1 /* +++ trees.c */
2 /* trees.c -- output deflated data using Huffman coding
3  * Copyright (C) 1995-1996 Jean-loup Gailly
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 /*
8  *  ALGORITHM
9  *
10  *      The "deflation" process uses several Huffman trees. The more
11  *      common source values are represented by shorter bit sequences.
12  *
13  *      Each code tree is stored in a compressed form which is itself
14  * a Huffman encoding of the lengths of all the code strings (in
15  * ascending order by source values).  The actual code strings are
16  * reconstructed from the lengths in the inflate process, as described
17  * in the deflate specification.
18  *
19  *  REFERENCES
20  *
21  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23  *
24  *      Storer, James A.
25  *          Data Compression:  Methods and Theory, pp. 49-50.
26  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27  *
28  *      Sedgewick, R.
29  *          Algorithms, p290.
30  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31  */
32 
33 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
34 
35 /* #include "deflate.h" */
36 
37 #include <linux/zutil.h>
38 #include "defutil.h"
39 
40 #ifdef DEBUG_ZLIB
41 #  include <ctype.h>
42 #endif
43 
44 /* ===========================================================================
45  * Constants
46  */
47 
48 #define MAX_BL_BITS 7
49 /* Bit length codes must not exceed MAX_BL_BITS bits */
50 
51 #define END_BLOCK 256
52 /* end of block literal code */
53 
54 #define REP_3_6      16
55 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
56 
57 #define REPZ_3_10    17
58 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
59 
60 #define REPZ_11_138  18
61 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
62 
63 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
64    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
65 
66 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
67    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
68 
69 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
70    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
71 
72 local const uch bl_order[BL_CODES]
73    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
74 /* The lengths of the bit length codes are sent in order of decreasing
75  * probability, to avoid transmitting the lengths for unused bit length codes.
76  */
77 
78 #define Buf_size (8 * 2*sizeof(char))
79 /* Number of bits used within bi_buf. (bi_buf might be implemented on
80  * more than 16 bits on some systems.)
81  */
82 
83 /* ===========================================================================
84  * Local data. These are initialized only once.
85  */
86 
87 local ct_data static_ltree[L_CODES+2];
88 /* The static literal tree. Since the bit lengths are imposed, there is no
89  * need for the L_CODES extra codes used during heap construction. However
90  * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init
91  * below).
92  */
93 
94 local ct_data static_dtree[D_CODES];
95 /* The static distance tree. (Actually a trivial tree since all codes use
96  * 5 bits.)
97  */
98 
99 local uch dist_code[512];
100 /* distance codes. The first 256 values correspond to the distances
101  * 3 .. 258, the last 256 values correspond to the top 8 bits of
102  * the 15 bit distances.
103  */
104 
105 local uch length_code[MAX_MATCH-MIN_MATCH+1];
106 /* length code for each normalized match length (0 == MIN_MATCH) */
107 
108 local int base_length[LENGTH_CODES];
109 /* First normalized length for each code (0 = MIN_MATCH) */
110 
111 local int base_dist[D_CODES];
112 /* First normalized distance for each code (0 = distance of 1) */
113 
114 struct static_tree_desc_s {
115     const ct_data *static_tree;  /* static tree or NULL */
116     const intf *extra_bits;      /* extra bits for each code or NULL */
117     int     extra_base;          /* base index for extra_bits */
118     int     elems;               /* max number of elements in the tree */
119     int     max_length;          /* max bit length for the codes */
120 };
121 
122 local static_tree_desc  static_l_desc =
123 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
124 
125 local static_tree_desc  static_d_desc =
126 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
127 
128 local static_tree_desc  static_bl_desc =
129 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
130 
131 /* ===========================================================================
132  * Local (static) routines in this file.
133  */
134 
135 local void tr_static_init OF((void));
136 local void init_block     OF((deflate_state *s));
137 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
138 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
139 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
140 local void build_tree     OF((deflate_state *s, tree_desc *desc));
141 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
142 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
143 local int  build_bl_tree  OF((deflate_state *s));
144 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
145                               int blcodes));
146 local void compress_block OF((deflate_state *s, ct_data *ltree,
147                               ct_data *dtree));
148 local void set_data_type  OF((deflate_state *s));
149 local unsigned bi_reverse OF((unsigned value, int length));
150 local void bi_windup      OF((deflate_state *s));
151 local void bi_flush       OF((deflate_state *s));
152 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
153                               int header));
154 
155 #ifndef DEBUG_ZLIB
156 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
157    /* Send a code of the given tree. c and tree must not have side effects */
158 
159 #else /* DEBUG_ZLIB */
160 #  define send_code(s, c, tree) \
161      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
162        send_bits(s, tree[c].Code, tree[c].Len); }
163 #endif
164 
165 #define d_code(dist) \
166    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
167 /* Mapping from a distance to a distance code. dist is the distance - 1 and
168  * must not have side effects. dist_code[256] and dist_code[257] are never
169  * used.
170  */
171 
172 /* ===========================================================================
173  * Send a value on a given number of bits.
174  * IN assertion: length <= 16 and value fits in length bits.
175  */
176 #ifdef DEBUG_ZLIB
177 local void send_bits      OF((deflate_state *s, int value, int length));
178 
send_bits(s,value,length)179 local void send_bits(s, value, length)
180     deflate_state *s;
181     int value;  /* value to send */
182     int length; /* number of bits */
183 {
184     Tracevv((stderr," l %2d v %4x ", length, value));
185     Assert(length > 0 && length <= 15, "invalid length");
186     s->bits_sent += (ulg)length;
187 
188     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
189      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
190      * unused bits in value.
191      */
192     if (s->bi_valid > (int)Buf_size - length) {
193         s->bi_buf |= (value << s->bi_valid);
194         put_short(s, s->bi_buf);
195         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
196         s->bi_valid += length - Buf_size;
197     } else {
198         s->bi_buf |= value << s->bi_valid;
199         s->bi_valid += length;
200     }
201 }
202 #else /* !DEBUG_ZLIB */
203 
204 #define send_bits(s, value, length) \
205 { int len = length;\
206   if (s->bi_valid > (int)Buf_size - len) {\
207     int val = value;\
208     s->bi_buf |= (val << s->bi_valid);\
209     put_short(s, s->bi_buf);\
210     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
211     s->bi_valid += len - Buf_size;\
212   } else {\
213     s->bi_buf |= (value) << s->bi_valid;\
214     s->bi_valid += len;\
215   }\
216 }
217 #endif /* DEBUG_ZLIB */
218 
219 
220 #define MAX(a,b) (a >= b ? a : b)
221 /* the arguments must not have side effects */
222 
223 /* ===========================================================================
224  * Initialize the various 'constant' tables. In a multi-threaded environment,
225  * this function may be called by two threads concurrently, but this is
226  * harmless since both invocations do exactly the same thing.
227  */
tr_static_init()228 local void tr_static_init()
229 {
230     static int static_init_done = 0;
231     int n;        /* iterates over tree elements */
232     int bits;     /* bit counter */
233     int length;   /* length value */
234     int code;     /* code value */
235     int dist;     /* distance index */
236     ush bl_count[MAX_BITS+1];
237     /* number of codes at each bit length for an optimal tree */
238 
239     if (static_init_done) return;
240 
241     /* Initialize the mapping length (0..255) -> length code (0..28) */
242     length = 0;
243     for (code = 0; code < LENGTH_CODES-1; code++) {
244         base_length[code] = length;
245         for (n = 0; n < (1<<extra_lbits[code]); n++) {
246             length_code[length++] = (uch)code;
247         }
248     }
249     Assert (length == 256, "tr_static_init: length != 256");
250     /* Note that the length 255 (match length 258) can be represented
251      * in two different ways: code 284 + 5 bits or code 285, so we
252      * overwrite length_code[255] to use the best encoding:
253      */
254     length_code[length-1] = (uch)code;
255 
256     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
257     dist = 0;
258     for (code = 0 ; code < 16; code++) {
259         base_dist[code] = dist;
260         for (n = 0; n < (1<<extra_dbits[code]); n++) {
261             dist_code[dist++] = (uch)code;
262         }
263     }
264     Assert (dist == 256, "tr_static_init: dist != 256");
265     dist >>= 7; /* from now on, all distances are divided by 128 */
266     for ( ; code < D_CODES; code++) {
267         base_dist[code] = dist << 7;
268         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
269             dist_code[256 + dist++] = (uch)code;
270         }
271     }
272     Assert (dist == 256, "tr_static_init: 256+dist != 512");
273 
274     /* Construct the codes of the static literal tree */
275     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
276     n = 0;
277     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
278     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
279     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
280     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
281     /* Codes 286 and 287 do not exist, but we must include them in the
282      * tree construction to get a canonical Huffman tree (longest code
283      * all ones)
284      */
285     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
286 
287     /* The static distance tree is trivial: */
288     for (n = 0; n < D_CODES; n++) {
289         static_dtree[n].Len = 5;
290         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
291     }
292     static_init_done = 1;
293 }
294 
295 /* ===========================================================================
296  * Initialize the tree data structures for a new zlib stream.
297  */
zlib_tr_init(s)298 void zlib_tr_init(s)
299     deflate_state *s;
300 {
301     tr_static_init();
302 
303     s->compressed_len = 0L;
304 
305     s->l_desc.dyn_tree = s->dyn_ltree;
306     s->l_desc.stat_desc = &static_l_desc;
307 
308     s->d_desc.dyn_tree = s->dyn_dtree;
309     s->d_desc.stat_desc = &static_d_desc;
310 
311     s->bl_desc.dyn_tree = s->bl_tree;
312     s->bl_desc.stat_desc = &static_bl_desc;
313 
314     s->bi_buf = 0;
315     s->bi_valid = 0;
316     s->last_eob_len = 8; /* enough lookahead for inflate */
317 #ifdef DEBUG_ZLIB
318     s->bits_sent = 0L;
319 #endif
320 
321     /* Initialize the first block of the first file: */
322     init_block(s);
323 }
324 
325 /* ===========================================================================
326  * Initialize a new block.
327  */
init_block(s)328 local void init_block(s)
329     deflate_state *s;
330 {
331     int n; /* iterates over tree elements */
332 
333     /* Initialize the trees. */
334     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
335     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
336     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
337 
338     s->dyn_ltree[END_BLOCK].Freq = 1;
339     s->opt_len = s->static_len = 0L;
340     s->last_lit = s->matches = 0;
341 }
342 
343 #define SMALLEST 1
344 /* Index within the heap array of least frequent node in the Huffman tree */
345 
346 
347 /* ===========================================================================
348  * Remove the smallest element from the heap and recreate the heap with
349  * one less element. Updates heap and heap_len.
350  */
351 #define pqremove(s, tree, top) \
352 {\
353     top = s->heap[SMALLEST]; \
354     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
355     pqdownheap(s, tree, SMALLEST); \
356 }
357 
358 /* ===========================================================================
359  * Compares to subtrees, using the tree depth as tie breaker when
360  * the subtrees have equal frequency. This minimizes the worst case length.
361  */
362 #define smaller(tree, n, m, depth) \
363    (tree[n].Freq < tree[m].Freq || \
364    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
365 
366 /* ===========================================================================
367  * Restore the heap property by moving down the tree starting at node k,
368  * exchanging a node with the smallest of its two sons if necessary, stopping
369  * when the heap property is re-established (each father smaller than its
370  * two sons).
371  */
pqdownheap(s,tree,k)372 local void pqdownheap(s, tree, k)
373     deflate_state *s;
374     ct_data *tree;  /* the tree to restore */
375     int k;               /* node to move down */
376 {
377     int v = s->heap[k];
378     int j = k << 1;  /* left son of k */
379     while (j <= s->heap_len) {
380         /* Set j to the smallest of the two sons: */
381         if (j < s->heap_len &&
382             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
383             j++;
384         }
385         /* Exit if v is smaller than both sons */
386         if (smaller(tree, v, s->heap[j], s->depth)) break;
387 
388         /* Exchange v with the smallest son */
389         s->heap[k] = s->heap[j];  k = j;
390 
391         /* And continue down the tree, setting j to the left son of k */
392         j <<= 1;
393     }
394     s->heap[k] = v;
395 }
396 
397 /* ===========================================================================
398  * Compute the optimal bit lengths for a tree and update the total bit length
399  * for the current block.
400  * IN assertion: the fields freq and dad are set, heap[heap_max] and
401  *    above are the tree nodes sorted by increasing frequency.
402  * OUT assertions: the field len is set to the optimal bit length, the
403  *     array bl_count contains the frequencies for each bit length.
404  *     The length opt_len is updated; static_len is also updated if stree is
405  *     not null.
406  */
gen_bitlen(s,desc)407 local void gen_bitlen(s, desc)
408     deflate_state *s;
409     tree_desc *desc;    /* the tree descriptor */
410 {
411     ct_data *tree        = desc->dyn_tree;
412     int max_code         = desc->max_code;
413     const ct_data *stree = desc->stat_desc->static_tree;
414     const intf *extra    = desc->stat_desc->extra_bits;
415     int base             = desc->stat_desc->extra_base;
416     int max_length       = desc->stat_desc->max_length;
417     int h;              /* heap index */
418     int n, m;           /* iterate over the tree elements */
419     int bits;           /* bit length */
420     int xbits;          /* extra bits */
421     ush f;              /* frequency */
422     int overflow = 0;   /* number of elements with bit length too large */
423 
424     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
425 
426     /* In a first pass, compute the optimal bit lengths (which may
427      * overflow in the case of the bit length tree).
428      */
429     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
430 
431     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
432         n = s->heap[h];
433         bits = tree[tree[n].Dad].Len + 1;
434         if (bits > max_length) bits = max_length, overflow++;
435         tree[n].Len = (ush)bits;
436         /* We overwrite tree[n].Dad which is no longer needed */
437 
438         if (n > max_code) continue; /* not a leaf node */
439 
440         s->bl_count[bits]++;
441         xbits = 0;
442         if (n >= base) xbits = extra[n-base];
443         f = tree[n].Freq;
444         s->opt_len += (ulg)f * (bits + xbits);
445         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
446     }
447     if (overflow == 0) return;
448 
449     Trace((stderr,"\nbit length overflow\n"));
450     /* This happens for example on obj2 and pic of the Calgary corpus */
451 
452     /* Find the first bit length which could increase: */
453     do {
454         bits = max_length-1;
455         while (s->bl_count[bits] == 0) bits--;
456         s->bl_count[bits]--;      /* move one leaf down the tree */
457         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
458         s->bl_count[max_length]--;
459         /* The brother of the overflow item also moves one step up,
460          * but this does not affect bl_count[max_length]
461          */
462         overflow -= 2;
463     } while (overflow > 0);
464 
465     /* Now recompute all bit lengths, scanning in increasing frequency.
466      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
467      * lengths instead of fixing only the wrong ones. This idea is taken
468      * from 'ar' written by Haruhiko Okumura.)
469      */
470     for (bits = max_length; bits != 0; bits--) {
471         n = s->bl_count[bits];
472         while (n != 0) {
473             m = s->heap[--h];
474             if (m > max_code) continue;
475             if (tree[m].Len != (unsigned) bits) {
476                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
477                 s->opt_len += ((long)bits - (long)tree[m].Len)
478                               *(long)tree[m].Freq;
479                 tree[m].Len = (ush)bits;
480             }
481             n--;
482         }
483     }
484 }
485 
486 /* ===========================================================================
487  * Generate the codes for a given tree and bit counts (which need not be
488  * optimal).
489  * IN assertion: the array bl_count contains the bit length statistics for
490  * the given tree and the field len is set for all tree elements.
491  * OUT assertion: the field code is set for all tree elements of non
492  *     zero code length.
493  */
gen_codes(tree,max_code,bl_count)494 local void gen_codes (tree, max_code, bl_count)
495     ct_data *tree;             /* the tree to decorate */
496     int max_code;              /* largest code with non zero frequency */
497     ushf *bl_count;            /* number of codes at each bit length */
498 {
499     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
500     ush code = 0;              /* running code value */
501     int bits;                  /* bit index */
502     int n;                     /* code index */
503 
504     /* The distribution counts are first used to generate the code values
505      * without bit reversal.
506      */
507     for (bits = 1; bits <= MAX_BITS; bits++) {
508         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
509     }
510     /* Check that the bit counts in bl_count are consistent. The last code
511      * must be all ones.
512      */
513     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
514             "inconsistent bit counts");
515     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
516 
517     for (n = 0;  n <= max_code; n++) {
518         int len = tree[n].Len;
519         if (len == 0) continue;
520         /* Now reverse the bits */
521         tree[n].Code = bi_reverse(next_code[len]++, len);
522 
523         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
524              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
525     }
526 }
527 
528 /* ===========================================================================
529  * Construct one Huffman tree and assigns the code bit strings and lengths.
530  * Update the total bit length for the current block.
531  * IN assertion: the field freq is set for all tree elements.
532  * OUT assertions: the fields len and code are set to the optimal bit length
533  *     and corresponding code. The length opt_len is updated; static_len is
534  *     also updated if stree is not null. The field max_code is set.
535  */
build_tree(s,desc)536 local void build_tree(s, desc)
537     deflate_state *s;
538     tree_desc *desc; /* the tree descriptor */
539 {
540     ct_data *tree         = desc->dyn_tree;
541     const ct_data *stree  = desc->stat_desc->static_tree;
542     int elems             = desc->stat_desc->elems;
543     int n, m;          /* iterate over heap elements */
544     int max_code = -1; /* largest code with non zero frequency */
545     int node;          /* new node being created */
546 
547     /* Construct the initial heap, with least frequent element in
548      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
549      * heap[0] is not used.
550      */
551     s->heap_len = 0, s->heap_max = HEAP_SIZE;
552 
553     for (n = 0; n < elems; n++) {
554         if (tree[n].Freq != 0) {
555             s->heap[++(s->heap_len)] = max_code = n;
556             s->depth[n] = 0;
557         } else {
558             tree[n].Len = 0;
559         }
560     }
561 
562     /* The pkzip format requires that at least one distance code exists,
563      * and that at least one bit should be sent even if there is only one
564      * possible code. So to avoid special checks later on we force at least
565      * two codes of non zero frequency.
566      */
567     while (s->heap_len < 2) {
568         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
569         tree[node].Freq = 1;
570         s->depth[node] = 0;
571         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
572         /* node is 0 or 1 so it does not have extra bits */
573     }
574     desc->max_code = max_code;
575 
576     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
577      * establish sub-heaps of increasing lengths:
578      */
579     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
580 
581     /* Construct the Huffman tree by repeatedly combining the least two
582      * frequent nodes.
583      */
584     node = elems;              /* next internal node of the tree */
585     do {
586         pqremove(s, tree, n);  /* n = node of least frequency */
587         m = s->heap[SMALLEST]; /* m = node of next least frequency */
588 
589         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
590         s->heap[--(s->heap_max)] = m;
591 
592         /* Create a new node father of n and m */
593         tree[node].Freq = tree[n].Freq + tree[m].Freq;
594         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
595         tree[n].Dad = tree[m].Dad = (ush)node;
596 #ifdef DUMP_BL_TREE
597         if (tree == s->bl_tree) {
598             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
599                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
600         }
601 #endif
602         /* and insert the new node in the heap */
603         s->heap[SMALLEST] = node++;
604         pqdownheap(s, tree, SMALLEST);
605 
606     } while (s->heap_len >= 2);
607 
608     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
609 
610     /* At this point, the fields freq and dad are set. We can now
611      * generate the bit lengths.
612      */
613     gen_bitlen(s, (tree_desc *)desc);
614 
615     /* The field len is now set, we can generate the bit codes */
616     gen_codes ((ct_data *)tree, max_code, s->bl_count);
617 }
618 
619 /* ===========================================================================
620  * Scan a literal or distance tree to determine the frequencies of the codes
621  * in the bit length tree.
622  */
scan_tree(s,tree,max_code)623 local void scan_tree (s, tree, max_code)
624     deflate_state *s;
625     ct_data *tree;   /* the tree to be scanned */
626     int max_code;    /* and its largest code of non zero frequency */
627 {
628     int n;                     /* iterates over all tree elements */
629     int prevlen = -1;          /* last emitted length */
630     int curlen;                /* length of current code */
631     int nextlen = tree[0].Len; /* length of next code */
632     int count = 0;             /* repeat count of the current code */
633     int max_count = 7;         /* max repeat count */
634     int min_count = 4;         /* min repeat count */
635 
636     if (nextlen == 0) max_count = 138, min_count = 3;
637     tree[max_code+1].Len = (ush)0xffff; /* guard */
638 
639     for (n = 0; n <= max_code; n++) {
640         curlen = nextlen; nextlen = tree[n+1].Len;
641         if (++count < max_count && curlen == nextlen) {
642             continue;
643         } else if (count < min_count) {
644             s->bl_tree[curlen].Freq += count;
645         } else if (curlen != 0) {
646             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
647             s->bl_tree[REP_3_6].Freq++;
648         } else if (count <= 10) {
649             s->bl_tree[REPZ_3_10].Freq++;
650         } else {
651             s->bl_tree[REPZ_11_138].Freq++;
652         }
653         count = 0; prevlen = curlen;
654         if (nextlen == 0) {
655             max_count = 138, min_count = 3;
656         } else if (curlen == nextlen) {
657             max_count = 6, min_count = 3;
658         } else {
659             max_count = 7, min_count = 4;
660         }
661     }
662 }
663 
664 /* ===========================================================================
665  * Send a literal or distance tree in compressed form, using the codes in
666  * bl_tree.
667  */
send_tree(s,tree,max_code)668 local void send_tree (s, tree, max_code)
669     deflate_state *s;
670     ct_data *tree; /* the tree to be scanned */
671     int max_code;       /* and its largest code of non zero frequency */
672 {
673     int n;                     /* iterates over all tree elements */
674     int prevlen = -1;          /* last emitted length */
675     int curlen;                /* length of current code */
676     int nextlen = tree[0].Len; /* length of next code */
677     int count = 0;             /* repeat count of the current code */
678     int max_count = 7;         /* max repeat count */
679     int min_count = 4;         /* min repeat count */
680 
681     /* tree[max_code+1].Len = -1; */  /* guard already set */
682     if (nextlen == 0) max_count = 138, min_count = 3;
683 
684     for (n = 0; n <= max_code; n++) {
685         curlen = nextlen; nextlen = tree[n+1].Len;
686         if (++count < max_count && curlen == nextlen) {
687             continue;
688         } else if (count < min_count) {
689             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
690 
691         } else if (curlen != 0) {
692             if (curlen != prevlen) {
693                 send_code(s, curlen, s->bl_tree); count--;
694             }
695             Assert(count >= 3 && count <= 6, " 3_6?");
696             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
697 
698         } else if (count <= 10) {
699             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
700 
701         } else {
702             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
703         }
704         count = 0; prevlen = curlen;
705         if (nextlen == 0) {
706             max_count = 138, min_count = 3;
707         } else if (curlen == nextlen) {
708             max_count = 6, min_count = 3;
709         } else {
710             max_count = 7, min_count = 4;
711         }
712     }
713 }
714 
715 /* ===========================================================================
716  * Construct the Huffman tree for the bit lengths and return the index in
717  * bl_order of the last bit length code to send.
718  */
build_bl_tree(s)719 local int build_bl_tree(s)
720     deflate_state *s;
721 {
722     int max_blindex;  /* index of last bit length code of non zero freq */
723 
724     /* Determine the bit length frequencies for literal and distance trees */
725     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
726     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
727 
728     /* Build the bit length tree: */
729     build_tree(s, (tree_desc *)(&(s->bl_desc)));
730     /* opt_len now includes the length of the tree representations, except
731      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
732      */
733 
734     /* Determine the number of bit length codes to send. The pkzip format
735      * requires that at least 4 bit length codes be sent. (appnote.txt says
736      * 3 but the actual value used is 4.)
737      */
738     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
739         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
740     }
741     /* Update opt_len to include the bit length tree and counts */
742     s->opt_len += 3*(max_blindex+1) + 5+5+4;
743     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
744             s->opt_len, s->static_len));
745 
746     return max_blindex;
747 }
748 
749 /* ===========================================================================
750  * Send the header for a block using dynamic Huffman trees: the counts, the
751  * lengths of the bit length codes, the literal tree and the distance tree.
752  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
753  */
send_all_trees(s,lcodes,dcodes,blcodes)754 local void send_all_trees(s, lcodes, dcodes, blcodes)
755     deflate_state *s;
756     int lcodes, dcodes, blcodes; /* number of codes for each tree */
757 {
758     int rank;                    /* index in bl_order */
759 
760     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
761     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
762             "too many codes");
763     Tracev((stderr, "\nbl counts: "));
764     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
765     send_bits(s, dcodes-1,   5);
766     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
767     for (rank = 0; rank < blcodes; rank++) {
768         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
769         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
770     }
771     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
772 
773     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
774     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
775 
776     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
777     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
778 }
779 
780 /* ===========================================================================
781  * Send a stored block
782  */
zlib_tr_stored_block(s,buf,stored_len,eof)783 void zlib_tr_stored_block(s, buf, stored_len, eof)
784     deflate_state *s;
785     charf *buf;       /* input block */
786     ulg stored_len;   /* length of input block */
787     int eof;          /* true if this is the last block for a file */
788 {
789     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
790     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
791     s->compressed_len += (stored_len + 4) << 3;
792 
793     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
794 }
795 
796 /* Send just the `stored block' type code without any length bytes or data.
797  */
zlib_tr_stored_type_only(s)798 void zlib_tr_stored_type_only(s)
799     deflate_state *s;
800 {
801     send_bits(s, (STORED_BLOCK << 1), 3);
802     bi_windup(s);
803     s->compressed_len = (s->compressed_len + 3) & ~7L;
804 }
805 
806 
807 /* ===========================================================================
808  * Send one empty static block to give enough lookahead for inflate.
809  * This takes 10 bits, of which 7 may remain in the bit buffer.
810  * The current inflate code requires 9 bits of lookahead. If the
811  * last two codes for the previous block (real code plus EOB) were coded
812  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
813  * the last real code. In this case we send two empty static blocks instead
814  * of one. (There are no problems if the previous block is stored or fixed.)
815  * To simplify the code, we assume the worst case of last real code encoded
816  * on one bit only.
817  */
zlib_tr_align(s)818 void zlib_tr_align(s)
819     deflate_state *s;
820 {
821     send_bits(s, STATIC_TREES<<1, 3);
822     send_code(s, END_BLOCK, static_ltree);
823     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
824     bi_flush(s);
825     /* Of the 10 bits for the empty block, we have already sent
826      * (10 - bi_valid) bits. The lookahead for the last real code (before
827      * the EOB of the previous block) was thus at least one plus the length
828      * of the EOB plus what we have just sent of the empty static block.
829      */
830     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
831         send_bits(s, STATIC_TREES<<1, 3);
832         send_code(s, END_BLOCK, static_ltree);
833         s->compressed_len += 10L;
834         bi_flush(s);
835     }
836     s->last_eob_len = 7;
837 }
838 
839 /* ===========================================================================
840  * Determine the best encoding for the current block: dynamic trees, static
841  * trees or store, and output the encoded block to the zip file. This function
842  * returns the total compressed length for the file so far.
843  */
zlib_tr_flush_block(s,buf,stored_len,eof)844 ulg zlib_tr_flush_block(s, buf, stored_len, eof)
845     deflate_state *s;
846     charf *buf;       /* input block, or NULL if too old */
847     ulg stored_len;   /* length of input block */
848     int eof;          /* true if this is the last block for a file */
849 {
850     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
851     int max_blindex = 0;  /* index of last bit length code of non zero freq */
852 
853     /* Build the Huffman trees unless a stored block is forced */
854     if (s->level > 0) {
855 
856 	 /* Check if the file is ascii or binary */
857 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
858 
859 	/* Construct the literal and distance trees */
860 	build_tree(s, (tree_desc *)(&(s->l_desc)));
861 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
862 		s->static_len));
863 
864 	build_tree(s, (tree_desc *)(&(s->d_desc)));
865 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
866 		s->static_len));
867 	/* At this point, opt_len and static_len are the total bit lengths of
868 	 * the compressed block data, excluding the tree representations.
869 	 */
870 
871 	/* Build the bit length tree for the above two trees, and get the index
872 	 * in bl_order of the last bit length code to send.
873 	 */
874 	max_blindex = build_bl_tree(s);
875 
876 	/* Determine the best encoding. Compute first the block length in bytes*/
877 	opt_lenb = (s->opt_len+3+7)>>3;
878 	static_lenb = (s->static_len+3+7)>>3;
879 
880 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
881 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
882 		s->last_lit));
883 
884 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
885 
886     } else {
887         Assert(buf != (char*)0, "lost buf");
888 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
889     }
890 
891     /* If compression failed and this is the first and last block,
892      * and if the .zip file can be seeked (to rewrite the local header),
893      * the whole file is transformed into a stored file:
894      */
895 #ifdef STORED_FILE_OK
896 #  ifdef FORCE_STORED_FILE
897     if (eof && s->compressed_len == 0L) { /* force stored file */
898 #  else
899     if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
900 #  endif
901         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
902         if (buf == (charf*)0) error ("block vanished");
903 
904         copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
905         s->compressed_len = stored_len << 3;
906         s->method = STORED;
907     } else
908 #endif /* STORED_FILE_OK */
909 
910 #ifdef FORCE_STORED
911     if (buf != (char*)0) { /* force stored block */
912 #else
913     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
914                        /* 4: two words for the lengths */
915 #endif
916         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
917          * Otherwise we can't have processed more than WSIZE input bytes since
918          * the last block flush, because compression would have been
919          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
920          * transform a block into a stored block.
921          */
922         zlib_tr_stored_block(s, buf, stored_len, eof);
923 
924 #ifdef FORCE_STATIC
925     } else if (static_lenb >= 0) { /* force static trees */
926 #else
927     } else if (static_lenb == opt_lenb) {
928 #endif
929         send_bits(s, (STATIC_TREES<<1)+eof, 3);
930         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
931         s->compressed_len += 3 + s->static_len;
932     } else {
933         send_bits(s, (DYN_TREES<<1)+eof, 3);
934         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
935                        max_blindex+1);
936         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
937         s->compressed_len += 3 + s->opt_len;
938     }
939     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
940     init_block(s);
941 
942     if (eof) {
943         bi_windup(s);
944         s->compressed_len += 7;  /* align on byte boundary */
945     }
946     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
947            s->compressed_len-7*eof));
948 
949     return s->compressed_len >> 3;
950 }
951 
952 /* ===========================================================================
953  * Save the match info and tally the frequency counts. Return true if
954  * the current block must be flushed.
955  */
zlib_tr_tally(s,dist,lc)956 int zlib_tr_tally (s, dist, lc)
957     deflate_state *s;
958     unsigned dist;  /* distance of matched string */
959     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
960 {
961     s->d_buf[s->last_lit] = (ush)dist;
962     s->l_buf[s->last_lit++] = (uch)lc;
963     if (dist == 0) {
964         /* lc is the unmatched char */
965         s->dyn_ltree[lc].Freq++;
966     } else {
967         s->matches++;
968         /* Here, lc is the match length - MIN_MATCH */
969         dist--;             /* dist = match distance - 1 */
970         Assert((ush)dist < (ush)MAX_DIST(s) &&
971                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
972                (ush)d_code(dist) < (ush)D_CODES,  "zlib_tr_tally: bad match");
973 
974         s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
975         s->dyn_dtree[d_code(dist)].Freq++;
976     }
977 
978     /* Try to guess if it is profitable to stop the current block here */
979     if ((s->last_lit & 0xfff) == 0 && s->level > 2) {
980         /* Compute an upper bound for the compressed length */
981         ulg out_length = (ulg)s->last_lit*8L;
982         ulg in_length = (ulg)((long)s->strstart - s->block_start);
983         int dcode;
984         for (dcode = 0; dcode < D_CODES; dcode++) {
985             out_length += (ulg)s->dyn_dtree[dcode].Freq *
986                 (5L+extra_dbits[dcode]);
987         }
988         out_length >>= 3;
989         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
990                s->last_lit, in_length, out_length,
991                100L - out_length*100L/in_length));
992         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
993     }
994     return (s->last_lit == s->lit_bufsize-1);
995     /* We avoid equality with lit_bufsize because of wraparound at 64K
996      * on 16 bit machines and because stored blocks are restricted to
997      * 64K-1 bytes.
998      */
999 }
1000 
1001 /* ===========================================================================
1002  * Send the block data compressed using the given Huffman trees
1003  */
compress_block(s,ltree,dtree)1004 local void compress_block(s, ltree, dtree)
1005     deflate_state *s;
1006     ct_data *ltree; /* literal tree */
1007     ct_data *dtree; /* distance tree */
1008 {
1009     unsigned dist;      /* distance of matched string */
1010     int lc;             /* match length or unmatched char (if dist == 0) */
1011     unsigned lx = 0;    /* running index in l_buf */
1012     unsigned code;      /* the code to send */
1013     int extra;          /* number of extra bits to send */
1014 
1015     if (s->last_lit != 0) do {
1016         dist = s->d_buf[lx];
1017         lc = s->l_buf[lx++];
1018         if (dist == 0) {
1019             send_code(s, lc, ltree); /* send a literal byte */
1020             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1021         } else {
1022             /* Here, lc is the match length - MIN_MATCH */
1023             code = length_code[lc];
1024             send_code(s, code+LITERALS+1, ltree); /* send the length code */
1025             extra = extra_lbits[code];
1026             if (extra != 0) {
1027                 lc -= base_length[code];
1028                 send_bits(s, lc, extra);       /* send the extra length bits */
1029             }
1030             dist--; /* dist is now the match distance - 1 */
1031             code = d_code(dist);
1032             Assert (code < D_CODES, "bad d_code");
1033 
1034             send_code(s, code, dtree);       /* send the distance code */
1035             extra = extra_dbits[code];
1036             if (extra != 0) {
1037                 dist -= base_dist[code];
1038                 send_bits(s, dist, extra);   /* send the extra distance bits */
1039             }
1040         } /* literal or match pair ? */
1041 
1042         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1043         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
1044 
1045     } while (lx < s->last_lit);
1046 
1047     send_code(s, END_BLOCK, ltree);
1048     s->last_eob_len = ltree[END_BLOCK].Len;
1049 }
1050 
1051 /* ===========================================================================
1052  * Set the data type to ASCII or BINARY, using a crude approximation:
1053  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1054  * IN assertion: the fields freq of dyn_ltree are set and the total of all
1055  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1056  */
set_data_type(s)1057 local void set_data_type(s)
1058     deflate_state *s;
1059 {
1060     int n = 0;
1061     unsigned ascii_freq = 0;
1062     unsigned bin_freq = 0;
1063     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
1064     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
1065     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
1066     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
1067 }
1068 
1069 /* ===========================================================================
1070  * Copy a stored block, storing first the length and its
1071  * one's complement if requested.
1072  */
copy_block(s,buf,len,header)1073 local void copy_block(s, buf, len, header)
1074     deflate_state *s;
1075     charf    *buf;    /* the input data */
1076     unsigned len;     /* its length */
1077     int      header;  /* true if block header must be written */
1078 {
1079     bi_windup(s);        /* align on byte boundary */
1080     s->last_eob_len = 8; /* enough lookahead for inflate */
1081 
1082     if (header) {
1083         put_short(s, (ush)len);
1084         put_short(s, (ush)~len);
1085 #ifdef DEBUG_ZLIB
1086         s->bits_sent += 2*16;
1087 #endif
1088     }
1089 #ifdef DEBUG_ZLIB
1090     s->bits_sent += (ulg)len<<3;
1091 #endif
1092     /* bundle up the put_byte(s, *buf++) calls */
1093     memcpy(&s->pending_buf[s->pending], buf, len);
1094     s->pending += len;
1095 }
1096 
1097