0;
464 }
465 
tbf_leaf(struct Qdisc * sch,unsigned long arg)466 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
467 {
468 	struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data;
469 	return q->qdisc;
470 }
471 
tbf_get(struct Qdisc * sch,u32 classid)472 static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
473 {
474 	return 1;
475 }
476 
tbf_put(struct Qdisc * sch,unsigned long arg)477 static void tbf_put(struct Qdisc *sch, unsigned long arg)
478 {
479 }
480 
tbf_change_class(struct Qdisc * sch,u32 classid,u32 parentid,struct rtattr ** tca,unsigned long * arg)481 static int tbf_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
482 			struct rtattr **tca, unsigned long *arg)
483 {
484 	return -ENOSYS;
485 }
486 
tbf_delete(struct Qdisc * sch,unsigned long arg)487 static int tbf_delete(struct Qdisc *sch, unsigned long arg)
488 {
489 	return -ENOSYS;
490 }
491 
tbf_walk(struct Qdisc * sch,struct qdisc_walker * walker)492 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
493 {
494 	if (!walker->stop) {
495 		if (walker->count >= walker->skip)
496 			if (walker->fn(sch, 1, walker) < 0) {
497 				walker->stop = 1;
498 				return;
499 			}
500 		walker->count++;
501 	}
502 }
503 
tbf_find_tcf(struct Qdisc * sch,unsigned long cl)504 static struct tcf_proto **tbf_find_tcf(struct Qdisc *sch, unsigned long cl)
505 {
506 	return NULL;
507 }
508 
509 static struct Qdisc_class_ops tbf_class_ops =
510 {
511 	.graft		= 	tbf_graft,
512 	.leaf		=	tbf_leaf,
513 	.get		=	tbf_get,
514 	.put		=	tbf_put,
515 	.change		=	tbf_change_class,
516 	.delete		=	tbf_delete,
517 	.walk		=	tbf_walk,
518 	.tcf_chain	=	tbf_find_tcf,
519 	.dump		=	tbf_dump_class,
520 };
521 
522 struct Qdisc_ops tbf_qdisc_ops =
523 {
524 	NULL,
525 	&tbf_class_ops,
526 	"tbf",
527 	sizeof(struct tbf_sched_data),
528 
529 	tbf_enqueue,
530 	tbf_dequeue,
531 	tbf_requeue,
532 	tbf_drop,
533 
534 	tbf_init,
535 	tbf_reset,
536 	tbf_destroy,
537 	tbf_change,
538 
539 	tbf_dump,
540 };
541 
542 
543 #ifdef MODULE
init_module(void)544 int init_module(void)
545 {
546 	return register_qdisc(&tbf_qdisc_ops);
547 }
548 
cleanup_module(void)549 void cleanup_module(void)
550 {
551 	unregister_qdisc(&tbf_qdisc_ops);
552 }
553 #endif
554 MODULE_LICENSE("GPL");
555