1 /* $Id: bitops.h,v 1.39 2002/01/30 01:40:00 davem Exp $
2  * bitops.h: Bit string operations on the V9.
3  *
4  * Copyright 1996, 1997 David S. Miller (davem@caip.rutgers.edu)
5  */
6 
7 #ifndef _SPARC64_BITOPS_H
8 #define _SPARC64_BITOPS_H
9 
10 #include <linux/config.h>
11 #include <linux/compiler.h>
12 #include <asm/byteorder.h>
13 
14 extern int test_and_set_bit(unsigned long nr, volatile void *addr);
15 extern int test_and_clear_bit(unsigned long nr, volatile void *addr);
16 extern int test_and_change_bit(unsigned long nr, volatile void *addr);
17 extern void set_bit(unsigned long nr, volatile void *addr);
18 extern void clear_bit(unsigned long nr, volatile void *addr);
19 extern void change_bit(unsigned long nr, volatile void *addr);
20 
21 /* "non-atomic" versions... */
22 
__set_bit(int nr,volatile void * addr)23 static __inline__ void __set_bit(int nr, volatile void *addr)
24 {
25 	unsigned long *m;
26 
27 	m = ((unsigned long *)addr) + (nr >> 6);
28 	*m |= (1UL << (nr & 63));
29 }
30 
__clear_bit(int nr,volatile void * addr)31 static __inline__ void __clear_bit(int nr, volatile void *addr)
32 {
33 	unsigned long *m;
34 
35 	m = ((unsigned long *)addr) + (nr >> 6);
36 	*m &= ~(1UL << (nr & 63));
37 }
38 
__change_bit(int nr,volatile void * addr)39 static __inline__ void __change_bit(int nr, volatile void *addr)
40 {
41 	unsigned long *m;
42 
43 	m = ((unsigned long *)addr) + (nr >> 6);
44 	*m ^= (1UL << (nr & 63));
45 }
46 
__test_and_set_bit(int nr,volatile void * addr)47 static __inline__ int __test_and_set_bit(int nr, volatile void *addr)
48 {
49 	unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
50 	unsigned long old = *m;
51 	unsigned long mask = (1UL << (nr & 63));
52 
53 	*m = (old | mask);
54 	return ((old & mask) != 0);
55 }
56 
__test_and_clear_bit(int nr,volatile void * addr)57 static __inline__ int __test_and_clear_bit(int nr, volatile void *addr)
58 {
59 	unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
60 	unsigned long old = *m;
61 	unsigned long mask = (1UL << (nr & 63));
62 
63 	*m = (old & ~mask);
64 	return ((old & mask) != 0);
65 }
66 
__test_and_change_bit(int nr,volatile void * addr)67 static __inline__ int __test_and_change_bit(int nr, volatile void *addr)
68 {
69 	unsigned long *m = ((unsigned long *)addr) + (nr >> 6);
70 	unsigned long old = *m;
71 	unsigned long mask = (1UL << (nr & 63));
72 
73 	*m = (old ^ mask);
74 	return ((old & mask) != 0);
75 }
76 
77 #ifdef CONFIG_SMP
78 #define smp_mb__before_clear_bit()	membar_safe("#StoreLoad | #LoadLoad")
79 #define smp_mb__after_clear_bit()	membar_safe("#StoreLoad | #StoreStore")
80 #else
81 #define smp_mb__before_clear_bit()	barrier()
82 #define smp_mb__after_clear_bit()	barrier()
83 #endif
84 
test_bit(int nr,__const__ volatile void * _addr)85 static __inline__ int test_bit(int nr, __const__ volatile void *_addr)
86 {
87 	__const__ unsigned long *addr;
88 
89 	addr = (__const__ unsigned long *) _addr;
90 
91 	return (1UL & ((addr)[nr >> 6] >> (nr & 63))) != 0UL;
92 }
93 
94 /* The easy/cheese version for now. */
ffz(unsigned long word)95 static __inline__ unsigned long ffz(unsigned long word)
96 {
97 	unsigned long result;
98 
99 	result = 0;
100 	while(word & 1) {
101 		result++;
102 		word >>= 1;
103 	}
104 	return result;
105 }
106 
107 /**
108  * __ffs - find first bit in word.
109  * @word: The word to search
110  *
111  * Undefined if no bit exists, so code should check against 0 first.
112  */
__ffs(unsigned long word)113 static __inline__ unsigned long __ffs(unsigned long word)
114 {
115 	unsigned long result = 0;
116 
117 	while (!(word & 1UL)) {
118 		result++;
119 		word >>= 1;
120 	}
121 	return result;
122 }
123 
124 /*
125  * fls: find last bit set.
126  */
127 
128 #define fls(x) generic_fls(x)
129 
130 #ifdef __KERNEL__
131 
132 /*
133  * ffs: find first bit set. This is defined the same way as
134  * the libc and compiler builtin ffs routines, therefore
135  * differs in spirit from the above ffz (man ffs).
136  */
ffs(int x)137 static __inline__ int ffs(int x)
138 {
139 	if (!x)
140 		return 0;
141 	return __ffs((unsigned long)x) + 1;
142 }
143 
144 /*
145  * hweightN: returns the hamming weight (i.e. the number
146  * of bits set) of a N-bit word
147  */
148 
149 #ifdef ULTRA_HAS_POPULATION_COUNT
150 
hweight64(unsigned long w)151 static __inline__ unsigned int hweight64(unsigned long w)
152 {
153 	unsigned int res;
154 
155 	__asm__ ("popc %1,%0" : "=r" (res) : "r" (w));
156 	return res;
157 }
158 
hweight32(unsigned int w)159 static __inline__ unsigned int hweight32(unsigned int w)
160 {
161 	unsigned int res;
162 
163 	__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffffffff));
164 	return res;
165 }
166 
hweight16(unsigned int w)167 static __inline__ unsigned int hweight16(unsigned int w)
168 {
169 	unsigned int res;
170 
171 	__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffff));
172 	return res;
173 }
174 
hweight8(unsigned int w)175 static __inline__ unsigned int hweight8(unsigned int w)
176 {
177 	unsigned int res;
178 
179 	__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xff));
180 	return res;
181 }
182 
183 #else
184 
185 #define hweight64(x) generic_hweight64(x)
186 #define hweight32(x) generic_hweight32(x)
187 #define hweight16(x) generic_hweight16(x)
188 #define hweight8(x) generic_hweight8(x)
189 
190 #endif
191 #endif /* __KERNEL__ */
192 
193 /* find_next_zero_bit() finds the first zero bit in a bit string of length
194  * 'size' bits, starting the search at bit 'offset'. This is largely based
195  * on Linus's ALPHA routines, which are pretty portable BTW.
196  */
197 
find_next_zero_bit(void * addr,unsigned long size,unsigned long offset)198 static __inline__ unsigned long find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
199 {
200 	unsigned long *p = ((unsigned long *) addr) + (offset >> 6);
201 	unsigned long result = offset & ~63UL;
202 	unsigned long tmp;
203 
204 	if (offset >= size)
205 		return size;
206 	size -= result;
207 	offset &= 63UL;
208 	if (offset) {
209 		tmp = *(p++);
210 		tmp |= ~0UL >> (64-offset);
211 		if (size < 64)
212 			goto found_first;
213 		if (~tmp)
214 			goto found_middle;
215 		size -= 64;
216 		result += 64;
217 	}
218 	while (size & ~63UL) {
219 		if (~(tmp = *(p++)))
220 			goto found_middle;
221 		result += 64;
222 		size -= 64;
223 	}
224 	if (!size)
225 		return result;
226 	tmp = *p;
227 
228 found_first:
229 	tmp |= ~0UL << size;
230 	if (tmp == ~0UL)        /* Are any bits zero? */
231 		return result + size; /* Nope. */
232 found_middle:
233 	return result + ffz(tmp);
234 }
235 
236 #define find_first_zero_bit(addr, size) \
237         find_next_zero_bit((addr), (size), 0)
238 
239 #define test_and_set_le_bit(nr,addr)	\
240 	test_and_set_bit((nr) ^ 0x38, (addr))
241 #define test_and_clear_le_bit(nr,addr)	\
242 	test_and_clear_bit((nr) ^ 0x38, (addr))
243 
test_le_bit(int nr,__const__ void * addr)244 static __inline__ int test_le_bit(int nr, __const__ void *addr)
245 {
246 	int			mask;
247 	__const__ unsigned char	*ADDR = (__const__ unsigned char *) addr;
248 
249 	ADDR += nr >> 3;
250 	mask = 1 << (nr & 0x07);
251 	return ((mask & *ADDR) != 0);
252 }
253 
254 #define find_first_zero_le_bit(addr, size) \
255         find_next_zero_le_bit((addr), (size), 0)
256 
find_next_zero_le_bit(void * addr,unsigned long size,unsigned long offset)257 static __inline__ unsigned long find_next_zero_le_bit(void *addr, unsigned long size, unsigned long offset)
258 {
259 	unsigned long *p = ((unsigned long *) addr) + (offset >> 6);
260 	unsigned long result = offset & ~63UL;
261 	unsigned long tmp;
262 
263 	if (offset >= size)
264 		return size;
265 	size -= result;
266 	offset &= 63UL;
267 	if(offset) {
268 		tmp = __swab64p(p++);
269 		tmp |= (~0UL >> (64-offset));
270 		if(size < 64)
271 			goto found_first;
272 		if(~tmp)
273 			goto found_middle;
274 		size -= 64;
275 		result += 64;
276 	}
277 	while(size & ~63) {
278 		if(~(tmp = __swab64p(p++)))
279 			goto found_middle;
280 		result += 64;
281 		size -= 64;
282 	}
283 	if(!size)
284 		return result;
285 	tmp = __swab64p(p);
286 found_first:
287 	tmp |= (~0UL << size);
288 	if (tmp == ~0UL)        /* Are any bits zero? */
289 		return result + size; /* Nope. */
290 found_middle:
291 	return result + ffz(tmp);
292 }
293 
294 #ifdef __KERNEL__
295 
296 #define __set_le_bit(nr, addr) \
297 	__set_bit((nr) ^ 0x38, (addr))
298 #define __clear_le_bit(nr, addr) \
299 	__clear_bit((nr) ^ 0x38, (addr))
300 #define __test_and_clear_le_bit(nr, addr) \
301 	__test_and_clear_bit((nr) ^ 0x38, (addr))
302 #define __test_and_set_le_bit(nr, addr) \
303 	__test_and_set_bit((nr) ^ 0x38, (addr))
304 
305 #define ext2_set_bit(nr,addr)	\
306 	__test_and_set_le_bit((nr),(unsigned long *)(addr))
307 #define ext2_set_bit_atomic(lock,nr,addr) \
308 	test_and_set_le_bit((nr),(unsigned long *)(addr))
309 #define ext2_clear_bit(nr,addr)	\
310 	__test_and_clear_le_bit((nr),(unsigned long *)(addr))
311 #define ext2_clear_bit_atomic(lock,nr,addr) \
312 	test_and_clear_le_bit((nr),(unsigned long *)(addr))
313 #define ext2_test_bit(nr,addr)	\
314 	test_le_bit((nr),(unsigned long *)(addr))
315 #define ext2_find_first_zero_bit(addr, size) \
316 	find_first_zero_le_bit((unsigned long *)(addr), (size))
317 #define ext2_find_next_zero_bit(addr, size, off) \
318 	find_next_zero_le_bit((unsigned long *)(addr), (size), (off))
319 
320 /* Bitmap functions for the minix filesystem.  */
321 #define minix_test_and_set_bit(nr,addr)	\
322 	test_and_set_bit((nr),(unsigned long *)(addr))
323 #define minix_set_bit(nr,addr)	\
324 	set_bit((nr),(unsigned long *)(addr))
325 #define minix_test_and_clear_bit(nr,addr) \
326 	test_and_clear_bit((nr),(unsigned long *)(addr))
327 #define minix_test_bit(nr,addr)	\
328 	test_bit((nr),(unsigned long *)(addr))
329 #define minix_find_first_zero_bit(addr,size) \
330 	find_first_zero_bit((unsigned long *)(addr),(size))
331 
332 #endif /* __KERNEL__ */
333 
334 #endif /* defined(_SPARC64_BITOPS_H) */
335