1 /*
2  * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * 2003-10-17 - Ported from altq
10  */
11 /*
12  * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
13  *
14  * Permission to use, copy, modify, and distribute this software and
15  * its documentation is hereby granted (including for commercial or
16  * for-profit use), provided that both the copyright notice and this
17  * permission notice appear in all copies of the software, derivative
18  * works, or modified versions, and any portions thereof.
19  *
20  * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21  * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
22  * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25  * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
33  * DAMAGE.
34  *
35  * Carnegie Mellon encourages (but does not require) users of this
36  * software to return any improvements or extensions that they make,
37  * and to grant Carnegie Mellon the rights to redistribute these
38  * changes without encumbrance.
39  */
40 /*
41  * H-FSC is described in Proceedings of SIGCOMM'97,
42  * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43  * Real-Time and Priority Service"
44  * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
45  *
46  * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47  * when a class has an upperlimit, the fit-time is computed from the
48  * upperlimit service curve.  the link-sharing scheduler does not schedule
49  * a class whose fit-time exceeds the current time.
50  */
51 
52 #include <linux/kernel.h>
53 #include <linux/config.h>
54 #include <linux/module.h>
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/compiler.h>
58 #include <linux/spinlock.h>
59 #include <linux/skbuff.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/timer.h>
63 #include <linux/list.h>
64 #include <linux/rbtree.h>
65 #include <linux/init.h>
66 #include <linux/netdevice.h>
67 #include <linux/rtnetlink.h>
68 #include <linux/pkt_sched.h>
69 #include <net/pkt_sched.h>
70 #include <net/pkt_cls.h>
71 #include <asm/system.h>
72 #include <asm/div64.h>
73 
74 #define HFSC_DEBUG 1
75 
76 /*
77  * kernel internal service curve representation:
78  *   coordinates are given by 64 bit unsigned integers.
79  *   x-axis: unit is clock count.
80  *   y-axis: unit is byte.
81  *
82  *   The service curve parameters are converted to the internal
83  *   representation. The slope values are scaled to avoid overflow.
84  *   the inverse slope values as well as the y-projection of the 1st
85  *   segment are kept in order to to avoid 64-bit divide operations
86  *   that are expensive on 32-bit architectures.
87  */
88 
89 struct internal_sc
90 {
91 	u64	sm1;	/* scaled slope of the 1st segment */
92 	u64	ism1;	/* scaled inverse-slope of the 1st segment */
93 	u64	dx;	/* the x-projection of the 1st segment */
94 	u64	dy;	/* the y-projection of the 1st segment */
95 	u64	sm2;	/* scaled slope of the 2nd segment */
96 	u64	ism2;	/* scaled inverse-slope of the 2nd segment */
97 };
98 
99 /* runtime service curve */
100 struct runtime_sc
101 {
102 	u64	x;	/* current starting position on x-axis */
103 	u64	y;	/* current starting position on y-axis */
104 	u64	sm1;	/* scaled slope of the 1st segment */
105 	u64	ism1;	/* scaled inverse-slope of the 1st segment */
106 	u64	dx;	/* the x-projection of the 1st segment */
107 	u64	dy;	/* the y-projection of the 1st segment */
108 	u64	sm2;	/* scaled slope of the 2nd segment */
109 	u64	ism2;	/* scaled inverse-slope of the 2nd segment */
110 };
111 
112 enum hfsc_class_flags
113 {
114 	HFSC_RSC = 0x1,
115 	HFSC_FSC = 0x2,
116 	HFSC_USC = 0x4
117 };
118 
119 struct hfsc_class
120 {
121 	u32		classid;	/* class id */
122 	unsigned int	refcnt;		/* usage count */
123 
124 	struct tc_stats	stats;		/* generic statistics */
125 	unsigned int	level;		/* class level in hierarchy */
126 	struct tcf_proto *filter_list;	/* filter list */
127 	unsigned int	filter_cnt;	/* filter count */
128 
129 	struct hfsc_sched *sched;	/* scheduler data */
130 	struct hfsc_class *cl_parent;	/* parent class */
131 	struct list_head siblings;	/* sibling classes */
132 	struct list_head children;	/* child classes */
133 	struct Qdisc	*qdisc;		/* leaf qdisc */
134 
135 	rb_node_t el_node;		/* qdisc's eligible tree member */
136 	rb_root_t vt_tree;		/* active children sorted by cl_vt */
137 	rb_node_t vt_node;		/* parent's vt_tree member */
138 	rb_root_t cf_tree;		/* active children sorted by cl_f */
139 	rb_node_t cf_node;		/* parent's cf_heap member */
140 	struct list_head hlist;		/* hash list member */
141 	struct list_head dlist;		/* drop list member */
142 
143 	u64	cl_total;		/* total work in bytes */
144 	u64	cl_cumul;		/* cumulative work in bytes done by
145 					   real-time criteria */
146 
147 	u64 	cl_d;			/* deadline*/
148 	u64 	cl_e;			/* eligible time */
149 	u64	cl_vt;			/* virtual time */
150 	u64	cl_f;			/* time when this class will fit for
151 					   link-sharing, max(myf, cfmin) */
152 	u64	cl_myf;			/* my fit-time (calculated from this
153 					   class's own upperlimit curve) */
154 	u64	cl_myfadj;		/* my fit-time adjustment (to cancel
155 					   history dependence) */
156 	u64	cl_cfmin;		/* earliest children's fit-time (used
157 					   with cl_myf to obtain cl_f) */
158 	u64	cl_cvtmin;		/* minimal virtual time among the
159 					   children fit for link-sharing
160 					   (monotonic within a period) */
161 	u64	cl_vtadj;		/* intra-period cumulative vt
162 					   adjustment */
163 	u64	cl_vtoff;		/* inter-period cumulative vt offset */
164 	u64	cl_cvtmax;		/* max child's vt in the last period */
165 	u64	cl_cvtoff;		/* cumulative cvtmax of all periods */
166 	u64	cl_pcvtoff;		/* parent's cvtoff at initalization
167 					   time */
168 
169 	struct internal_sc cl_rsc;	/* internal real-time service curve */
170 	struct internal_sc cl_fsc;	/* internal fair service curve */
171 	struct internal_sc cl_usc;	/* internal upperlimit service curve */
172 	struct runtime_sc cl_deadline;	/* deadline curve */
173 	struct runtime_sc cl_eligible;	/* eligible curve */
174 	struct runtime_sc cl_virtual;	/* virtual curve */
175 	struct runtime_sc cl_ulimit;	/* upperlimit curve */
176 
177 	unsigned long	cl_flags;	/* which curves are valid */
178 	unsigned long	cl_vtperiod;	/* vt period sequence number */
179 	unsigned long	cl_parentperiod;/* parent's vt period sequence number*/
180 	unsigned long	cl_nactive;	/* number of active children */
181 };
182 
183 #define HFSC_HSIZE	16
184 
185 struct hfsc_sched
186 {
187 	u16	defcls;				/* default class id */
188 	struct hfsc_class root;			/* root class */
189 	struct list_head clhash[HFSC_HSIZE];	/* class hash */
190 	rb_root_t eligible;			/* eligible tree */
191 	struct list_head droplist;		/* active leaf class list (for
192 						   dropping) */
193 	struct sk_buff_head requeue;		/* requeued packet */
194 	struct timer_list wd_timer;		/* watchdog timer */
195 };
196 
197 /*
198  * macros
199  */
200 #if PSCHED_CLOCK_SOURCE == PSCHED_GETTIMEOFDAY
201 #include <linux/time.h>
202 #undef PSCHED_GET_TIME
203 #define PSCHED_GET_TIME(stamp)						\
204 do {									\
205 	struct timeval tv;						\
206 	do_gettimeofday(&tv);						\
207 	(stamp) = 1000000ULL * tv.tv_sec + tv.tv_usec;			\
208 } while (0)
209 #endif
210 
211 #if HFSC_DEBUG
212 #define ASSERT(cond)							\
213 do {									\
214 	if (unlikely(!(cond)))						\
215 		printk("assertion %s failed at %s:%i (%s)\n",		\
216 		       #cond, __FILE__, __LINE__, __FUNCTION__);	\
217 } while (0)
218 #else
219 #define ASSERT(cond)
220 #endif /* HFSC_DEBUG */
221 
222 #define	HT_INFINITY	0xffffffffffffffffULL	/* infinite time value */
223 
224 
225 /*
226  * eligible tree holds backlogged classes being sorted by their eligible times.
227  * there is one eligible tree per hfsc instance.
228  */
229 
230 static void
eltree_insert(struct hfsc_class * cl)231 eltree_insert(struct hfsc_class *cl)
232 {
233 	rb_node_t **p = &cl->sched->eligible.rb_node;
234 	rb_node_t *parent = NULL;
235 	struct hfsc_class *cl1;
236 
237 	while (*p != NULL) {
238 		parent = *p;
239 		cl1 = rb_entry(parent, struct hfsc_class, el_node);
240 		if (cl->cl_e >= cl1->cl_e)
241 			p = &parent->rb_right;
242 		else
243 			p = &parent->rb_left;
244 	}
245 	rb_link_node(&cl->el_node, parent, p);
246 	rb_insert_color(&cl->el_node, &cl->sched->eligible);
247 }
248 
249 static inline void
eltree_remove(struct hfsc_class * cl)250 eltree_remove(struct hfsc_class *cl)
251 {
252 	rb_erase(&cl->el_node, &cl->sched->eligible);
253 }
254 
255 static inline void
eltree_update(struct hfsc_class * cl)256 eltree_update(struct hfsc_class *cl)
257 {
258 	eltree_remove(cl);
259 	eltree_insert(cl);
260 }
261 
262 /* find the class with the minimum deadline among the eligible classes */
263 static inline struct hfsc_class *
eltree_get_mindl(struct hfsc_sched * q,u64 cur_time)264 eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
265 {
266 	struct hfsc_class *p, *cl = NULL;
267 	rb_node_t *n;
268 
269 	for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
270 		p = rb_entry(n, struct hfsc_class, el_node);
271 		if (p->cl_e > cur_time)
272 			break;
273 		if (cl == NULL || p->cl_d < cl->cl_d)
274 			cl = p;
275 	}
276 	return cl;
277 }
278 
279 /* find the class with minimum eligible time among the eligible classes */
280 static inline struct hfsc_class *
eltree_get_minel(struct hfsc_sched * q)281 eltree_get_minel(struct hfsc_sched *q)
282 {
283 	rb_node_t *n;
284 
285 	n = rb_first(&q->eligible);
286 	if (n == NULL)
287 		return NULL;
288 	return rb_entry(n, struct hfsc_class, el_node);
289 }
290 
291 /*
292  * vttree holds holds backlogged child classes being sorted by their virtual
293  * time. each intermediate class has one vttree.
294  */
295 static void
vttree_insert(struct hfsc_class * cl)296 vttree_insert(struct hfsc_class *cl)
297 {
298 	rb_node_t **p = &cl->cl_parent->vt_tree.rb_node;
299 	rb_node_t *parent = NULL;
300 	struct hfsc_class *cl1;
301 
302 	while (*p != NULL) {
303 		parent = *p;
304 		cl1 = rb_entry(parent, struct hfsc_class, vt_node);
305 		if (cl->cl_vt >= cl1->cl_vt)
306 			p = &parent->rb_right;
307 		else
308 			p = &parent->rb_left;
309 	}
310 	rb_link_node(&cl->vt_node, parent, p);
311 	rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
312 }
313 
314 static inline void
vttree_remove(struct hfsc_class * cl)315 vttree_remove(struct hfsc_class *cl)
316 {
317 	rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
318 }
319 
320 static inline void
vttree_update(struct hfsc_class * cl)321 vttree_update(struct hfsc_class *cl)
322 {
323 	vttree_remove(cl);
324 	vttree_insert(cl);
325 }
326 
327 static inline struct hfsc_class *
vttree_firstfit(struct hfsc_class * cl,u64 cur_time)328 vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
329 {
330 	struct hfsc_class *p;
331 	rb_node_t *n;
332 
333 	for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
334 		p = rb_entry(n, struct hfsc_class, vt_node);
335 		if (p->cl_f <= cur_time)
336 			return p;
337 	}
338 	return NULL;
339 }
340 
341 /*
342  * get the leaf class with the minimum vt in the hierarchy
343  */
344 static struct hfsc_class *
vttree_get_minvt(struct hfsc_class * cl,u64 cur_time)345 vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
346 {
347 	/* if root-class's cfmin is bigger than cur_time nothing to do */
348 	if (cl->cl_cfmin > cur_time)
349 		return NULL;
350 
351 	while (cl->level > 0) {
352 		cl = vttree_firstfit(cl, cur_time);
353 		if (cl == NULL)
354 			return NULL;
355 		/*
356 		 * update parent's cl_cvtmin.
357 		 */
358 		if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
359 			cl->cl_parent->cl_cvtmin = cl->cl_vt;
360 	}
361 	return cl;
362 }
363 
364 static void
cftree_insert(struct hfsc_class * cl)365 cftree_insert(struct hfsc_class *cl)
366 {
367 	rb_node_t **p = &cl->cl_parent->cf_tree.rb_node;
368 	rb_node_t *parent = NULL;
369 	struct hfsc_class *cl1;
370 
371 	while (*p != NULL) {
372 		parent = *p;
373 		cl1 = rb_entry(parent, struct hfsc_class, cf_node);
374 		if (cl->cl_f >= cl1->cl_f)
375 			p = &parent->rb_right;
376 		else
377 			p = &parent->rb_left;
378 	}
379 	rb_link_node(&cl->cf_node, parent, p);
380 	rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
381 }
382 
383 static inline void
cftree_remove(struct hfsc_class * cl)384 cftree_remove(struct hfsc_class *cl)
385 {
386 	rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
387 }
388 
389 static inline void
cftree_update(struct hfsc_class * cl)390 cftree_update(struct hfsc_class *cl)
391 {
392 	cftree_remove(cl);
393 	cftree_insert(cl);
394 }
395 
396 /*
397  * service curve support functions
398  *
399  *  external service curve parameters
400  *	m: bps
401  *	d: us
402  *  internal service curve parameters
403  *	sm: (bytes/psched_us) << SM_SHIFT
404  *	ism: (psched_us/byte) << ISM_SHIFT
405  *	dx: psched_us
406  *
407  * Time source resolution
408  *  PSCHED_JIFFIES: for 48<=HZ<=1534 resolution is between 0.63us and 1.27us.
409  *  PSCHED_CPU: resolution is between 0.5us and 1us.
410  *  PSCHED_GETTIMEOFDAY: resolution is exactly 1us.
411  *
412  * sm and ism are scaled in order to keep effective digits.
413  * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
414  * digits in decimal using the following table.
415  *
416  * Note: We can afford the additional accuracy (altq hfsc keeps at most
417  * 3 effective digits) thanks to the fact that linux clock is bounded
418  * much more tightly.
419  *
420  *  bits/sec      100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
421  *  ------------+-------------------------------------------------------
422  *  bytes/0.5us   6.25e-3    62.5e-3    625e-3     6250e-e    62500e-3
423  *  bytes/us      12.5e-3    125e-3     1250e-3    12500e-3   125000e-3
424  *  bytes/1.27us  15.875e-3  158.75e-3  1587.5e-3  15875e-3   158750e-3
425  *
426  *  0.5us/byte    160        16         1.6        0.16       0.016
427  *  us/byte       80         8          0.8        0.08       0.008
428  *  1.27us/byte   63         6.3        0.63       0.063      0.0063
429  */
430 #define	SM_SHIFT	20
431 #define	ISM_SHIFT	18
432 
433 #define	SM_MASK		((1ULL << SM_SHIFT) - 1)
434 #define	ISM_MASK	((1ULL << ISM_SHIFT) - 1)
435 
436 static inline u64
seg_x2y(u64 x,u64 sm)437 seg_x2y(u64 x, u64 sm)
438 {
439 	u64 y;
440 
441 	/*
442 	 * compute
443 	 *	y = x * sm >> SM_SHIFT
444 	 * but divide it for the upper and lower bits to avoid overflow
445 	 */
446 	y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
447 	return y;
448 }
449 
450 static inline u64
seg_y2x(u64 y,u64 ism)451 seg_y2x(u64 y, u64 ism)
452 {
453 	u64 x;
454 
455 	if (y == 0)
456 		x = 0;
457 	else if (ism == HT_INFINITY)
458 		x = HT_INFINITY;
459 	else {
460 		x = (y >> ISM_SHIFT) * ism
461 		    + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
462 	}
463 	return x;
464 }
465 
466 /* Convert m (bps) into sm (bytes/psched us) */
467 static u64
m2sm(u32 m)468 m2sm(u32 m)
469 {
470 	u64 sm;
471 
472 	sm = ((u64)m << SM_SHIFT);
473 	sm += PSCHED_JIFFIE2US(HZ) - 1;
474 	do_div(sm, PSCHED_JIFFIE2US(HZ));
475 	return sm;
476 }
477 
478 /* convert m (bps) into ism (psched us/byte) */
479 static u64
m2ism(u32 m)480 m2ism(u32 m)
481 {
482 	u64 ism;
483 
484 	if (m == 0)
485 		ism = HT_INFINITY;
486 	else {
487 		ism = ((u64)PSCHED_JIFFIE2US(HZ) << ISM_SHIFT);
488 		ism += m - 1;
489 		do_div(ism, m);
490 	}
491 	return ism;
492 }
493 
494 /* convert d (us) into dx (psched us) */
495 static u64
d2dx(u32 d)496 d2dx(u32 d)
497 {
498 	u64 dx;
499 
500 	dx = ((u64)d * PSCHED_JIFFIE2US(HZ));
501 	dx += 1000000 - 1;
502 	do_div(dx, 1000000);
503 	return dx;
504 }
505 
506 /* convert sm (bytes/psched us) into m (bps) */
507 static u32
sm2m(u64 sm)508 sm2m(u64 sm)
509 {
510 	u64 m;
511 
512 	m = (sm * PSCHED_JIFFIE2US(HZ)) >> SM_SHIFT;
513 	return (u32)m;
514 }
515 
516 /* convert dx (psched us) into d (us) */
517 static u32
dx2d(u64 dx)518 dx2d(u64 dx)
519 {
520 	u64 d;
521 
522 	d = dx * 1000000;
523 	do_div(d, PSCHED_JIFFIE2US(HZ));
524 	return (u32)d;
525 }
526 
527 static void
sc2isc(struct tc_service_curve * sc,struct internal_sc * isc)528 sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
529 {
530 	isc->sm1  = m2sm(sc->m1);
531 	isc->ism1 = m2ism(sc->m1);
532 	isc->dx   = d2dx(sc->d);
533 	isc->dy   = seg_x2y(isc->dx, isc->sm1);
534 	isc->sm2  = m2sm(sc->m2);
535 	isc->ism2 = m2ism(sc->m2);
536 }
537 
538 /*
539  * initialize the runtime service curve with the given internal
540  * service curve starting at (x, y).
541  */
542 static void
rtsc_init(struct runtime_sc * rtsc,struct internal_sc * isc,u64 x,u64 y)543 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
544 {
545 	rtsc->x	   = x;
546 	rtsc->y    = y;
547 	rtsc->sm1  = isc->sm1;
548 	rtsc->ism1 = isc->ism1;
549 	rtsc->dx   = isc->dx;
550 	rtsc->dy   = isc->dy;
551 	rtsc->sm2  = isc->sm2;
552 	rtsc->ism2 = isc->ism2;
553 }
554 
555 /*
556  * calculate the y-projection of the runtime service curve by the
557  * given x-projection value
558  */
559 static u64
rtsc_y2x(struct runtime_sc * rtsc,u64 y)560 rtsc_y2x(struct runtime_sc *rtsc, u64 y)
561 {
562 	u64 x;
563 
564 	if (y < rtsc->y)
565 		x = rtsc->x;
566 	else if (y <= rtsc->y + rtsc->dy) {
567 		/* x belongs to the 1st segment */
568 		if (rtsc->dy == 0)
569 			x = rtsc->x + rtsc->dx;
570 		else
571 			x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
572 	} else {
573 		/* x belongs to the 2nd segment */
574 		x = rtsc->x + rtsc->dx
575 		    + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
576 	}
577 	return x;
578 }
579 
580 static u64
rtsc_x2y(struct runtime_sc * rtsc,u64 x)581 rtsc_x2y(struct runtime_sc *rtsc, u64 x)
582 {
583 	u64 y;
584 
585 	if (x <= rtsc->x)
586 		y = rtsc->y;
587 	else if (x <= rtsc->x + rtsc->dx)
588 		/* y belongs to the 1st segment */
589 		y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
590 	else
591 		/* y belongs to the 2nd segment */
592 		y = rtsc->y + rtsc->dy
593 		    + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
594 	return y;
595 }
596 
597 /*
598  * update the runtime service curve by taking the minimum of the current
599  * runtime service curve and the service curve starting at (x, y).
600  */
601 static void
rtsc_min(struct runtime_sc * rtsc,struct internal_sc * isc,u64 x,u64 y)602 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
603 {
604 	u64 y1, y2, dx, dy;
605 	u32 dsm;
606 
607 	if (isc->sm1 <= isc->sm2) {
608 		/* service curve is convex */
609 		y1 = rtsc_x2y(rtsc, x);
610 		if (y1 < y)
611 			/* the current rtsc is smaller */
612 			return;
613 		rtsc->x = x;
614 		rtsc->y = y;
615 		return;
616 	}
617 
618 	/*
619 	 * service curve is concave
620 	 * compute the two y values of the current rtsc
621 	 *	y1: at x
622 	 *	y2: at (x + dx)
623 	 */
624 	y1 = rtsc_x2y(rtsc, x);
625 	if (y1 <= y) {
626 		/* rtsc is below isc, no change to rtsc */
627 		return;
628 	}
629 
630 	y2 = rtsc_x2y(rtsc, x + isc->dx);
631 	if (y2 >= y + isc->dy) {
632 		/* rtsc is above isc, replace rtsc by isc */
633 		rtsc->x = x;
634 		rtsc->y = y;
635 		rtsc->dx = isc->dx;
636 		rtsc->dy = isc->dy;
637 		return;
638 	}
639 
640 	/*
641 	 * the two curves intersect
642 	 * compute the offsets (dx, dy) using the reverse
643 	 * function of seg_x2y()
644 	 *	seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
645 	 */
646 	dx = (y1 - y) << SM_SHIFT;
647 	dsm = isc->sm1 - isc->sm2;
648 	do_div(dx, dsm);
649 	/*
650 	 * check if (x, y1) belongs to the 1st segment of rtsc.
651 	 * if so, add the offset.
652 	 */
653 	if (rtsc->x + rtsc->dx > x)
654 		dx += rtsc->x + rtsc->dx - x;
655 	dy = seg_x2y(dx, isc->sm1);
656 
657 	rtsc->x = x;
658 	rtsc->y = y;
659 	rtsc->dx = dx;
660 	rtsc->dy = dy;
661 	return;
662 }
663 
664 static void
init_ed(struct hfsc_class * cl,unsigned int next_len)665 init_ed(struct hfsc_class *cl, unsigned int next_len)
666 {
667 	u64 cur_time;
668 
669 	PSCHED_GET_TIME(cur_time);
670 
671 	/* update the deadline curve */
672 	rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
673 
674 	/*
675 	 * update the eligible curve.
676 	 * for concave, it is equal to the deadline curve.
677 	 * for convex, it is a linear curve with slope m2.
678 	 */
679 	cl->cl_eligible = cl->cl_deadline;
680 	if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
681 		cl->cl_eligible.dx = 0;
682 		cl->cl_eligible.dy = 0;
683 	}
684 
685 	/* compute e and d */
686 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
687 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
688 
689 	eltree_insert(cl);
690 }
691 
692 static void
update_ed(struct hfsc_class * cl,unsigned int next_len)693 update_ed(struct hfsc_class *cl, unsigned int next_len)
694 {
695 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
696 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
697 
698 	eltree_update(cl);
699 }
700 
701 static inline void
update_d(struct hfsc_class * cl,unsigned int next_len)702 update_d(struct hfsc_class *cl, unsigned int next_len)
703 {
704 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
705 }
706 
707 static inline void
update_cfmin(struct hfsc_class * cl)708 update_cfmin(struct hfsc_class *cl)
709 {
710 	rb_node_t *n = rb_first(&cl->cf_tree);
711 	struct hfsc_class *p;
712 
713 	if (n == NULL) {
714 		cl->cl_cfmin = 0;
715 		return;
716 	}
717 	p = rb_entry(n, struct hfsc_class, cf_node);
718 	cl->cl_cfmin = p->cl_f;
719 }
720 
721 static void
init_vf(struct hfsc_class * cl,unsigned int len)722 init_vf(struct hfsc_class *cl, unsigned int len)
723 {
724 	struct hfsc_class *max_cl;
725 	rb_node_t *n;
726 	u64 vt, f, cur_time;
727 	int go_active;
728 
729 	cur_time = 0;
730 	go_active = 1;
731 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
732 		if (go_active && cl->cl_nactive++ == 0)
733 			go_active = 1;
734 		else
735 			go_active = 0;
736 
737 		if (go_active) {
738 			n = rb_last(&cl->cl_parent->vt_tree);
739 			if (n != NULL) {
740 				max_cl = rb_entry(n, struct hfsc_class,vt_node);
741 				/*
742 				 * set vt to the average of the min and max
743 				 * classes.  if the parent's period didn't
744 				 * change, don't decrease vt of the class.
745 				 */
746 				vt = max_cl->cl_vt;
747 				if (cl->cl_parent->cl_cvtmin != 0)
748 					vt = (cl->cl_parent->cl_cvtmin + vt)/2;
749 
750 				if (cl->cl_parent->cl_vtperiod !=
751 				    cl->cl_parentperiod || vt > cl->cl_vt)
752 					cl->cl_vt = vt;
753 			} else {
754 				/*
755 				 * first child for a new parent backlog period.
756 				 * add parent's cvtmax to cvtoff to make a new
757 				 * vt (vtoff + vt) larger than the vt in the
758 				 * last period for all children.
759 				 */
760 				vt = cl->cl_parent->cl_cvtmax;
761 				cl->cl_parent->cl_cvtoff += vt;
762 				cl->cl_parent->cl_cvtmax = 0;
763 				cl->cl_parent->cl_cvtmin = 0;
764 				cl->cl_vt = 0;
765 			}
766 
767 			cl->cl_vtoff = cl->cl_parent->cl_cvtoff -
768 							cl->cl_pcvtoff;
769 
770 			/* update the virtual curve */
771 			vt = cl->cl_vt + cl->cl_vtoff;
772 			rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt,
773 			                              cl->cl_total);
774 			if (cl->cl_virtual.x == vt) {
775 				cl->cl_virtual.x -= cl->cl_vtoff;
776 				cl->cl_vtoff = 0;
777 			}
778 			cl->cl_vtadj = 0;
779 
780 			cl->cl_vtperiod++;  /* increment vt period */
781 			cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
782 			if (cl->cl_parent->cl_nactive == 0)
783 				cl->cl_parentperiod++;
784 			cl->cl_f = 0;
785 
786 			vttree_insert(cl);
787 			cftree_insert(cl);
788 
789 			if (cl->cl_flags & HFSC_USC) {
790 				/* class has upper limit curve */
791 				if (cur_time == 0)
792 					PSCHED_GET_TIME(cur_time);
793 
794 				/* update the ulimit curve */
795 				rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
796 				         cl->cl_total);
797 				/* compute myf */
798 				cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
799 				                      cl->cl_total);
800 				cl->cl_myfadj = 0;
801 			}
802 		}
803 
804 		f = max(cl->cl_myf, cl->cl_cfmin);
805 		if (f != cl->cl_f) {
806 			cl->cl_f = f;
807 			cftree_update(cl);
808 			update_cfmin(cl->cl_parent);
809 		}
810 	}
811 }
812 
813 static void
update_vf(struct hfsc_class * cl,unsigned int len,u64 cur_time)814 update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
815 {
816 	u64 f; /* , myf_bound, delta; */
817 	int go_passive = 0;
818 
819 	if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
820 		go_passive = 1;
821 
822 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
823 		cl->cl_total += len;
824 
825 		if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
826 			continue;
827 
828 		if (go_passive && --cl->cl_nactive == 0)
829 			go_passive = 1;
830 		else
831 			go_passive = 0;
832 
833 		if (go_passive) {
834 			/* no more active child, going passive */
835 
836 			/* update cvtmax of the parent class */
837 			if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
838 				cl->cl_parent->cl_cvtmax = cl->cl_vt;
839 
840 			/* remove this class from the vt tree */
841 			vttree_remove(cl);
842 
843 			cftree_remove(cl);
844 			update_cfmin(cl->cl_parent);
845 
846 			continue;
847 		}
848 
849 		/*
850 		 * update vt and f
851 		 */
852 		cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
853 		            - cl->cl_vtoff + cl->cl_vtadj;
854 
855 		/*
856 		 * if vt of the class is smaller than cvtmin,
857 		 * the class was skipped in the past due to non-fit.
858 		 * if so, we need to adjust vtadj.
859 		 */
860 		if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
861 			cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
862 			cl->cl_vt = cl->cl_parent->cl_cvtmin;
863 		}
864 
865 		/* update the vt tree */
866 		vttree_update(cl);
867 
868 		if (cl->cl_flags & HFSC_USC) {
869 			cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
870 			                                      cl->cl_total);
871 #if 0
872 			/*
873 			 * This code causes classes to stay way under their
874 			 * limit when multiple classes are used at gigabit
875 			 * speed. needs investigation. -kaber
876 			 */
877 			/*
878 			 * if myf lags behind by more than one clock tick
879 			 * from the current time, adjust myfadj to prevent
880 			 * a rate-limited class from going greedy.
881 			 * in a steady state under rate-limiting, myf
882 			 * fluctuates within one clock tick.
883 			 */
884 			myf_bound = cur_time - PSCHED_JIFFIE2US(1);
885 			if (cl->cl_myf < myf_bound) {
886 				delta = cur_time - cl->cl_myf;
887 				cl->cl_myfadj += delta;
888 				cl->cl_myf += delta;
889 			}
890 #endif
891 		}
892 
893 		f = max(cl->cl_myf, cl->cl_cfmin);
894 		if (f != cl->cl_f) {
895 			cl->cl_f = f;
896 			cftree_update(cl);
897 			update_cfmin(cl->cl_parent);
898 		}
899 	}
900 }
901 
902 static void
set_active(struct hfsc_class * cl,unsigned int len)903 set_active(struct hfsc_class *cl, unsigned int len)
904 {
905 	if (cl->cl_flags & HFSC_RSC)
906 		init_ed(cl, len);
907 	if (cl->cl_flags & HFSC_FSC)
908 		init_vf(cl, len);
909 
910 	list_add_tail(&cl->dlist, &cl->sched->droplist);
911 }
912 
913 static void
set_passive(struct hfsc_class * cl)914 set_passive(struct hfsc_class *cl)
915 {
916 	if (cl->cl_flags & HFSC_RSC)
917 		eltree_remove(cl);
918 
919 	list_del(&cl->dlist);
920 
921 	/*
922 	 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
923 	 * needs to be called explicitly to remove a class from vttree.
924 	 */
925 }
926 
927 /*
928  * hack to get length of first packet in queue.
929  */
930 static unsigned int
qdisc_peek_len(struct Qdisc * sch)931 qdisc_peek_len(struct Qdisc *sch)
932 {
933 	struct sk_buff *skb;
934 	unsigned int len;
935 
936 	skb = sch->dequeue(sch);
937 	if (skb == NULL) {
938 		if (net_ratelimit())
939 			printk("qdisc_peek_len: non work-conserving qdisc ?\n");
940 		return 0;
941 	}
942 	len = skb->len;
943 	if (unlikely(sch->ops->requeue(skb, sch) != NET_XMIT_SUCCESS)) {
944 		if (net_ratelimit())
945 			printk("qdisc_peek_len: failed to requeue\n");
946 		return 0;
947 	}
948 	return len;
949 }
950 
951 static void
hfsc_purge_queue(struct Qdisc * sch,struct hfsc_class * cl)952 hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl)
953 {
954 	unsigned int len = cl->qdisc->q.qlen;
955 
956 	qdisc_reset(cl->qdisc);
957 	if (len > 0) {
958 		update_vf(cl, 0, 0);
959 		set_passive(cl);
960 		sch->q.qlen -= len;
961 	}
962 }
963 
964 static void
hfsc_adjust_levels(struct hfsc_class * cl)965 hfsc_adjust_levels(struct hfsc_class *cl)
966 {
967 	struct hfsc_class *p;
968 	unsigned int level;
969 
970 	do {
971 		level = 0;
972 		list_for_each_entry(p, &cl->children, siblings) {
973 			if (p->level > level)
974 				level = p->level;
975 		}
976 		cl->level = level + 1;
977 	} while ((cl = cl->cl_parent) != NULL);
978 }
979 
980 static inline unsigned int
hfsc_hash(u32 h)981 hfsc_hash(u32 h)
982 {
983 	h ^= h >> 8;
984 	h ^= h >> 4;
985 
986 	return h & (HFSC_HSIZE - 1);
987 }
988 
989 static inline struct hfsc_class *
hfsc_find_class(u32 classid,struct Qdisc * sch)990 hfsc_find_class(u32 classid, struct Qdisc *sch)
991 {
992 	struct hfsc_sched *q = (struct hfsc_sched *)sch->data;
993 	struct hfsc_class *cl;
994 
995 	list_for_each_entry(cl, &q->clhash[hfsc_hash(classid)], hlist) {
996 		if (cl->classid == classid)
997 			return cl;
998 	}
999 	return NULL;
1000 }
1001 
1002 static void
hfsc_change_rsc(struct hfsc_class * cl,struct tc_service_curve * rsc,u64 cur_time)1003 hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
1004                 u64 cur_time)
1005 {
1006 	sc2isc(rsc, &cl->cl_rsc);
1007 	rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
1008 	cl->cl_eligible = cl->cl_deadline;
1009 	if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
1010 		cl->cl_eligible.dx = 0;
1011 		cl->cl_eligible.dy = 0;
1012 	}
1013 	cl->cl_flags |= HFSC_RSC;
1014 }
1015 
1016 static void
hfsc_change_fsc(struct hfsc_class * cl,struct tc_service_curve * fsc)1017 hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
1018 {
1019 	sc2isc(fsc, &cl->cl_fsc);
1020 	rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
1021 	cl->cl_flags |= HFSC_FSC;
1022 }
1023 
1024 static void
hfsc_change_usc(struct hfsc_class * cl,struct tc_service_curve * usc,u64 cur_time)1025 hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
1026                 u64 cur_time)
1027 {
1028 	sc2isc(usc, &cl->cl_usc);
1029 	rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
1030 	cl->cl_flags |= HFSC_USC;
1031 }
1032 
1033 static int
hfsc_change_class(struct Qdisc * sch,u32 classid,u32 parentid,struct rtattr ** tca,unsigned long * arg)1034 hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
1035                   struct rtattr **tca, unsigned long *arg)
1036 {
1037 	struct hfsc_sched *q = (struct hfsc_sched *)sch->data;
1038 	struct hfsc_class *cl = (struct hfsc_class *)*arg;
1039 	struct hfsc_class *parent = NULL;
1040 	struct rtattr *opt = tca[TCA_OPTIONS-1];
1041 	struct rtattr *tb[TCA_HFSC_MAX];
1042 	struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
1043 	u64 cur_time;
1044 
1045 	if (opt == NULL ||
1046 	    rtattr_parse(tb, TCA_HFSC_MAX, RTA_DATA(opt), RTA_PAYLOAD(opt)))
1047 		return -EINVAL;
1048 
1049 	if (tb[TCA_HFSC_RSC-1]) {
1050 		if (RTA_PAYLOAD(tb[TCA_HFSC_RSC-1]) < sizeof(*rsc))
1051 			return -EINVAL;
1052 		rsc = RTA_DATA(tb[TCA_HFSC_RSC-1]);
1053 		if (rsc->m1 == 0 && rsc->m2 == 0)
1054 			rsc = NULL;
1055 	}
1056 
1057 	if (tb[TCA_HFSC_FSC-1]) {
1058 		if (RTA_PAYLOAD(tb[TCA_HFSC_FSC-1]) < sizeof(*fsc))
1059 			return -EINVAL;
1060 		fsc = RTA_DATA(tb[TCA_HFSC_FSC-1]);
1061 		if (fsc->m1 == 0 && fsc->m2 == 0)
1062 			fsc = NULL;
1063 	}
1064 
1065 	if (tb[TCA_HFSC_USC-1]) {
1066 		if (RTA_PAYLOAD(tb[TCA_HFSC_USC-1]) < sizeof(*usc))
1067 			return -EINVAL;
1068 		usc = RTA_DATA(tb[TCA_HFSC_USC-1]);
1069 		if (usc->m1 == 0 && usc->m2 == 0)
1070 			usc = NULL;
1071 	}
1072 
1073 	if (cl != NULL) {
1074 		if (parentid) {
1075 			if (cl->cl_parent && cl->cl_parent->classid != parentid)
1076 				return -EINVAL;
1077 			if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
1078 				return -EINVAL;
1079 		}
1080 		PSCHED_GET_TIME(cur_time);
1081 
1082 		sch_tree_lock(sch);
1083 		if (rsc != NULL)
1084 			hfsc_change_rsc(cl, rsc, cur_time);
1085 		if (fsc != NULL)
1086 			hfsc_change_fsc(cl, fsc);
1087 		if (usc != NULL)
1088 			hfsc_change_usc(cl, usc, cur_time);
1089 
1090 		if (cl->qdisc->q.qlen != 0) {
1091 			if (cl->cl_flags & HFSC_RSC)
1092 				update_ed(cl, qdisc_peek_len(cl->qdisc));
1093 			if (cl->cl_flags & HFSC_FSC)
1094 				update_vf(cl, 0, cur_time);
1095 		}
1096 		sch_tree_unlock(sch);
1097 
1098 #ifdef CONFIG_NET_ESTIMATOR
1099 		if (tca[TCA_RATE-1]) {
1100 			qdisc_kill_estimator(&cl->stats);
1101 			qdisc_new_estimator(&cl->stats, tca[TCA_RATE-1]);
1102 		}
1103 #endif
1104 		return 0;
1105 	}
1106 
1107 	if (parentid == TC_H_ROOT)
1108 		return -EEXIST;
1109 
1110 	parent = &q->root;
1111 	if (parentid) {
1112 		parent = hfsc_find_class(parentid, sch);
1113 		if (parent == NULL)
1114 			return -ENOENT;
1115 	}
1116 
1117 	if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
1118 		return -EINVAL;
1119 	if (hfsc_find_class(classid, sch))
1120 		return -EEXIST;
1121 
1122 	if (rsc == NULL && fsc == NULL)
1123 		return -EINVAL;
1124 
1125 	cl = kmalloc(sizeof(struct hfsc_class), GFP_KERNEL);
1126 	if (cl == NULL)
1127 		return -ENOBUFS;
1128 	memset(cl, 0, sizeof(struct hfsc_class));
1129 
1130 	if (rsc != NULL)
1131 		hfsc_change_rsc(cl, rsc, 0);
1132 	if (fsc != NULL)
1133 		hfsc_change_fsc(cl, fsc);
1134 	if (usc != NULL)
1135 		hfsc_change_usc(cl, usc, 0);
1136 
1137 	cl->refcnt    = 1;
1138 	cl->classid   = classid;
1139 	cl->sched     = q;
1140 	cl->cl_parent = parent;
1141 	cl->qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops);
1142 	if (cl->qdisc == NULL)
1143 		cl->qdisc = &noop_qdisc;
1144 	cl->stats.lock = &sch->dev->queue_lock;
1145 	INIT_LIST_HEAD(&cl->children);
1146 	cl->vt_tree = RB_ROOT;
1147 	cl->cf_tree = RB_ROOT;
1148 
1149 	sch_tree_lock(sch);
1150 	list_add_tail(&cl->hlist, &q->clhash[hfsc_hash(classid)]);
1151 	list_add_tail(&cl->siblings, &parent->children);
1152 	if (parent->level == 0)
1153 		hfsc_purge_queue(sch, parent);
1154 	hfsc_adjust_levels(parent);
1155 	cl->cl_pcvtoff = parent->cl_cvtoff;
1156 	sch_tree_unlock(sch);
1157 
1158 #ifdef CONFIG_NET_ESTIMATOR
1159 	if (tca[TCA_RATE-1])
1160 		qdisc_new_estimator(&cl->stats, tca[TCA_RATE-1]);
1161 #endif
1162 	*arg = (unsigned long)cl;
1163 	return 0;
1164 }
1165 
1166 static void
hfsc_destroy_filters(struct tcf_proto ** fl)1167 hfsc_destroy_filters(struct tcf_proto **fl)
1168 {
1169 	struct tcf_proto *tp;
1170 
1171 	while ((tp = *fl) != NULL) {
1172 		*fl = tp->next;
1173 		tcf_destroy(tp);
1174 	}
1175 }
1176 
1177 static void
hfsc_destroy_class(struct Qdisc * sch,struct hfsc_class * cl)1178 hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
1179 {
1180 	struct hfsc_sched *q = (struct hfsc_sched *)sch->data;
1181 
1182 	hfsc_destroy_filters(&cl->filter_list);
1183 	qdisc_destroy(cl->qdisc);
1184 #ifdef CONFIG_NET_ESTIMATOR
1185 	qdisc_kill_estimator(&cl->stats);
1186 #endif
1187 	if (cl != &q->root)
1188 		kfree(cl);
1189 }
1190 
1191 static int
hfsc_delete_class(struct Qdisc * sch,unsigned long arg)1192 hfsc_delete_class(struct Qdisc *sch, unsigned long arg)
1193 {
1194 	struct hfsc_sched *q = (struct hfsc_sched *)sch->data;
1195 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1196 
1197 	if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root)
1198 		return -EBUSY;
1199 
1200 	sch_tree_lock(sch);
1201 
1202 	list_del(&cl->hlist);
1203 	list_del(&cl->siblings);
1204 	hfsc_adjust_levels(cl->cl_parent);
1205 	hfsc_purge_queue(sch, cl);
1206 	if (--cl->refcnt == 0)
1207 		hfsc_destroy_class(sch, cl);
1208 
1209 	sch_tree_unlock(sch);
1210 	return 0;
1211 }
1212 
1213 static struct hfsc_class *
hfsc_classify(struct sk_buff * skb,struct Qdisc * sch)1214 hfsc_classify(struct sk_buff *skb, struct Qdisc *sch)
1215 {
1216 	struct hfsc_sched *q = (struct hfsc_sched *)sch->data;
1217 	struct hfsc_class *cl;
1218 	struct tcf_result res;
1219 	struct tcf_proto *tcf;
1220 	int result;
1221 
1222 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
1223 	    (cl = hfsc_find_class(skb->priority, sch)) != NULL)
1224 		if (cl->level == 0)
1225 			return cl;
1226 
1227 	tcf = q->root.filter_list;
1228 	while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) {
1229 #ifdef CONFIG_NET_CLS_POLICE
1230 		if (result == TC_POLICE_SHOT)
1231 			return NULL;
1232 #endif
1233 		if ((cl = (struct hfsc_class *)res.class) == NULL) {
1234 			if ((cl = hfsc_find_class(res.classid, sch)) == NULL)
1235 				break; /* filter selected invalid classid */
1236 		}
1237 
1238 		if (cl->level == 0)
1239 			return cl; /* hit leaf class */
1240 
1241 		/* apply inner filter chain */
1242 		tcf = cl->filter_list;
1243 	}
1244 
1245 	/* classification failed, try default class */
1246 	cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch);
1247 	if (cl == NULL || cl->level > 0)
1248 		return NULL;
1249 
1250 	return cl;
1251 }
1252 
1253 static int
hfsc_graft_class(struct Qdisc * sch,unsigned long arg,struct Qdisc * new,struct Qdisc ** old)1254 hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1255                  struct Qdisc **old)
1256 {
1257 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1258 
1259 	if (cl == NULL)
1260 		return -ENOENT;
1261 	if (cl->level > 0)
1262 		return -EINVAL;
1263 	if (new == NULL) {
1264 		new = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops);
1265 		if (new == NULL)
1266 			new = &noop_qdisc;
1267 	}
1268 
1269 	sch_tree_lock(sch);
1270 	hfsc_purge_queue(sch, cl);
1271 	*old = xchg(&cl->qdisc, new);
1272 	sch_tree_unlock(sch);
1273 	return 0;
1274 }
1275 
1276 static struct Qdisc *
hfsc_class_leaf(struct Qdisc * sch,unsigned long arg)1277 hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
1278 {
1279 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1280 
1281 	if (cl != NULL && cl->level == 0)
1282 		return cl->qdisc;
1283 
1284 	return NULL;
1285 }
1286 
1287 static unsigned long
hfsc_get_class(struct Qdisc * sch,u32 classid)1288 hfsc_get_class(struct Qdisc *sch, u32 classid)
1289 {
1290 	struct hfsc_class *cl = hfsc_find_class(classid, sch);
1291 
1292 	if (cl != NULL)
1293 		cl->refcnt++;
1294 
1295 	return (unsigned long)cl;
1296 }
1297 
1298 static void
hfsc_put_class(struct Qdisc * sch,unsigned long arg)1299 hfsc_put_class(struct Qdisc *sch, unsigned long arg)
1300 {
1301 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1302 
1303 	if (--cl->refcnt == 0)
1304 		hfsc_destroy_class(sch, cl);
1305 }
1306 
1307 static unsigned long
hfsc_bind_tcf(struct Qdisc * sch,unsigned long parent,u32 classid)1308 hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
1309 {
1310 	struct hfsc_class *p = (struct hfsc_class *)parent;
1311 	struct hfsc_class *cl = hfsc_find_class(classid, sch);
1312 
1313 	if (cl != NULL) {
1314 		if (p != NULL && p->level <= cl->level)
1315 			return 0;
1316 		cl->filter_cnt++;
1317 	}
1318 
1319 	return (unsigned long)cl;
1320 }
1321 
1322 static void
hfsc_unbind_tcf(struct Qdisc * sch,unsigned long arg)1323 hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
1324 {
1325 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1326 
1327 	cl->filter_cnt--;
1328 }
1329 
1330 static struct tcf_proto **
hfsc_tcf_chain(struct Qdisc * sch,unsigned long arg)1331 hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg)
1332 {
1333 	struct hfsc_sched *q = (struct hfsc_sched *)sch->data;
1334 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1335 
1336 	if (cl == NULL)
1337 		cl = &q->root;
1338 
1339 	return &cl->filter_list;
1340 }
1341 
1342 static int
hfsc_dump_sc(struct sk_buff * skb,int attr,struct internal_sc * sc)1343 hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
1344 {
1345 	struct tc_service_curve tsc;
1346 
1347 	tsc.m1 = sm2m(sc->sm1);
1348 	tsc.d  = dx2d(sc->dx);
1349 	tsc.m2 = sm2m(sc->sm2);
1350 	RTA_PUT(skb, attr, sizeof(tsc), &tsc);
1351 
1352 	return skb->len;
1353 
1354  rtattr_failure:
1355 	return -1;
1356 }
1357 
1358 static inline int
hfsc_dump_curves(struct sk_buff * skb,struct hfsc_class * cl)1359 hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
1360 {
1361 	if ((cl->cl_flags & HFSC_RSC) &&
1362 	    (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
1363 		goto rtattr_failure;
1364 
1365 	if ((cl->cl_flags & HFSC_FSC) &&
1366 	    (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
1367 		goto rtattr_failure;
1368 
1369 	if ((cl->cl_flags & HFSC_USC) &&
1370 	    (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
1371 		goto rtattr_failure;
1372 
1373 	return skb->len;
1374 
1375  rtattr_failure:
1376 	return -1;
1377 }
1378 
1379 static inline int
hfsc_dump_stats(struct sk_buff * skb,struct hfsc_class * cl)1380 hfsc_dump_stats(struct sk_buff *skb, struct hfsc_class *cl)
1381 {
1382 	cl->stats.qlen = cl->qdisc->q.qlen;
1383 	if (qdisc_copy_stats(skb, &cl->stats) < 0)
1384 		goto rtattr_failure;
1385 
1386 	return skb->len;
1387 
1388  rtattr_failure:
1389 	return -1;
1390 }
1391 
1392 static inline int
hfsc_dump_xstats(struct sk_buff * skb,struct hfsc_class * cl)1393 hfsc_dump_xstats(struct sk_buff *skb, struct hfsc_class *cl)
1394 {
1395 	struct tc_hfsc_stats xstats;
1396 
1397 	xstats.level  = cl->level;
1398 	xstats.period = cl->cl_vtperiod;
1399 	xstats.work   = cl->cl_total;
1400 	xstats.rtwork = cl->cl_cumul;
1401 	RTA_PUT(skb, TCA_XSTATS, sizeof(xstats), &xstats);
1402 
1403 	return skb->len;
1404 
1405  rtattr_failure:
1406 	return -1;
1407 }
1408 
1409 static int
hfsc_dump_class(struct Qdisc * sch,unsigned long arg,struct sk_buff * skb,struct tcmsg * tcm)1410 hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
1411                 struct tcmsg *tcm)
1412 {
1413 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1414 	unsigned char *b = skb->tail;
1415 	struct rtattr *rta = (struct rtattr *)b;
1416 
1417 	tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->classid : TC_H_ROOT;
1418 	tcm->tcm_handle = cl->classid;
1419 	if (cl->level == 0)
1420 		tcm->tcm_info = cl->qdisc->handle;
1421 
1422 	RTA_PUT(skb, TCA_OPTIONS, 0, NULL);
1423 	if (hfsc_dump_curves(skb, cl) < 0)
1424 		goto rtattr_failure;
1425 	rta->rta_len = skb->tail - b;
1426 
1427 	if ((hfsc_dump_stats(skb, cl) < 0) ||
1428 	    (hfsc_dump_xstats(skb, cl) < 0))
1429 		goto rtattr_failure;
1430 
1431 	return skb->len;
1432 
1433  rtattr_failure:
1434 	skb_trim(skb, b - skb->data);
1435 	return -1;
1436 }
1437 
1438 static void
hfsc_walk(struct Qdisc * sch,struct qdisc_walker * arg)1439 hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1440 {
1441 	struct hfsc_sched *q = (struct hfsc_sched *)sch->data;
1442 	struct hfsc_class *cl;
1443 	unsigned int i;
1444 
1445 	if (arg->stop)
1446 		return;
1447 
1448 	for (i = 0; i < HFSC_HSIZE; i++) {
1449 		list_for_each_entry(cl, &q->clhash[i], hlist) {
1450 			if (arg->count < arg->skip) {
1451 				arg->count++;
1452 				continue;
1453 			}
1454 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
1455 				arg->stop = 1;
1456 				return;
1457 			}
1458 			arg->count++;
1459 		}
1460 	}
1461 }
1462 
1463 static void
hfsc_watchdog(unsigned long arg)1464 hfsc_watchdog(unsigned long arg)
1465 {
1466 	struct Qdisc *sch = (struct Qdisc *)arg;
1467 
1468 	sch->flags &= ~TCQ_F_THROTTLED;
1469 	netif_schedule(sch->dev);
1470 }
1471 
1472 static void
hfsc_schedule_watchdog(struct Qdisc * sch,u64 cur_time)1473 hfsc_schedule_watchdog(struct Qdisc *sch, u64 cur_time)
1474 {
1475 	struct hfsc_sched *q = (struct hfsc_sched *)sch->data;
1476 	struct hfsc_class *cl;
1477 	u64 next_time = 0;
1478 	long delay;
1479 
1480 	if ((cl = eltree_get_minel(q)) != NULL)
1481 		next_time = cl->cl_e;
1482 	if (q->root.cl_cfmin != 0) {
1483 		if (next_time == 0 || next_time > q->root.cl_cfmin)
1484 			next_time = q->root.cl_cfmin;
1485 	}
1486 	ASSERT(next_time != 0);
1487 	delay = next_time - cur_time;
1488 	delay = PSCHED_US2JIFFIE(delay);
1489 
1490 	sch->flags |= TCQ_F_THROTTLED;
1491 	mod_timer(&q->wd_timer, jiffies + delay);
1492 }
1493 
1494 static int
hfsc_init_qdisc(struct Qdisc * sch,struct rtattr * opt)1495 hfsc_init_qdisc(struct Qdisc *sch, struct rtattr *opt)
1496 {
1497 	struct hfsc_sched *q = (struct hfsc_sched *)sch->data;
1498 	struct tc_hfsc_qopt *qopt;
1499 	unsigned int i;
1500 
1501 	if (opt == NULL || RTA_PAYLOAD(opt) < sizeof(*qopt))
1502 		return -EINVAL;
1503 	qopt = RTA_DATA(opt);
1504 
1505 	sch->stats.lock = &sch->dev->queue_lock;
1506 
1507 	q->defcls = qopt->defcls;
1508 	for (i = 0; i < HFSC_HSIZE; i++)
1509 		INIT_LIST_HEAD(&q->clhash[i]);
1510 	q->eligible = RB_ROOT;
1511 	INIT_LIST_HEAD(&q->droplist);
1512 	skb_queue_head_init(&q->requeue);
1513 
1514 	q->root.refcnt  = 1;
1515 	q->root.classid = sch->handle;
1516 	q->root.sched   = q;
1517 	q->root.qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops);
1518 	if (q->root.qdisc == NULL)
1519 		q->root.qdisc = &noop_qdisc;
1520 	q->root.stats.lock = &sch->dev->queue_lock;
1521 	INIT_LIST_HEAD(&q->root.children);
1522 	q->root.vt_tree = RB_ROOT;
1523 	q->root.cf_tree = RB_ROOT;
1524 
1525 	list_add(&q->root.hlist, &q->clhash[hfsc_hash(q->root.classid)]);
1526 
1527 	init_timer(&q->wd_timer);
1528 	q->wd_timer.function = hfsc_watchdog;
1529 	q->wd_timer.data = (unsigned long)sch;
1530 
1531 	MOD_INC_USE_COUNT;
1532 	return 0;
1533 }
1534 
1535 static int
hfsc_change_qdisc(struct Qdisc * sch,struct rtattr * opt)1536 hfsc_change_qdisc(struct Qdisc *sch, struct rtattr *opt)
1537 {
1538 	struct hfsc_sched *q = (struct hfsc_sched *)sch->data;
1539 	struct tc_hfsc_qopt *qopt;
1540 
1541 	if (opt == NULL || RTA_PAYLOAD(opt) < sizeof(*qopt))
1542 		return -EINVAL;;
1543 	qopt = RTA_DATA(opt);
1544 
1545 	sch_tree_lock(sch);
1546 	q->defcls = qopt->defcls;
1547 	sch_tree_unlock(sch);
1548 
1549 	return 0;
1550 }
1551 
1552 static void
hfsc_reset_class(struct hfsc_class * cl)1553 hfsc_reset_class(struct hfsc_class *cl)
1554 {
1555 	cl->cl_total        = 0;
1556 	cl->cl_cumul        = 0;
1557 	cl->cl_d            = 0;
1558 	cl->cl_e            = 0;
1559 	cl->cl_vt           = 0;
1560 	cl->cl_vtadj        = 0;
1561 	cl->cl_vtoff        = 0;
1562 	cl->cl_cvtmin       = 0;
1563 	cl->cl_cvtmax       = 0;
1564 	cl->cl_cvtoff       = 0;
1565 	cl->cl_pcvtoff      = 0;
1566 	cl->cl_vtperiod     = 0;
1567 	cl->cl_parentperiod = 0;
1568 	cl->cl_f            = 0;
1569 	cl->cl_myf          = 0;
1570 	cl->cl_myfadj       = 0;
1571 	cl->cl_cfmin        = 0;
1572 	cl->cl_nactive      = 0;
1573 
1574 	cl->vt_tree = RB_ROOT;
1575 	cl->cf_tree = RB_ROOT;
1576 	qdisc_reset(cl->qdisc);
1577 
1578 	if (cl->cl_flags & HFSC_RSC)
1579 		rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
1580 	if (cl->cl_flags & HFSC_FSC)
1581 		rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
1582 	if (cl->cl_flags & HFSC_USC)
1583 		rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
1584 }
1585 
1586 static void
hfsc_reset_qdisc(struct Qdisc * sch)1587 hfsc_reset_qdisc(struct Qdisc *sch)
1588 {
1589 	struct hfsc_sched *q = (struct hfsc_sched *)sch->data;
1590 	struct hfsc_class *cl;
1591 	unsigned int i;
1592 
1593 	for (i = 0; i < HFSC_HSIZE; i++) {
1594 		list_for_each_entry(cl, &q->clhash[i], hlist)
1595 			hfsc_reset_class(cl);
1596 	}
1597 	__skb_queue_purge(&q->requeue);
1598 	q->eligible = RB_ROOT;
1599 	INIT_LIST_HEAD(&q->droplist);
1600 	del_timer(&q->wd_timer);
1601 	sch->flags &= ~TCQ_F_THROTTLED;
1602 	sch->q.qlen = 0;
1603 }
1604 
1605 static void
hfsc_destroy_qdisc(struct Qdisc * sch)1606 hfsc_destroy_qdisc(struct Qdisc *sch)
1607 {
1608 	struct hfsc_sched *q = (struct hfsc_sched *)sch->data;
1609 	struct hfsc_class *cl, *next;
1610 	unsigned int i;
1611 
1612 	for (i = 0; i < HFSC_HSIZE; i++) {
1613 		list_for_each_entry_safe(cl, next, &q->clhash[i], hlist)
1614 			hfsc_destroy_class(sch, cl);
1615 	}
1616 	__skb_queue_purge(&q->requeue);
1617 	del_timer(&q->wd_timer);
1618 	MOD_DEC_USE_COUNT;
1619 }
1620 
1621 static int
hfsc_dump_qdisc(struct Qdisc * sch,struct sk_buff * skb)1622 hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
1623 {
1624 	struct hfsc_sched *q = (struct hfsc_sched *)sch->data;
1625 	unsigned char *b = skb->tail;
1626 	struct tc_hfsc_qopt qopt;
1627 
1628 	qopt.defcls = q->defcls;
1629 	RTA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
1630 
1631 	return skb->len;
1632 
1633  rtattr_failure:
1634 	skb_trim(skb, b - skb->data);
1635 	return -1;
1636 }
1637 
1638 static int
hfsc_enqueue(struct sk_buff * skb,struct Qdisc * sch)1639 hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1640 {
1641 	struct hfsc_class *cl = hfsc_classify(skb, sch);
1642 	unsigned int len = skb->len;
1643 	int err;
1644 
1645 	if (cl == NULL) {
1646 		kfree_skb(skb);
1647 		sch->stats.drops++;
1648 		return NET_XMIT_DROP;
1649 	}
1650 
1651 	err = cl->qdisc->enqueue(skb, cl->qdisc);
1652 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1653 		cl->stats.drops++;
1654 		sch->stats.drops++;
1655 		return err;
1656 	}
1657 
1658 	if (cl->qdisc->q.qlen == 1)
1659 		set_active(cl, len);
1660 
1661 	cl->stats.packets++;
1662 	cl->stats.bytes += len;
1663 	sch->stats.packets++;
1664 	sch->stats.bytes += len;
1665 	sch->q.qlen++;
1666 
1667 	return NET_XMIT_SUCCESS;
1668 }
1669 
1670 static struct sk_buff *
hfsc_dequeue(struct Qdisc * sch)1671 hfsc_dequeue(struct Qdisc *sch)
1672 {
1673 	struct hfsc_sched *q = (struct hfsc_sched *)sch->data;
1674 	struct hfsc_class *cl;
1675 	struct sk_buff *skb;
1676 	u64 cur_time;
1677 	unsigned int next_len;
1678 	int realtime = 0;
1679 
1680 	if (sch->q.qlen == 0)
1681 		return NULL;
1682 	if ((skb = __skb_dequeue(&q->requeue)))
1683 		goto out;
1684 
1685 	PSCHED_GET_TIME(cur_time);
1686 
1687 	/*
1688 	 * if there are eligible classes, use real-time criteria.
1689 	 * find the class with the minimum deadline among
1690 	 * the eligible classes.
1691 	 */
1692 	if ((cl = eltree_get_mindl(q, cur_time)) != NULL) {
1693 		realtime = 1;
1694 	} else {
1695 		/*
1696 		 * use link-sharing criteria
1697 		 * get the class with the minimum vt in the hierarchy
1698 		 */
1699 		cl = vttree_get_minvt(&q->root, cur_time);
1700 		if (cl == NULL) {
1701 			sch->stats.overlimits++;
1702 			hfsc_schedule_watchdog(sch, cur_time);
1703 			return NULL;
1704 		}
1705 	}
1706 
1707 	skb = cl->qdisc->dequeue(cl->qdisc);
1708 	if (skb == NULL) {
1709 		if (net_ratelimit())
1710 			printk("HFSC: Non-work-conserving qdisc ?\n");
1711 		return NULL;
1712 	}
1713 
1714 	update_vf(cl, skb->len, cur_time);
1715 	if (realtime)
1716 		cl->cl_cumul += skb->len;
1717 
1718 	if (cl->qdisc->q.qlen != 0) {
1719 		if (cl->cl_flags & HFSC_RSC) {
1720 			/* update ed */
1721 			next_len = qdisc_peek_len(cl->qdisc);
1722 			if (realtime)
1723 				update_ed(cl, next_len);
1724 			else
1725 				update_d(cl, next_len);
1726 		}
1727 	} else {
1728 		/* the class becomes passive */
1729 		set_passive(cl);
1730 	}
1731 
1732  out:
1733 	sch->flags &= ~TCQ_F_THROTTLED;
1734 	sch->q.qlen--;
1735 
1736 	return skb;
1737 }
1738 
1739 static int
hfsc_requeue(struct sk_buff * skb,struct Qdisc * sch)1740 hfsc_requeue(struct sk_buff *skb, struct Qdisc *sch)
1741 {
1742 	struct hfsc_sched *q = (struct hfsc_sched *)sch->data;
1743 
1744 	__skb_queue_head(&q->requeue, skb);
1745 	sch->q.qlen++;
1746 	return NET_XMIT_SUCCESS;
1747 }
1748 
1749 static unsigned int
hfsc_drop(struct Qdisc * sch)1750 hfsc_drop(struct Qdisc *sch)
1751 {
1752 	struct hfsc_sched *q = (struct hfsc_sched *)sch->data;
1753 	struct hfsc_class *cl;
1754 	unsigned int len;
1755 
1756 	list_for_each_entry(cl, &q->droplist, dlist) {
1757 		if (cl->qdisc->ops->drop != NULL &&
1758 		    (len = cl->qdisc->ops->drop(cl->qdisc)) > 0) {
1759 			if (cl->qdisc->q.qlen == 0) {
1760 				update_vf(cl, 0, 0);
1761 				set_passive(cl);
1762 			} else {
1763 				list_move_tail(&cl->dlist, &q->droplist);
1764 			}
1765 			cl->stats.drops++;
1766 			sch->stats.drops++;
1767 			sch->q.qlen--;
1768 			return len;
1769 		}
1770 	}
1771 	return 0;
1772 }
1773 
1774 static struct Qdisc_class_ops hfsc_class_ops = {
1775 	.change		= hfsc_change_class,
1776 	.delete		= hfsc_delete_class,
1777 	.graft		= hfsc_graft_class,
1778 	.leaf		= hfsc_class_leaf,
1779 	.get		= hfsc_get_class,
1780 	.put		= hfsc_put_class,
1781 	.bind_tcf	= hfsc_bind_tcf,
1782 	.unbind_tcf	= hfsc_unbind_tcf,
1783 	.tcf_chain	= hfsc_tcf_chain,
1784 	.dump		= hfsc_dump_class,
1785 	.walk		= hfsc_walk
1786 };
1787 
1788 struct Qdisc_ops hfsc_qdisc_ops = {
1789 	.id		= "hfsc",
1790 	.init		= hfsc_init_qdisc,
1791 	.change		= hfsc_change_qdisc,
1792 	.reset		= hfsc_reset_qdisc,
1793 	.destroy	= hfsc_destroy_qdisc,
1794 	.dump		= hfsc_dump_qdisc,
1795 	.enqueue	= hfsc_enqueue,
1796 	.dequeue	= hfsc_dequeue,
1797 	.requeue	= hfsc_requeue,
1798 	.drop		= hfsc_drop,
1799 	.cl_ops		= &hfsc_class_ops,
1800 	.priv_size	= sizeof(struct hfsc_sched)
1801 };
1802 
1803 static int __init
hfsc_init(void)1804 hfsc_init(void)
1805 {
1806 	return register_qdisc(&hfsc_qdisc_ops);
1807 }
1808 
1809 static void __exit
hfsc_cleanup(void)1810 hfsc_cleanup(void)
1811 {
1812 	unregister_qdisc(&hfsc_qdisc_ops);
1813 }
1814 
1815 MODULE_LICENSE("GPL");
1816 module_init(hfsc_init);
1817 module_exit(hfsc_cleanup);
1818