1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <pedro_m@yahoo.com>
7 *
8 * $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16 /*
17 * Changes:
18 * Yuji SEKIYA @USAGI: Support default route on router node;
19 * remove ip6_null_entry from the top of
20 * routing table.
21 */
22 #include <linux/config.h>
23 #include <linux/errno.h>
24 #include <linux/types.h>
25 #include <linux/net.h>
26 #include <linux/route.h>
27 #include <linux/netdevice.h>
28 #include <linux/in6.h>
29 #include <linux/init.h>
30
31 #ifdef CONFIG_PROC_FS
32 #include <linux/proc_fs.h>
33 #endif
34
35 #include <net/ipv6.h>
36 #include <net/ndisc.h>
37 #include <net/addrconf.h>
38
39 #include <net/ip6_fib.h>
40 #include <net/ip6_route.h>
41
42 #define RT6_DEBUG 2
43 #undef CONFIG_IPV6_SUBTREES
44
45 #if RT6_DEBUG >= 3
46 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
47 #else
48 #define RT6_TRACE(x...) do { ; } while (0)
49 #endif
50
51 struct rt6_statistics rt6_stats;
52
53 static kmem_cache_t * fib6_node_kmem;
54
55 enum fib_walk_state_t
56 {
57 #ifdef CONFIG_IPV6_SUBTREES
58 FWS_S,
59 #endif
60 FWS_L,
61 FWS_R,
62 FWS_C,
63 FWS_U
64 };
65
66 struct fib6_cleaner_t
67 {
68 struct fib6_walker_t w;
69 int (*func)(struct rt6_info *, void *arg);
70 void *arg;
71 };
72
73 rwlock_t fib6_walker_lock = RW_LOCK_UNLOCKED;
74
75
76 #ifdef CONFIG_IPV6_SUBTREES
77 #define FWS_INIT FWS_S
78 #define SUBTREE(fn) ((fn)->subtree)
79 #else
80 #define FWS_INIT FWS_L
81 #define SUBTREE(fn) NULL
82 #endif
83
84 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt);
85 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn);
86
87 /*
88 * A routing update causes an increase of the serial number on the
89 * afected subtree. This allows for cached routes to be asynchronously
90 * tested when modifications are made to the destination cache as a
91 * result of redirects, path MTU changes, etc.
92 */
93
94 static __u32 rt_sernum = 0;
95
96 static struct timer_list ip6_fib_timer = { function: fib6_run_gc };
97
98 struct fib6_walker_t fib6_walker_list = {
99 &fib6_walker_list, &fib6_walker_list,
100 };
101
102 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
103
fib6_new_sernum(void)104 static __inline__ u32 fib6_new_sernum(void)
105 {
106 u32 n = ++rt_sernum;
107 if ((__s32)n <= 0)
108 rt_sernum = n = 1;
109 return n;
110 }
111
112 /*
113 * Auxiliary address test functions for the radix tree.
114 *
115 * These assume a 32bit processor (although it will work on
116 * 64bit processors)
117 */
118
119 /*
120 * compare "prefix length" bits of an address
121 */
122
addr_match(void * token1,void * token2,int prefixlen)123 static __inline__ int addr_match(void *token1, void *token2, int prefixlen)
124 {
125 __u32 *a1 = token1;
126 __u32 *a2 = token2;
127 int pdw;
128 int pbi;
129
130 pdw = prefixlen >> 5; /* num of whole __u32 in prefix */
131 pbi = prefixlen & 0x1f; /* num of bits in incomplete u32 in prefix */
132
133 if (pdw)
134 if (memcmp(a1, a2, pdw << 2))
135 return 0;
136
137 if (pbi) {
138 __u32 mask;
139
140 mask = htonl((0xffffffff) << (32 - pbi));
141
142 if ((a1[pdw] ^ a2[pdw]) & mask)
143 return 0;
144 }
145
146 return 1;
147 }
148
149 /*
150 * test bit
151 */
152
addr_bit_set(void * token,int fn_bit)153 static __inline__ int addr_bit_set(void *token, int fn_bit)
154 {
155 __u32 *addr = token;
156
157 return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
158 }
159
160 /*
161 * find the first different bit between two addresses
162 * length of address must be a multiple of 32bits
163 */
164
addr_diff(void * token1,void * token2,int addrlen)165 static __inline__ int addr_diff(void *token1, void *token2, int addrlen)
166 {
167 __u32 *a1 = token1;
168 __u32 *a2 = token2;
169 int i;
170
171 addrlen >>= 2;
172
173 for (i = 0; i < addrlen; i++) {
174 __u32 xb;
175
176 xb = a1[i] ^ a2[i];
177
178 if (xb) {
179 int j = 31;
180
181 xb = ntohl(xb);
182
183 while ((xb & (1 << j)) == 0)
184 j--;
185
186 return (i * 32 + 31 - j);
187 }
188 }
189
190 /*
191 * we should *never* get to this point since that
192 * would mean the addrs are equal
193 *
194 * However, we do get to it 8) And exacly, when
195 * addresses are equal 8)
196 *
197 * ip route add 1111::/128 via ...
198 * ip route add 1111::/64 via ...
199 * and we are here.
200 *
201 * Ideally, this function should stop comparison
202 * at prefix length. It does not, but it is still OK,
203 * if returned value is greater than prefix length.
204 * --ANK (980803)
205 */
206
207 return addrlen<<5;
208 }
209
node_alloc(void)210 static __inline__ struct fib6_node * node_alloc(void)
211 {
212 struct fib6_node *fn;
213
214 if ((fn = kmem_cache_alloc(fib6_node_kmem, SLAB_ATOMIC)) != NULL)
215 memset(fn, 0, sizeof(struct fib6_node));
216
217 return fn;
218 }
219
node_free(struct fib6_node * fn)220 static __inline__ void node_free(struct fib6_node * fn)
221 {
222 kmem_cache_free(fib6_node_kmem, fn);
223 }
224
rt6_release(struct rt6_info * rt)225 static __inline__ void rt6_release(struct rt6_info *rt)
226 {
227 if (atomic_dec_and_test(&rt->rt6i_ref))
228 dst_free(&rt->u.dst);
229 }
230
231
232 /*
233 * Routing Table
234 *
235 * return the apropriate node for a routing tree "add" operation
236 * by either creating and inserting or by returning an existing
237 * node.
238 */
239
fib6_add_1(struct fib6_node * root,void * addr,int addrlen,int plen,int offset)240 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
241 int addrlen, int plen,
242 int offset)
243 {
244 struct fib6_node *fn, *in, *ln;
245 struct fib6_node *pn = NULL;
246 struct rt6key *key;
247 int bit;
248 int dir = 0;
249 __u32 sernum = fib6_new_sernum();
250
251 RT6_TRACE("fib6_add_1\n");
252
253 /* insert node in tree */
254
255 fn = root;
256
257 do {
258 key = (struct rt6key *)((u8 *)fn->leaf + offset);
259
260 /*
261 * Prefix match
262 */
263 if (plen < fn->fn_bit ||
264 !addr_match(&key->addr, addr, fn->fn_bit))
265 goto insert_above;
266
267 /*
268 * Exact match ?
269 */
270
271 if (plen == fn->fn_bit) {
272 /* clean up an intermediate node */
273 if ((fn->fn_flags & RTN_RTINFO) == 0) {
274 rt6_release(fn->leaf);
275 fn->leaf = NULL;
276 }
277
278 fn->fn_sernum = sernum;
279
280 return fn;
281 }
282
283 /*
284 * We have more bits to go
285 */
286
287 /* Try to walk down on tree. */
288 fn->fn_sernum = sernum;
289 dir = addr_bit_set(addr, fn->fn_bit);
290 pn = fn;
291 fn = dir ? fn->right: fn->left;
292 } while (fn);
293
294 /*
295 * We walked to the bottom of tree.
296 * Create new leaf node without children.
297 */
298
299 ln = node_alloc();
300
301 if (ln == NULL)
302 return NULL;
303 ln->fn_bit = plen;
304
305 ln->parent = pn;
306 ln->fn_sernum = sernum;
307
308 if (dir)
309 pn->right = ln;
310 else
311 pn->left = ln;
312
313 return ln;
314
315
316 insert_above:
317 /*
318 * split since we don't have a common prefix anymore or
319 * we have a less significant route.
320 * we've to insert an intermediate node on the list
321 * this new node will point to the one we need to create
322 * and the current
323 */
324
325 pn = fn->parent;
326
327 /* find 1st bit in difference between the 2 addrs.
328
329 See comment in addr_diff: bit may be an invalid value,
330 but if it is >= plen, the value is ignored in any case.
331 */
332
333 bit = addr_diff(addr, &key->addr, addrlen);
334
335 /*
336 * (intermediate)[in]
337 * / \
338 * (new leaf node)[ln] (old node)[fn]
339 */
340 if (plen > bit) {
341 in = node_alloc();
342 ln = node_alloc();
343
344 if (in == NULL || ln == NULL) {
345 if (in)
346 node_free(in);
347 if (ln)
348 node_free(ln);
349 return NULL;
350 }
351
352 /*
353 * new intermediate node.
354 * RTN_RTINFO will
355 * be off since that an address that chooses one of
356 * the branches would not match less specific routes
357 * in the other branch
358 */
359
360 in->fn_bit = bit;
361
362 in->parent = pn;
363 in->leaf = fn->leaf;
364 atomic_inc(&in->leaf->rt6i_ref);
365
366 in->fn_sernum = sernum;
367
368 /* update parent pointer */
369 if (dir)
370 pn->right = in;
371 else
372 pn->left = in;
373
374 ln->fn_bit = plen;
375
376 ln->parent = in;
377 fn->parent = in;
378
379 ln->fn_sernum = sernum;
380
381 if (addr_bit_set(addr, bit)) {
382 in->right = ln;
383 in->left = fn;
384 } else {
385 in->left = ln;
386 in->right = fn;
387 }
388 } else { /* plen <= bit */
389
390 /*
391 * (new leaf node)[ln]
392 * / \
393 * (old node)[fn] NULL
394 */
395
396 ln = node_alloc();
397
398 if (ln == NULL)
399 return NULL;
400
401 ln->fn_bit = plen;
402
403 ln->parent = pn;
404
405 ln->fn_sernum = sernum;
406
407 if (dir)
408 pn->right = ln;
409 else
410 pn->left = ln;
411
412 if (addr_bit_set(&key->addr, plen))
413 ln->right = fn;
414 else
415 ln->left = fn;
416
417 fn->parent = ln;
418 }
419 return ln;
420 }
421
422 /*
423 * Insert routing information in a node.
424 */
425
fib6_add_rt2node(struct fib6_node * fn,struct rt6_info * rt,struct nlmsghdr * nlh,struct netlink_skb_parms * req)426 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
427 struct nlmsghdr *nlh, struct netlink_skb_parms *req)
428 {
429 struct rt6_info *iter = NULL;
430 struct rt6_info **ins;
431
432 ins = &fn->leaf;
433
434 if (fn->fn_flags&RTN_TL_ROOT &&
435 fn->leaf == &ip6_null_entry &&
436 !(rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF | RTF_ALLONLINK)) ){
437 /*
438 * The top fib of ip6 routing table includes ip6_null_entry.
439 */
440 fn->leaf = rt;
441 rt->u.next = NULL;
442 goto out;
443 }
444
445 for (iter = fn->leaf; iter; iter=iter->u.next) {
446 /*
447 * Search for duplicates
448 */
449
450 if (iter->rt6i_metric == rt->rt6i_metric) {
451 /*
452 * Same priority level
453 */
454
455 if ((iter->rt6i_dev == rt->rt6i_dev) &&
456 (iter->rt6i_flowr == rt->rt6i_flowr) &&
457 (ipv6_addr_cmp(&iter->rt6i_gateway,
458 &rt->rt6i_gateway) == 0)) {
459 if (!(iter->rt6i_flags&RTF_EXPIRES))
460 return -EEXIST;
461 iter->rt6i_expires = rt->rt6i_expires;
462 if (!(rt->rt6i_flags&RTF_EXPIRES)) {
463 iter->rt6i_flags &= ~RTF_EXPIRES;
464 iter->rt6i_expires = 0;
465 }
466 return -EEXIST;
467 }
468 }
469
470 if (iter->rt6i_metric > rt->rt6i_metric)
471 break;
472
473 ins = &iter->u.next;
474 }
475
476 /*
477 * insert node
478 */
479
480 out:
481 rt->u.next = iter;
482 *ins = rt;
483 rt->rt6i_node = fn;
484 atomic_inc(&rt->rt6i_ref);
485 inet6_rt_notify(RTM_NEWROUTE, rt, nlh, req);
486 rt6_stats.fib_rt_entries++;
487
488 if ((fn->fn_flags & RTN_RTINFO) == 0) {
489 rt6_stats.fib_route_nodes++;
490 fn->fn_flags |= RTN_RTINFO;
491 }
492
493 return 0;
494 }
495
fib6_start_gc(struct rt6_info * rt)496 static __inline__ void fib6_start_gc(struct rt6_info *rt)
497 {
498 if (!timer_pending(&ip6_fib_timer) &&
499 (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
500 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
501 }
502
503 /*
504 * Add routing information to the routing tree.
505 * <destination addr>/<source addr>
506 * with source addr info in sub-trees
507 */
508
fib6_add(struct fib6_node * root,struct rt6_info * rt,struct nlmsghdr * nlh,struct netlink_skb_parms * req)509 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nlmsghdr *nlh,
510 struct netlink_skb_parms *req)
511 {
512 struct fib6_node *fn;
513 int err = -ENOMEM;
514
515 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
516 rt->rt6i_dst.plen, (u8*) &rt->rt6i_dst - (u8*) rt);
517
518 if (fn == NULL)
519 goto out;
520
521 #ifdef CONFIG_IPV6_SUBTREES
522 if (rt->rt6i_src.plen) {
523 struct fib6_node *sn;
524
525 if (fn->subtree == NULL) {
526 struct fib6_node *sfn;
527
528 /*
529 * Create subtree.
530 *
531 * fn[main tree]
532 * |
533 * sfn[subtree root]
534 * \
535 * sn[new leaf node]
536 */
537
538 /* Create subtree root node */
539 sfn = node_alloc();
540 if (sfn == NULL)
541 goto st_failure;
542
543 sfn->leaf = &ip6_null_entry;
544 atomic_inc(&ip6_null_entry.rt6i_ref);
545 sfn->fn_flags = RTN_ROOT;
546 sfn->fn_sernum = fib6_new_sernum();
547
548 /* Now add the first leaf node to new subtree */
549
550 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
551 sizeof(struct in6_addr), rt->rt6i_src.plen,
552 (u8*) &rt->rt6i_src - (u8*) rt);
553
554 if (sn == NULL) {
555 /* If it is failed, discard just allocated
556 root, and then (in st_failure) stale node
557 in main tree.
558 */
559 node_free(sfn);
560 goto st_failure;
561 }
562
563 /* Now link new subtree to main tree */
564 sfn->parent = fn;
565 fn->subtree = sfn;
566 if (fn->leaf == NULL) {
567 fn->leaf = rt;
568 atomic_inc(&rt->rt6i_ref);
569 }
570 } else {
571 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
572 sizeof(struct in6_addr), rt->rt6i_src.plen,
573 (u8*) &rt->rt6i_src - (u8*) rt);
574
575 if (sn == NULL)
576 goto st_failure;
577 }
578
579 fn = sn;
580 }
581 #endif
582
583 err = fib6_add_rt2node(fn, rt, nlh, req);
584
585 if (err == 0) {
586 fib6_start_gc(rt);
587 if (!(rt->rt6i_flags&RTF_CACHE))
588 fib6_prune_clones(fn, rt);
589 }
590
591 out:
592 if (err)
593 dst_free(&rt->u.dst);
594 return err;
595
596 #ifdef CONFIG_IPV6_SUBTREES
597 /* Subtree creation failed, probably main tree node
598 is orphan. If it is, shoot it.
599 */
600 st_failure:
601 if (fn && !(fn->fn_flags&RTN_RTINFO|RTN_ROOT))
602 fib_repair_tree(fn);
603 dst_free(&rt->u.dst);
604 return err;
605 #endif
606 }
607
608 /*
609 * Routing tree lookup
610 *
611 */
612
613 struct lookup_args {
614 int offset; /* key offset on rt6_info */
615 struct in6_addr *addr; /* search key */
616 };
617
fib6_lookup_1(struct fib6_node * root,struct lookup_args * args)618 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
619 struct lookup_args *args)
620 {
621 struct fib6_node *fn;
622 int dir;
623
624 /*
625 * Descend on a tree
626 */
627
628 fn = root;
629
630 for (;;) {
631 struct fib6_node *next;
632
633 dir = addr_bit_set(args->addr, fn->fn_bit);
634
635 next = dir ? fn->right : fn->left;
636
637 if (next) {
638 fn = next;
639 continue;
640 }
641
642 break;
643 }
644
645 while ((fn->fn_flags & RTN_ROOT) == 0) {
646 #ifdef CONFIG_IPV6_SUBTREES
647 if (fn->subtree) {
648 struct fib6_node *st;
649 struct lookup_args *narg;
650
651 narg = args + 1;
652
653 if (narg->addr) {
654 st = fib6_lookup_1(fn->subtree, narg);
655
656 if (st && !(st->fn_flags & RTN_ROOT))
657 return st;
658 }
659 }
660 #endif
661
662 if (fn->fn_flags & RTN_RTINFO) {
663 struct rt6key *key;
664
665 key = (struct rt6key *) ((u8 *) fn->leaf +
666 args->offset);
667
668 if (addr_match(&key->addr, args->addr, key->plen))
669 return fn;
670 }
671
672 fn = fn->parent;
673 }
674
675 return NULL;
676 }
677
fib6_lookup(struct fib6_node * root,struct in6_addr * daddr,struct in6_addr * saddr)678 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
679 struct in6_addr *saddr)
680 {
681 struct lookup_args args[2];
682 struct rt6_info *rt = NULL;
683 struct fib6_node *fn;
684
685 args[0].offset = (u8*) &rt->rt6i_dst - (u8*) rt;
686 args[0].addr = daddr;
687
688 #ifdef CONFIG_IPV6_SUBTREES
689 args[1].offset = (u8*) &rt->rt6i_src - (u8*) rt;
690 args[1].addr = saddr;
691 #endif
692
693 fn = fib6_lookup_1(root, args);
694
695 if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
696 fn = root;
697
698 return fn;
699 }
700
701 /*
702 * Get node with sepciafied destination prefix (and source prefix,
703 * if subtrees are used)
704 */
705
706
fib6_locate_1(struct fib6_node * root,struct in6_addr * addr,int plen,int offset)707 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
708 struct in6_addr *addr,
709 int plen, int offset)
710 {
711 struct fib6_node *fn;
712
713 for (fn = root; fn ; ) {
714 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
715
716 /*
717 * Prefix match
718 */
719 if (plen < fn->fn_bit ||
720 !addr_match(&key->addr, addr, fn->fn_bit))
721 return NULL;
722
723 if (plen == fn->fn_bit)
724 return fn;
725
726 /*
727 * We have more bits to go
728 */
729 if (addr_bit_set(addr, fn->fn_bit))
730 fn = fn->right;
731 else
732 fn = fn->left;
733 }
734 return NULL;
735 }
736
fib6_locate(struct fib6_node * root,struct in6_addr * daddr,int dst_len,struct in6_addr * saddr,int src_len)737 struct fib6_node * fib6_locate(struct fib6_node *root,
738 struct in6_addr *daddr, int dst_len,
739 struct in6_addr *saddr, int src_len)
740 {
741 struct rt6_info *rt = NULL;
742 struct fib6_node *fn;
743
744 fn = fib6_locate_1(root, daddr, dst_len,
745 (u8*) &rt->rt6i_dst - (u8*) rt);
746
747 #ifdef CONFIG_IPV6_SUBTREES
748 if (src_len) {
749 BUG_TRAP(saddr!=NULL);
750 if (fn == NULL)
751 fn = fn->subtree;
752 if (fn)
753 fn = fib6_locate_1(fn, saddr, src_len,
754 (u8*) &rt->rt6i_src - (u8*) rt);
755 }
756 #endif
757
758 if (fn && fn->fn_flags&RTN_RTINFO)
759 return fn;
760
761 return NULL;
762 }
763
764
765 /*
766 * Deletion
767 *
768 */
769
fib6_find_prefix(struct fib6_node * fn)770 static struct rt6_info * fib6_find_prefix(struct fib6_node *fn)
771 {
772 if (fn->fn_flags&RTN_ROOT)
773 return &ip6_null_entry;
774
775 while(fn) {
776 if(fn->left)
777 return fn->left->leaf;
778
779 if(fn->right)
780 return fn->right->leaf;
781
782 fn = SUBTREE(fn);
783 }
784 return NULL;
785 }
786
787 /*
788 * Called to trim the tree of intermediate nodes when possible. "fn"
789 * is the node we want to try and remove.
790 */
791
fib6_repair_tree(struct fib6_node * fn)792 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn)
793 {
794 int children;
795 int nstate;
796 struct fib6_node *child, *pn;
797 struct fib6_walker_t *w;
798 int iter = 0;
799
800 for (;;) {
801 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
802 iter++;
803
804 BUG_TRAP(!(fn->fn_flags&RTN_RTINFO));
805 BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT));
806 BUG_TRAP(fn->leaf==NULL);
807
808 children = 0;
809 child = NULL;
810 if (fn->right) child = fn->right, children |= 1;
811 if (fn->left) child = fn->left, children |= 2;
812
813 if (children == 3 || SUBTREE(fn)
814 #ifdef CONFIG_IPV6_SUBTREES
815 /* Subtree root (i.e. fn) may have one child */
816 || (children && fn->fn_flags&RTN_ROOT)
817 #endif
818 ) {
819 fn->leaf = fib6_find_prefix(fn);
820 #if RT6_DEBUG >= 2
821 if (fn->leaf==NULL) {
822 BUG_TRAP(fn->leaf);
823 fn->leaf = &ip6_null_entry;
824 }
825 #endif
826 atomic_inc(&fn->leaf->rt6i_ref);
827 return fn->parent;
828 }
829
830 pn = fn->parent;
831 #ifdef CONFIG_IPV6_SUBTREES
832 if (SUBTREE(pn) == fn) {
833 BUG_TRAP(fn->fn_flags&RTN_ROOT);
834 SUBTREE(pn) = NULL;
835 nstate = FWS_L;
836 } else {
837 BUG_TRAP(!(fn->fn_flags&RTN_ROOT));
838 #endif
839 if (pn->right == fn) pn->right = child;
840 else if (pn->left == fn) pn->left = child;
841 #if RT6_DEBUG >= 2
842 else BUG_TRAP(0);
843 #endif
844 if (child)
845 child->parent = pn;
846 nstate = FWS_R;
847 #ifdef CONFIG_IPV6_SUBTREES
848 }
849 #endif
850
851 read_lock(&fib6_walker_lock);
852 FOR_WALKERS(w) {
853 if (child == NULL) {
854 if (w->root == fn) {
855 w->root = w->node = NULL;
856 RT6_TRACE("W %p adjusted by delroot 1\n", w);
857 } else if (w->node == fn) {
858 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
859 w->node = pn;
860 w->state = nstate;
861 }
862 } else {
863 if (w->root == fn) {
864 w->root = child;
865 RT6_TRACE("W %p adjusted by delroot 2\n", w);
866 }
867 if (w->node == fn) {
868 w->node = child;
869 if (children&2) {
870 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
871 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
872 } else {
873 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
874 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
875 }
876 }
877 }
878 }
879 read_unlock(&fib6_walker_lock);
880
881 node_free(fn);
882 if (pn->fn_flags&RTN_RTINFO || SUBTREE(pn))
883 return pn;
884
885 rt6_release(pn->leaf);
886 pn->leaf = NULL;
887 fn = pn;
888 }
889 }
890
fib6_del_route(struct fib6_node * fn,struct rt6_info ** rtp,struct nlmsghdr * nlh,struct netlink_skb_parms * req)891 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
892 struct nlmsghdr *nlh, struct netlink_skb_parms *req)
893 {
894 struct fib6_walker_t *w;
895 struct rt6_info *rt = *rtp;
896
897 RT6_TRACE("fib6_del_route\n");
898
899 /* Unlink it */
900 *rtp = rt->u.next;
901 rt->rt6i_node = NULL;
902 rt6_stats.fib_rt_entries--;
903
904 /* Adjust walkers */
905 read_lock(&fib6_walker_lock);
906 FOR_WALKERS(w) {
907 if (w->state == FWS_C && w->leaf == rt) {
908 RT6_TRACE("walker %p adjusted by delroute\n", w);
909 w->leaf = rt->u.next;
910 if (w->leaf == NULL)
911 w->state = FWS_U;
912 }
913 }
914 read_unlock(&fib6_walker_lock);
915
916 rt->u.next = NULL;
917
918 if (fn->leaf == NULL && fn->fn_flags&RTN_TL_ROOT)
919 fn->leaf = &ip6_null_entry;
920
921 /* If it was last route, expunge its radix tree node */
922 if (fn->leaf == NULL) {
923 fn->fn_flags &= ~RTN_RTINFO;
924 rt6_stats.fib_route_nodes--;
925 fn = fib6_repair_tree(fn);
926 }
927
928 if (atomic_read(&rt->rt6i_ref) != 1) {
929 /* This route is used as dummy address holder in some split
930 * nodes. It is not leaked, but it still holds other resources,
931 * which must be released in time. So, scan ascendant nodes
932 * and replace dummy references to this route with references
933 * to still alive ones.
934 */
935 while (fn) {
936 if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
937 fn->leaf = fib6_find_prefix(fn);
938 atomic_inc(&fn->leaf->rt6i_ref);
939 rt6_release(rt);
940 }
941 fn = fn->parent;
942 }
943 /* No more references are possiible at this point. */
944 if (atomic_read(&rt->rt6i_ref) != 1) BUG();
945 }
946
947 inet6_rt_notify(RTM_DELROUTE, rt, nlh, req);
948 rt6_release(rt);
949 }
950
fib6_del(struct rt6_info * rt,struct nlmsghdr * nlh,struct netlink_skb_parms * req)951 int fib6_del(struct rt6_info *rt, struct nlmsghdr *nlh, struct netlink_skb_parms *req)
952 {
953 struct fib6_node *fn = rt->rt6i_node;
954 struct rt6_info **rtp;
955
956 #if RT6_DEBUG >= 2
957 if (rt->u.dst.obsolete>0) {
958 BUG_TRAP(fn==NULL);
959 return -ENOENT;
960 }
961 #endif
962 if (fn == NULL || rt == &ip6_null_entry)
963 return -ENOENT;
964
965 BUG_TRAP(fn->fn_flags&RTN_RTINFO);
966
967 if (!(rt->rt6i_flags&RTF_CACHE))
968 fib6_prune_clones(fn, rt);
969
970 /*
971 * Walk the leaf entries looking for ourself
972 */
973
974 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.next) {
975 if (*rtp == rt) {
976 fib6_del_route(fn, rtp, nlh, req);
977 return 0;
978 }
979 }
980 return -ENOENT;
981 }
982
983 /*
984 * Tree traversal function.
985 *
986 * Certainly, it is not interrupt safe.
987 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
988 * It means, that we can modify tree during walking
989 * and use this function for garbage collection, clone pruning,
990 * cleaning tree when a device goes down etc. etc.
991 *
992 * It guarantees that every node will be traversed,
993 * and that it will be traversed only once.
994 *
995 * Callback function w->func may return:
996 * 0 -> continue walking.
997 * positive value -> walking is suspended (used by tree dumps,
998 * and probably by gc, if it will be split to several slices)
999 * negative value -> terminate walking.
1000 *
1001 * The function itself returns:
1002 * 0 -> walk is complete.
1003 * >0 -> walk is incomplete (i.e. suspended)
1004 * <0 -> walk is terminated by an error.
1005 */
1006
fib6_walk_continue(struct fib6_walker_t * w)1007 int fib6_walk_continue(struct fib6_walker_t *w)
1008 {
1009 struct fib6_node *fn, *pn;
1010
1011 for (;;) {
1012 fn = w->node;
1013 if (fn == NULL)
1014 return 0;
1015
1016 if (w->prune && fn != w->root &&
1017 fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1018 w->state = FWS_C;
1019 w->leaf = fn->leaf;
1020 }
1021 switch (w->state) {
1022 #ifdef CONFIG_IPV6_SUBTREES
1023 case FWS_S:
1024 if (SUBTREE(fn)) {
1025 w->node = SUBTREE(fn);
1026 continue;
1027 }
1028 w->state = FWS_L;
1029 #endif
1030 case FWS_L:
1031 if (fn->left) {
1032 w->node = fn->left;
1033 w->state = FWS_INIT;
1034 continue;
1035 }
1036 w->state = FWS_R;
1037 case FWS_R:
1038 if (fn->right) {
1039 w->node = fn->right;
1040 w->state = FWS_INIT;
1041 continue;
1042 }
1043 w->state = FWS_C;
1044 w->leaf = fn->leaf;
1045 case FWS_C:
1046 if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1047 int err = w->func(w);
1048 if (err)
1049 return err;
1050 continue;
1051 }
1052 w->state = FWS_U;
1053 case FWS_U:
1054 if (fn == w->root)
1055 return 0;
1056 pn = fn->parent;
1057 w->node = pn;
1058 #ifdef CONFIG_IPV6_SUBTREES
1059 if (SUBTREE(pn) == fn) {
1060 BUG_TRAP(fn->fn_flags&RTN_ROOT);
1061 w->state = FWS_L;
1062 continue;
1063 }
1064 #endif
1065 if (pn->left == fn) {
1066 w->state = FWS_R;
1067 continue;
1068 }
1069 if (pn->right == fn) {
1070 w->state = FWS_C;
1071 w->leaf = w->node->leaf;
1072 continue;
1073 }
1074 #if RT6_DEBUG >= 2
1075 BUG_TRAP(0);
1076 #endif
1077 }
1078 }
1079 }
1080
fib6_walk(struct fib6_walker_t * w)1081 int fib6_walk(struct fib6_walker_t *w)
1082 {
1083 int res;
1084
1085 w->state = FWS_INIT;
1086 w->node = w->root;
1087
1088 fib6_walker_link(w);
1089 res = fib6_walk_continue(w);
1090 if (res <= 0)
1091 fib6_walker_unlink(w);
1092 return res;
1093 }
1094
fib6_clean_node(struct fib6_walker_t * w)1095 static int fib6_clean_node(struct fib6_walker_t *w)
1096 {
1097 int res;
1098 struct rt6_info *rt;
1099 struct fib6_cleaner_t *c = (struct fib6_cleaner_t*)w;
1100
1101 for (rt = w->leaf; rt; rt = rt->u.next) {
1102 res = c->func(rt, c->arg);
1103 if (res < 0) {
1104 w->leaf = rt;
1105 res = fib6_del(rt, NULL, NULL);
1106 if (res) {
1107 #if RT6_DEBUG >= 2
1108 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1109 #endif
1110 continue;
1111 }
1112 return 0;
1113 }
1114 BUG_TRAP(res==0);
1115 }
1116 w->leaf = rt;
1117 return 0;
1118 }
1119
1120 /*
1121 * Convenient frontend to tree walker.
1122 *
1123 * func is called on each route.
1124 * It may return -1 -> delete this route.
1125 * 0 -> continue walking
1126 *
1127 * prune==1 -> only immediate children of node (certainly,
1128 * ignoring pure split nodes) will be scanned.
1129 */
1130
fib6_clean_tree(struct fib6_node * root,int (* func)(struct rt6_info *,void * arg),int prune,void * arg)1131 void fib6_clean_tree(struct fib6_node *root,
1132 int (*func)(struct rt6_info *, void *arg),
1133 int prune, void *arg)
1134 {
1135 struct fib6_cleaner_t c;
1136
1137 c.w.root = root;
1138 c.w.func = fib6_clean_node;
1139 c.w.prune = prune;
1140 c.func = func;
1141 c.arg = arg;
1142
1143 fib6_walk(&c.w);
1144 }
1145
fib6_prune_clone(struct rt6_info * rt,void * arg)1146 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1147 {
1148 if (rt->rt6i_flags & RTF_CACHE) {
1149 RT6_TRACE("pruning clone %p\n", rt);
1150 return -1;
1151 }
1152
1153 return 0;
1154 }
1155
fib6_prune_clones(struct fib6_node * fn,struct rt6_info * rt)1156 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt)
1157 {
1158 fib6_clean_tree(fn, fib6_prune_clone, 1, rt);
1159 }
1160
1161 /*
1162 * Garbage collection
1163 */
1164
1165 static struct fib6_gc_args
1166 {
1167 int timeout;
1168 int more;
1169 } gc_args;
1170
fib6_age(struct rt6_info * rt,void * arg)1171 static int fib6_age(struct rt6_info *rt, void *arg)
1172 {
1173 unsigned long now = jiffies;
1174
1175 /* Age clones. Note, that clones are aged out
1176 only if they are not in use now.
1177 */
1178
1179 /*
1180 * check addrconf expiration here.
1181 * They are expired even if they are in use.
1182 */
1183
1184 if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1185 if (time_after(now, rt->rt6i_expires)) {
1186 RT6_TRACE("expiring %p\n", rt);
1187 return -1;
1188 }
1189 gc_args.more++;
1190 } else if (rt->rt6i_flags & RTF_CACHE) {
1191 if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1192 time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1193 RT6_TRACE("aging clone %p\n", rt);
1194 return -1;
1195 }
1196 gc_args.more++;
1197 }
1198
1199 return 0;
1200 }
1201
1202 static spinlock_t fib6_gc_lock = SPIN_LOCK_UNLOCKED;
1203
fib6_run_gc(unsigned long dummy)1204 void fib6_run_gc(unsigned long dummy)
1205 {
1206 if (dummy != ~0UL) {
1207 spin_lock_bh(&fib6_gc_lock);
1208 gc_args.timeout = (int)dummy;
1209 } else {
1210 local_bh_disable();
1211 if (!spin_trylock(&fib6_gc_lock)) {
1212 mod_timer(&ip6_fib_timer, jiffies + HZ);
1213 local_bh_enable();
1214 return;
1215 }
1216 gc_args.timeout = ip6_rt_gc_interval;
1217 }
1218 gc_args.more = 0;
1219
1220
1221 write_lock_bh(&rt6_lock);
1222 fib6_clean_tree(&ip6_routing_table, fib6_age, 0, NULL);
1223 write_unlock_bh(&rt6_lock);
1224
1225 if (gc_args.more)
1226 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
1227 else {
1228 del_timer(&ip6_fib_timer);
1229 ip6_fib_timer.expires = 0;
1230 }
1231 spin_unlock_bh(&fib6_gc_lock);
1232 }
1233
fib6_init(void)1234 void __init fib6_init(void)
1235 {
1236 if (!fib6_node_kmem)
1237 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1238 sizeof(struct fib6_node),
1239 0, SLAB_HWCACHE_ALIGN,
1240 NULL, NULL);
1241 }
1242
1243 #ifdef MODULE
fib6_gc_cleanup(void)1244 void fib6_gc_cleanup(void)
1245 {
1246 del_timer(&ip6_fib_timer);
1247 }
1248 #endif
1249
1250
1251