1 #ifndef _X86_64_PGTABLE_H
2 #define _X86_64_PGTABLE_H
3 
4 /*
5  * This file contains the functions and defines necessary to modify and use
6  * the x86-64 page table tree.
7  *
8  * x86-64 has a 4 level table setup. Generic linux MM only supports
9  * three levels. The fourth level is currently a single static page that
10  * is shared by everybody and just contains a pointer to the current
11  * three level page setup on the beginning and some kernel mappings at
12  * the end. For more details see Documentation/x86_64/mm.txt
13  */
14 #ifndef __ASSEMBLY__
15 #include <asm/processor.h>
16 #include <asm/fixmap.h>
17 #include <asm/bitops.h>
18 #include <asm/pda.h>
19 #include <linux/threads.h>
20 #include <linux/config.h>
21 
22 extern pgd_t level3_kernel_pgt[512];
23 extern pgd_t level3_physmem_pgt[512];
24 extern pgd_t level3_ident_pgt[512];
25 extern pmd_t level2_kernel_pgt[512];
26 extern pml4_t init_level4_pgt[];
27 extern pgd_t boot_vmalloc_pgt[];
28 
29 extern void paging_init(void);
30 
31 #define swapper_pg_dir NULL
32 
33 /* Caches aren't brain-dead on the intel. */
34 #define flush_cache_all()			do { } while (0)
35 #define flush_cache_mm(mm)			do { } while (0)
36 #define flush_cache_range(mm, start, end)	do { } while (0)
37 #define flush_cache_page(vma, vmaddr)		do { } while (0)
38 #define flush_page_to_ram(page)			do { } while (0)
39 #define flush_dcache_page(page)			do { } while (0)
40 #define flush_icache_range(start, end)		do { } while (0)
41 #define flush_icache_page(vma,pg)		do { } while (0)
42 #define flush_icache_user_range(vma,pg,adr,len)	do { } while (0)
43 
44 #define __flush_tlb()							\
45 	do {								\
46 		unsigned long tmpreg;					\
47 									\
48 		__asm__ __volatile__(					\
49 			"movq %%cr3, %0;  # flush TLB \n"		\
50 			"movq %0, %%cr3;              \n"		\
51 			: "=r" (tmpreg)					\
52 			:: "memory");					\
53 	} while (0)
54 
55 /*
56  * Global pages have to be flushed a bit differently. Not a real
57  * performance problem because this does not happen often.
58  */
59 #define __flush_tlb_global()						\
60 	do {								\
61 		unsigned long tmpreg;					\
62 									\
63 		__asm__ __volatile__(					\
64 			"movq %1, %%cr4;  # turn off PGE     \n"	\
65 			"movq %%cr3, %0;  # flush TLB        \n"	\
66 			"movq %0, %%cr3;                     \n"	\
67 			"movq %2, %%cr4;  # turn PGE back on \n"	\
68 			: "=&r" (tmpreg)				\
69 			: "r" (mmu_cr4_features & ~(u64)X86_CR4_PGE),	\
70 			  "r" (mmu_cr4_features)			\
71 			: "memory");					\
72 	} while (0)
73 
74 #define __flush_tlb_all() __flush_tlb_global()
75 
76 #define __flush_tlb_one(addr) __asm__ __volatile__("invlpg %0": :"m" (*(char *) addr))
77 
78 /*
79  * ZERO_PAGE is a global shared page that is always zero: used
80  * for zero-mapped memory areas etc..
81  */
82 extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
83 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
84 
85 #endif /* !__ASSEMBLY__ */
86 
87 #define PML4_SHIFT	39
88 #define PTRS_PER_PML4	512
89 
90 /*
91  * PGDIR_SHIFT determines what a 3rd level page table entry can map
92  */
93 #define PGDIR_SHIFT	30
94 #define PTRS_PER_PGD	512
95 
96 /*
97  * PMD_SHIFT determines the size of the area a middle-level
98  * page table can map
99  */
100 #define PMD_SHIFT	21
101 #define PTRS_PER_PMD	512
102 
103 /*
104  * entries per page directory level
105  */
106 #define PTRS_PER_PTE	512
107 
108 #define pte_ERROR(e) \
109 	printk("%s:%d: bad pte %p(%016lx).\n", __FILE__, __LINE__, &(e), pte_val(e))
110 #define pmd_ERROR(e) \
111 	printk("%s:%d: bad pmd %p(%016lx).\n", __FILE__, __LINE__, &(e), pmd_val(e))
112 #define pgd_ERROR(e) \
113 	printk("%s:%d: bad pgd %p(%016lx).\n", __FILE__, __LINE__, &(e), pgd_val(e))
114 
115 #define pml4_none(x)	(!pml4_val(x))
116 #define pgd_none(x)	(!pgd_val(x))
117 
118 
pgd_present(pgd_t pgd)119 extern inline int pgd_present(pgd_t pgd)	{ return !pgd_none(pgd); }
120 
set_pte(pte_t * dst,pte_t val)121 static inline void set_pte(pte_t *dst, pte_t val)
122 {
123 	pte_val(*dst) = pte_val(val);
124 }
125 
set_pmd(pmd_t * dst,pmd_t val)126 static inline void set_pmd(pmd_t *dst, pmd_t val)
127 {
128 	pmd_val(*dst) = pmd_val(val);
129 }
130 
set_pgd(pgd_t * dst,pgd_t val)131 static inline void set_pgd(pgd_t *dst, pgd_t val)
132 {
133 	pgd_val(*dst) = pgd_val(val);
134 }
135 
set_pml4(pml4_t * dst,pml4_t val)136 static inline void set_pml4(pml4_t *dst, pml4_t val)
137 {
138 	pml4_val(*dst) = pml4_val(val);
139 }
140 
__pgd_clear(pgd_t * pgd)141 extern inline void __pgd_clear (pgd_t * pgd)
142 {
143 	set_pgd(pgd, __pgd(0));
144 }
145 
pgd_clear(pgd_t * pgd)146 extern inline void pgd_clear (pgd_t * pgd)
147 {
148 	__pgd_clear(pgd);
149 	__flush_tlb();
150 }
151 
152 #define pgd_page(pgd) \
153 ((unsigned long) __va(pgd_val(pgd) & PHYSICAL_PAGE_MASK))
154 #define __mk_pgd(address,prot) ((pgd_t) { (address) | pgprot_val(prot) })
155 
156 /* Find an entry in the second-level page table.. */
157 #define pmd_offset(dir, address) ((pmd_t *) pgd_page(*(dir)) + \
158 			__pmd_offset(address))
159 #define __mk_pmd(address,prot) ((pmd_t) { ((address) | pgprot_val(prot)) & __supported_pte_mask})
160 
161 #define ptep_get_and_clear(xp)	__pte(xchg(&(xp)->pte, 0))
162 #define pte_same(a, b)		((a).pte == (b).pte)
163 #define __mk_pte(page_nr,pgprot) \
164 	__pte(((page_nr) << PAGE_SHIFT) | (pgprot_val(pgprot) & __supported_pte_mask))
165 #define PML4_SIZE	(1UL << PML4_SHIFT)
166 #define PML4_MASK	(~(PML4_SIZE-1))
167 #define PMD_SIZE	(1UL << PMD_SHIFT)
168 #define PMD_MASK	(~(PMD_SIZE-1))
169 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
170 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
171 
172 #define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)
173 #define FIRST_USER_PGD_NR	0
174 
175 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
176 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
177 
178 #define BOOT_USER_L4_PTRS 1
179 #define BOOT_KERNEL_L4_PTRS 511	/* But we will do it in 4rd level */
180 
181 
182 
183 #ifndef __ASSEMBLY__
184 /* IO mappings are the 509th slot in the PML4. We map them high up to make sure
185    they never appear in the node hash table in DISCONTIG configs. */
186 #define IOMAP_START      0xfffffe8000000000
187 
188 /* vmalloc space occupies the 510th slot in the PML4. You can have upto 512GB of
189    vmalloc/ioremap space. */
190 
191 #define VMALLOC_START	 0xffffff0000000000
192 #define VMALLOC_END      0xffffff7fffffffff
193 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
194 
195 #define MODULES_VADDR    0xffffffffa0000000
196 #define MODULES_END      0xffffffffafffffff
197 #define MODULES_LEN   (MODULES_END - MODULES_VADDR)
198 
199 #define _PAGE_BIT_PRESENT	0
200 #define _PAGE_BIT_RW		1
201 #define _PAGE_BIT_USER		2
202 #define _PAGE_BIT_PWT		3	/* Write Through */
203 #define _PAGE_BIT_PCD		4	/* Cache disable */
204 #define _PAGE_BIT_ACCESSED	5
205 #define _PAGE_BIT_DIRTY		6
206 #define _PAGE_BIT_PSE		7	/* 2MB page */
207 #define _PAGE_BIT_GLOBAL	8	/* Global TLB entry PPro+ */
208 #define _PAGE_BIT_NX           63       /* No execute: only valid after cpuid check */
209 
210 #define _PAGE_PRESENT	0x001
211 #define _PAGE_RW	0x002
212 #define _PAGE_USER	0x004
213 #define _PAGE_PWT	0x008
214 #define _PAGE_PCD	0x010
215 #define _PAGE_ACCESSED	0x020
216 #define _PAGE_DIRTY	0x040
217 #define _PAGE_PSE	0x080	/* 2MB page */
218 #define _PAGE_GLOBAL	0x100	/* Global TLB entry */
219 #define _PAGE_PGE	_PAGE_GLOBAL
220 #define _PAGE_NX        (1UL<<_PAGE_BIT_NX)
221 
222 #define _PAGE_PROTNONE	0x080	/* If not present */
223 
224 #define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
225 #define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
226 
227 #define KERNPG_TABLE	__pgprot(_KERNPG_TABLE)
228 
229 #define _PAGE_CHG_MASK	(PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
230 
231 #define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
232 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
233 #define PAGE_SHARED_NOEXEC	__pgprot(_PAGE_NX | _PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
234 #define PAGE_COPY_NOEXEC	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
235 #define PAGE_COPY PAGE_COPY_NOEXEC
236 #define PAGE_COPY_EXEC  \
237 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
238 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
239 #define PAGE_READONLY_EXEC \
240 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
241 #define PAGE_EXECONLY PAGE_READONLY_EXEC
242 
243 #define PAGE_LARGE (_PAGE_PSE|_PAGE_PRESENT)
244 
245 #define __PAGE_KERNEL \
246 	(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
247 #define __PAGE_KERNEL_NOCACHE   (__PAGE_KERNEL | _PAGE_PCD)
248 #define __PAGE_KERNEL_RO        (__PAGE_KERNEL & ~_PAGE_RW)
249 #define __PAGE_KERNEL_VSYSCALL	(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
250 #define __PAGE_KERNEL_LARGE     (__PAGE_KERNEL | _PAGE_PSE)
251 #define __PAGE_KERNEL_LARGE_NOCACHE     (__PAGE_KERNEL_LARGE | _PAGE_PCD)
252 #define __PAGE_KERNEL_EXECUTABLE (__PAGE_KERNEL & ~_PAGE_NX)
253 #define __PAGE_USER_NOCACHE_RO	\
254 	(_PAGE_PRESENT | _PAGE_USER | _PAGE_DIRTY | _PAGE_ACCESSED)
255 
256 extern unsigned long __supported_pte_mask;
257 #define __PTE_SUPP(x) __pgprot((x) & __supported_pte_mask)
258 
259 /* _NX is masked away in mk_pmd/pte */
260 
261 #define PAGE_KERNEL __PTE_SUPP(__PAGE_KERNEL|_PAGE_GLOBAL)
262 #define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO|_PAGE_GLOBAL)
263 #define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE|_PAGE_GLOBAL)
264 #define PAGE_KERNEL_VSYSCALL __pgprot(__PAGE_KERNEL_VSYSCALL|_PAGE_GLOBAL)
265 #define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE|_PAGE_GLOBAL)
266 #define PAGE_KERNEL_LARGE_NOCACHE __pgprot(__PAGE_KERNEL_LARGE_NOCACHE|_PAGE_GLOBAL)
267 #define PAGE_USER_NOCACHE_RO __pgprot(__PAGE_USER_NOCACHE_RO|_PAGE_GLOBAL)
268 #define PAGE_KERNEL_EXECUTABLE __pgprot(__PAGE_KERNEL_EXECUTABLE|_PAGE_GLOBAL)
269 
270 /*         xwr */
271 #define __P000	PAGE_NONE
272 #define __P001	PAGE_READONLY
273 #define __P010	PAGE_COPY
274 #define __P011	PAGE_COPY
275 #define __P100	PAGE_EXECONLY
276 #define __P101	PAGE_READONLY_EXEC
277 #define __P110	PAGE_COPY_EXEC
278 #define __P111	PAGE_COPY_EXEC
279 
280 /*         xwr */
281 #define __S000	PAGE_NONE
282 #define __S001	PAGE_READONLY
283 #define __S010	PAGE_SHARED_NOEXEC
284 #define __S011	PAGE_SHARED_NOEXEC
285 #define __S100	PAGE_EXECONLY
286 #define __S101	PAGE_READONLY_EXEC
287 #define __S110	PAGE_SHARED
288 #define __S111	PAGE_SHARED
289 
pgd_bad(pgd_t pgd)290 static inline unsigned long pgd_bad(pgd_t pgd)
291 {
292 	unsigned long val = pgd_val(pgd);
293 	val &= ~PAGE_MASK;
294 	val &= ~(_PAGE_USER | _PAGE_DIRTY);
295 	return val & ~(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED);
296 }
297 
298 /*
299  * Handling allocation failures during page table setup.
300  */
301 extern void __handle_bad_pmd(pmd_t * pmd);
302 extern void __handle_bad_pmd_kernel(pmd_t * pmd);
303 
304 #define pte_none(x)	(!pte_val(x))
305 #define pte_present(x)	(pte_val(x) & (_PAGE_PRESENT | _PAGE_PROTNONE))
306 #define pte_clear(xp)	do { set_pte(xp, __pte(0)); } while (0)
307 
308 #define pmd_none(x)	(!pmd_val(x))
309 #define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
310 #define pmd_clear(xp)	do { set_pmd(xp, __pmd(0)); } while (0)
311 #define	pmd_bad(x)	\
312 	((pmd_val(x) & (~PAGE_MASK & (~_PAGE_USER))) != _KERNPG_TABLE )
313 
314 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
315 
316 #ifndef CONFIG_DISCONTIGMEM
317 #define pte_page(x) (pfn_to_page((pte_val(x) & PHYSICAL_PAGE_MASK) >> PAGE_SHIFT))
318 #endif
319 /*
320  * The following only work if pte_present() is true.
321  * Undefined behaviour if not..
322  */
pte_read(pte_t pte)323 extern inline int pte_read(pte_t pte)		{ return pte_val(pte) & _PAGE_USER; }
pte_exec(pte_t pte)324 extern inline int pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_USER; }
pte_dirty(pte_t pte)325 extern inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)326 extern inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
pte_write(pte_t pte)327 extern inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_RW; }
328 
pte_rdprotect(pte_t pte)329 extern inline pte_t pte_rdprotect(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_USER)); return pte; }
pte_exprotect(pte_t pte)330 extern inline pte_t pte_exprotect(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_USER)); return pte; }
pte_mkclean(pte_t pte)331 extern inline pte_t pte_mkclean(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
pte_mkold(pte_t pte)332 extern inline pte_t pte_mkold(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
pte_wrprotect(pte_t pte)333 extern inline pte_t pte_wrprotect(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW)); return pte; }
pte_mkread(pte_t pte)334 extern inline pte_t pte_mkread(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_USER)); return pte; }
pte_mkexec(pte_t pte)335 extern inline pte_t pte_mkexec(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_USER)); return pte; }
pte_mkdirty(pte_t pte)336 extern inline pte_t pte_mkdirty(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
pte_mkyoung(pte_t pte)337 extern inline pte_t pte_mkyoung(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
pte_mkwrite(pte_t pte)338 extern inline pte_t pte_mkwrite(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW)); return pte; }
ptep_test_and_clear_dirty(pte_t * ptep)339 static inline  int ptep_test_and_clear_dirty(pte_t *ptep)	{ return test_and_clear_bit(_PAGE_BIT_DIRTY, ptep); }
ptep_test_and_clear_young(pte_t * ptep)340 static inline  int ptep_test_and_clear_young(pte_t *ptep)	{ return test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep); }
ptep_set_wrprotect(pte_t * ptep)341 static inline void ptep_set_wrprotect(pte_t *ptep)		{ clear_bit(_PAGE_BIT_RW, ptep); }
ptep_mkdirty(pte_t * ptep)342 static inline void ptep_mkdirty(pte_t *ptep)			{ set_bit(_PAGE_BIT_DIRTY, ptep); }
343 
344 /*
345  * Conversion functions: convert a page and protection to a page entry,
346  * and a page entry and page directory to the page they refer to.
347  */
348 
349 #define mk_pte(page,pgprot) 							 \
350 ({ 										 \
351 	pte_t __pte; 								 \
352 	unsigned long __val = page_to_phys(page);  			 \
353 	__val |= pgprot_val(pgprot);						 \
354 	__val &= __supported_pte_mask;						\
355  	set_pte(&__pte, __pte(__val));						 \
356  	__pte;									 \
357 })
358 
359 /* This takes a physical page address that is used by the remapping functions */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)360 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
361 {
362 	pte_t __pte;
363 	set_pte(&__pte, __pte(physpage + (pgprot_val(pgprot) & __supported_pte_mask)));
364 	return __pte;
365 }
366 
pte_modify(pte_t pte,pgprot_t newprot)367 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
368 {
369 	set_pte(&pte,
370 		__pte(((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))  &
371 		      __supported_pte_mask));
372 	return pte;
373 }
374 
375 #define page_pte(page) page_pte_prot(page, __pgprot(0))
376 #define __pmd_page(pmd) (__va(pmd_val(pmd) & PHYSICAL_PAGE_MASK))
377 
378 /* to find an entry in a page-table-directory. */
379 #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
380 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
381 
382 #define __pgd_offset_k(pgd, address) ((pgd) + pgd_index(address))
383 
384 #define current_pgd_offset_k(address) \
385 	__pgd_offset_k((pgd_t *)read_pda(level4_pgt), address)
386 
387 /* This accesses the reference page table of the boot cpu.
388    Other CPUs get synced lazily via the page fault handler. */
389 #define pgd_offset_k(address) \
390 	__pgd_offset_k( \
391        (pgd_t *)__va(pml4_val(init_level4_pgt[pml4_index(address)]) & PHYSICAL_PAGE_MASK), address)
392 
393 #define __pmd_offset(address) \
394 		(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
395 
396 /* Find an entry in the third-level page table.. */
397 #define __pte_offset(address) \
398 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
399 #define pte_offset(dir, address) ((pte_t *) __pmd_page(*(dir)) + \
400 			__pte_offset(address))
401 
402 /* never use these in the common code */
403 #define pml4_page(level4) ((unsigned long) __va(pml4_val(level4) & PHYSICAL_PAGE_MASK))
404 #define pml4_index(address) (((address) >> PML4_SHIFT) & (PTRS_PER_PML4-1))
405 #define pml4_offset_k(address) ((pml4_t *)read_pda(level4_pgt) + pml4_index(address))
406 #define level3_offset_k(dir, address) ((pgd_t *) pml4_page(*(dir)) + pgd_index(address))
407 #define mk_kernel_pml4(address,prot) ((pml4_t){(address) | pgprot_val(prot)})
408 #define pml4_present(pml4) (pml4_val(pml4) & _PAGE_PRESENT)
409 
410 /*
411  * x86 doesn't have any external MMU info: the kernel page
412  * tables contain all the necessary information.
413  */
414 #define update_mmu_cache(vma,address,pte) do { } while (0)
415 
416 /* Encode and de-code a swap entry */
417 #define SWP_TYPE(x)			(((x).val >> 1) & 0x3f)
418 #define SWP_OFFSET(x)			((x).val >> 8)
419 #define SWP_ENTRY(type, offset)		((swp_entry_t) { ((type) << 1) | ((offset) << 8) })
420 #define pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
421 #define swp_entry_to_pte(x)		((pte_t) { (x).val })
422 
423 struct page;
424 /*
425  * Change attributes of an kernel page.
426  */
427 struct page;
428 extern int change_page_attr(struct page *page, int numpages, pgprot_t prot);
429 
430 extern void clear_kernel_mapping(unsigned long addr, unsigned long size);
431 
432 #endif /* !__ASSEMBLY__ */
433 
434 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
435 #define PageSkip(page)		(0)
436 #define kern_addr_valid(kaddr)  ((kaddr)>>PAGE_SHIFT < max_mapnr)
437 
438 #define io_remap_page_range remap_page_range
439 
440 #define HAVE_ARCH_UNMAPPED_AREA
441 
442 #define pgtable_cache_init()   do { } while (0)
443 
444 
445 #endif /* _X86_64_PGTABLE_H */
446