1 #ifndef __ASM_SH64_PGTABLE_H
2 #define __ASM_SH64_PGTABLE_H
3 
4 /*
5  * This file is subject to the terms and conditions of the GNU General Public
6  * License.  See the file "COPYING" in the main directory of this archive
7  * for more details.
8  *
9  * include/asm-sh64/pgtable.h
10  *
11  * Copyright (C) 2000, 2001  Paolo Alberelli
12  * Copyright (C) 2003  Paul Mundt
13  * Copyright (C) 2003  Richard Curnow
14  *
15  * This file contains the functions and defines necessary to modify and use
16  * the SuperH page table tree.
17  */
18 
19 #ifndef __ASSEMBLY__
20 #include <asm/processor.h>
21 #include <asm/page.h>
22 #include <linux/threads.h>
23 #include <linux/config.h>
24 
25 extern void paging_init(void);
26 
27 extern void flush_cache_all(void);
28 extern void flush_cache_mm(struct mm_struct *mm);
29 extern void flush_cache_range(struct mm_struct *mm, unsigned long start,
30 			      unsigned long end);
31 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long addr);
32 
33 extern void flush_page_to_ram(struct page *page);
34 
35 extern void flush_icache_range(unsigned long start, unsigned long end);
36 extern void flush_icache_page(struct vm_area_struct *vma, struct page *pg);
37 
38 extern void flush_dcache_page(struct page *pg);
39 
40 extern void flush_cache_sigtramp(unsigned long start, unsigned long end);
41 
42 #ifdef CONFIG_DCACHE_DISABLED
43 
44 #define sh64_dcache_purge_sets(base,sets)		do { } while (0)
45 #define sh64_dcache_purge_all()				do { } while (0)
46 #define sh64_dcache_purge_kernel_range(start,end)	do { } while (0)
47 #define sh64_dcache_purge_coloured_phy_page(addr,eaddr)	do { } while (0)
48 #define sh64_dcache_purge_phy_page(pg)			do { } while (0)
49 #define sh64_dcache_purge_virt_page(mm,eaddr)		do { } while (0)
50 #define sh64_dcache_purge_user_page(mm,eaddr)		do { } while (0)
51 #define sh64_dcache_purge_user_range(mm,start,end)	do { } while (0)
52 #define sh64_dcache_wback_current_user_range(start,end) do { } while (0)
53 
54 #define copy_user_page(to, from, addr)	memcpy(to, from, PAGE_SIZE)
55 #define clear_user_page(to, addr)	memset(to, 0, PAGE_SIZE)
56 
57 #endif /* CONFIG_DCACHE_DISABLED */
58 
59 #ifdef CONFIG_ICACHE_DISABLED
60 
61 #define sh64_icache_inv_all()				do { } while (0)
62 #define sh64_icache_inv_kernel_range(start,end)		do { } while (0)
63 #define sh64_icache_inv_user_page(vma,eaddr)		do { } while (0)
64 #define sh64_icache_inv_user_page_range(mm,start,end)	do { } while (0)
65 #define sh64_icache_inv_user_small_range(mm,start,len)	do { } while (0)
66 #define sh64_icache_inv_current_user_range(start,end)	do { } while (0)
67 
68 #endif /* CONFIG_ICACHE_DISABLED */
69 
70 /* We provide our own get_unmapped_area to avoid cache synonym issue */
71 #define HAVE_ARCH_UNMAPPED_AREA
72 
73 /*
74  * Basically we have the same two-level (which is the logical three level
75  * Linux page table layout folded) page tables as the i386.
76  */
77 
78 /*
79  * ZERO_PAGE is a global shared page that is always zero: used
80  * for zero-mapped memory areas etc..
81  */
82 extern unsigned char empty_zero_page[PAGE_SIZE];
83 #define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
84 
85 #endif /* !__ASSEMBLY__ */
86 
87 /*
88  * NEFF and NPHYS related defines.
89  * FIXME : These need to be model-dependent.  For now this is OK, SH5-101 and SH5-103
90  * implement 32 bits effective and 32 bits physical.  But future implementations may
91  * extend beyond this.
92  */
93 #define NEFF		32
94 #define	NEFF_SIGN	(1LL << (NEFF - 1))
95 #define	NEFF_MASK	(-1LL << NEFF)
96 
97 #define NPHYS		32
98 #define	NPHYS_SIGN	(1LL << (NPHYS - 1))
99 #define	NPHYS_MASK	(-1LL << NPHYS)
100 
101 /* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond
102    that 3-level would be appropriate. */
103 #if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
104 /* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */
105 #define PTRS_PER_PTE	((1<<PAGE_SHIFT)/sizeof(unsigned long long))
106 #define PTE_MAGNITUDE	3	      /* sizeof(unsigned long long) magnit. */
107 #define PTE_SHIFT	PAGE_SHIFT
108 #define PTE_BITS	(PAGE_SHIFT - PTE_MAGNITUDE)
109 
110 /* top level: PMD. */
111 #define PGDIR_SHIFT	(PTE_SHIFT + PTE_BITS)
112 #define PGD_BITS	(NEFF - PGDIR_SHIFT)
113 #define PTRS_PER_PGD	(1<<PGD_BITS)
114 
115 /* middle level: PMD. This doesn't do anything for the 2-level case. */
116 #define PTRS_PER_PMD	(1)
117 
118 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
119 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
120 #define PMD_SHIFT	PGDIR_SHIFT
121 #define PMD_SIZE	PGDIR_SIZE
122 #define PMD_MASK	PGDIR_MASK
123 
124 #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
125 /*
126  * three-level asymmetric paging structure: PGD is top level.
127  * The asymmetry comes from 32-bit pointers and 64-bit PTEs.
128  */
129 /* bottom level: PTE. It's 9 bits = 512 pointers */
130 #define PTRS_PER_PTE	((1<<PAGE_SHIFT)/sizeof(unsigned long long))
131 #define PTE_MAGNITUDE	3	      /* sizeof(unsigned long long) magnit. */
132 #define PTE_SHIFT	PAGE_SHIFT
133 #define PTE_BITS	(PAGE_SHIFT - PTE_MAGNITUDE)
134 
135 /* middle level: PMD. It's 10 bits = 1024 pointers */
136 #define PTRS_PER_PMD	((1<<PAGE_SHIFT)/sizeof(unsigned long long *))
137 #define PMD_MAGNITUDE	2	      /* sizeof(unsigned long long *) magnit. */
138 #define PMD_SHIFT	(PTE_SHIFT + PTE_BITS)
139 #define PMD_BITS	(PAGE_SHIFT - PMD_MAGNITUDE)
140 
141 /* top level: PMD. It's 1 bit = 2 pointers */
142 #define PGDIR_SHIFT	(PMD_SHIFT + PMD_BITS)
143 #define PGD_BITS	(NEFF - PGDIR_SHIFT)
144 #define PTRS_PER_PGD	(1<<PGD_BITS)
145 
146 #define PMD_SIZE	(1UL << PMD_SHIFT)
147 #define PMD_MASK	(~(PMD_SIZE-1))
148 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
149 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
150 
151 #else
152 #error "No defined number of page table levels"
153 #endif
154 
155 /*
156  * Error outputs.
157  */
158 #define pte_ERROR(e) \
159 	printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e))
160 #define pmd_ERROR(e) \
161 	printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
162 #define pgd_ERROR(e) \
163 	printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
164 
165 /*
166  * Table setting routines. Used within arch/mm only.
167  */
168 #define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)
169 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
170 
set_pte(pte_t * pteptr,pte_t pteval)171 static __inline__ void set_pte(pte_t *pteptr, pte_t pteval)
172 {
173 	unsigned long long x = ((unsigned long long) pteval.pte);
174 	unsigned long long *xp = (unsigned long long *) pteptr;
175 	/*
176 	 * Sign-extend based on NPHYS.
177 	 */
178 	*(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x;
179 }
180 
pmd_set(pmd_t * pmdp,pte_t * ptep)181 static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep)
182 {
183 	pmd_val(*pmdp) = (unsigned long) ptep;
184 }
185 
186 /*
187  * PGD defines. Top level.
188  */
189 
190 /* To find an entry in a generic PGD. */
191 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
192 #define __pgd_offset(address) pgd_index(address)
193 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
194 
195 /* To find an entry in a kernel PGD. */
196 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
197 
198 /*
199  * PGD level access routines.
200  *
201  * Note1:
202  * There's no need to use physical addresses since the tree walk is all
203  * in performed in software, until the PTE translation.
204  *
205  * Note 2:
206  * A PGD entry can be uninitialized (_PGD_UNUSED), generically bad,
207  * clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain
208  * _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must
209  * be 1. Assuming an arbitrary clear value of bit 31 set to 0 and
210  * lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a
211  * bad pgd that must be notified via printk().
212  *
213  */
214 #define _PGD_EMPTY		0x0
215 
216 #if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
pgd_none(pgd_t pgd)217 static inline int pgd_none(pgd_t pgd)		{ return 0; }
pgd_bad(pgd_t pgd)218 static inline int pgd_bad(pgd_t pgd)		{ return 0; }
pgd_present(pgd_t pgd)219 static inline int pgd_present(pgd_t pgd)	{ return 1; }
220 #define pgd_clear(xx)				do { } while(0)
221 
222 #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
223 #define pgd_present(pgd_entry)	(1)
224 #define pgd_none(pgd_entry)	(pgd_val((pgd_entry)) == _PGD_EMPTY)
225 /* TODO: Think later about what a useful definition of 'bad' would be now. */
226 #define pgd_bad(pgd_entry)	(0)
227 #define pgd_clear(pgd_entry_p)	(set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY)))
228 
229 #endif
230 
231 
232 #define pgd_page(pgd_entry)	((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK))
233 
234 /*
235  * PMD defines. Middle level.
236  */
237 
238 /* PGD to PMD dereferencing */
239 #if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
pmd_offset(pgd_t * dir,unsigned long address)240 static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
241 {
242 	return (pmd_t *) dir;
243 }
244 #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
245 #define __pmd_offset(address) \
246 		(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
247 #define pmd_offset(dir, addr) \
248 		((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr)))
249 #endif
250 
251 /*
252  * PMD level access routines. Same notes as above.
253  */
254 #define _PMD_EMPTY		0x0
255 /* Either the PMD is empty or present, it's not paged out */
256 #define pmd_present(pmd_entry)	(1)
257 #define pmd_clear(pmd_entry_p)	(set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY)))
258 #define pmd_none(pmd_entry)	(pmd_val((pmd_entry)) == _PMD_EMPTY)
259 /* TODO: Think later about what a useful definition of 'bad' would be now. */
260 #define pmd_bad(pmd_entry)	(0)
261 #define pmd_page(pmd_entry)	((unsigned long) (pmd_val(pmd_entry) & PAGE_MASK))
262 
263 /* PMD to PTE dereferencing */
264 #define __pte_offset(address) \
265 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
266 
267 #define pte_offset(dir, addr) \
268 		((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + __pte_offset((addr)))
269 
270 /* Round it up ! */
271 #define USER_PTRS_PER_PGD	((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE)
272 #define FIRST_USER_PGD_NR	0
273 
274 #ifndef __ASSEMBLY__
275 #define VMALLOC_END	0xff000000
276 #define VMALLOC_START	0xf0000000
277 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
278 
279 #define IOBASE_VADDR	0xff000000
280 #define IOBASE_END	0xffffffff
281 
282 /*
283  * PTEL coherent flags.
284  * See Chapter 17 ST50 CPU Core Volume 1, Architecture.
285  */
286 /* The bits that are required in the SH-5 TLB are placed in the h/w-defined
287    positions, to avoid expensive bit shuffling on every refill.  The remaining
288    bits are used for s/w purposes and masked out on each refill.
289 
290    Note, the PTE slots are used to hold data of type swp_entry_t when a page is
291    swapped out.  Only the _PAGE_PRESENT flag is significant when the page is
292    swapped out, and it must be placed so that it doesn't overlap either the
293    type or offset fields of swp_entry_t.  For x86, offset is at [31:8] and type
294    at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t.  This
295    scheme doesn't map to SH-5 because bit [0] controls cacheability.  So bit
296    [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split
297    into 2 pieces.  That is handled by SWP_ENTRY and SWP_TYPE below. */
298 #define _PAGE_WT	0x001  /* CB0: if cacheable, 1->write-thru, 0->write-back */
299 #define _PAGE_DEVICE	0x001  /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */
300 #define _PAGE_CACHABLE	0x002  /* CB1: uncachable/cachable */
301 #define _PAGE_PRESENT	0x004  /* software: if allocated */
302 #define _PAGE_SIZE0	0x008  /* SZ0-bit : size of page */
303 #define _PAGE_SIZE1	0x010  /* SZ1-bit : size of page */
304 #define _PAGE_SHARED	0x020  /* software: reflects PTEH's SH */
305 #define _PAGE_READ	0x040  /* PR0-bit : read access allowed */
306 #define _PAGE_EXECUTE	0x080  /* PR1-bit : execute access allowed */
307 #define _PAGE_WRITE	0x100  /* PR2-bit : write access allowed */
308 #define _PAGE_USER	0x200  /* PR3-bit : user space access allowed */
309 #define _PAGE_DIRTY	0x400  /* software: page accessed in write */
310 #define _PAGE_ACCESSED	0x800  /* software: page referenced */
311 
312 /* Mask which drops software flags */
313 #define _PAGE_FLAGS_HARDWARE_MASK	0xfffffffffffff3dbLL
314 /* Flags default: 4KB, Read, Not write, Not execute, Not user */
315 #define _PAGE_FLAGS_HARDWARE_DEFAULT	0x0000000000000040LL
316 
317 /*
318  * Default flags for a Kernel page.
319  * This is fundametally also SHARED because the main use of this define
320  * (other than for PGD/PMD entries) is for the VMALLOC pool which is
321  * contextless.
322  *
323  * _PAGE_EXECUTE is required for modules
324  *
325  */
326 #define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
327 			 _PAGE_EXECUTE | \
328 			 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \
329 			 _PAGE_SHARED)
330 
331 /* Default flags for a User page */
332 #define _PAGE_TABLE	(_KERNPG_TABLE | _PAGE_USER)
333 
334 #define _PAGE_CHG_MASK	(PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
335 
336 #define PAGE_NONE	__pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED)
337 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
338 				 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \
339 				 _PAGE_SHARED)
340 /* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default
341  * protection mode for the stack. */
342 #define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
343 				 _PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE)
344 #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
345 				 _PAGE_ACCESSED | _PAGE_USER)
346 #define PAGE_KERNEL	__pgprot(_KERNPG_TABLE)
347 
348 
349 /*
350  * In ST50 we have full permissions (Read/Write/Execute/Shared).
351  * Just match'em all. These are for mmap(), therefore all at least
352  * User/Cachable/Present/Accessed. No point in making Fault on Write.
353  */
354 #define __MMAP_COMMON	(_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED)
355        /* sxwr */
356 #define __P000	__pgprot(__MMAP_COMMON)
357 #define __P001	__pgprot(__MMAP_COMMON | _PAGE_READ)
358 #define __P010	__pgprot(__MMAP_COMMON)
359 #define __P011	__pgprot(__MMAP_COMMON | _PAGE_READ)
360 #define __P100	__pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
361 #define __P101	__pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
362 #define __P110	__pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
363 #define __P111	__pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
364 
365 #define __S000	__pgprot(__MMAP_COMMON | _PAGE_SHARED)
366 #define __S001	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ)
367 #define __S010	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE)
368 #define __S011	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE)
369 #define __S100	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE)
370 #define __S101	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ)
371 #define __S110	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE)
372 #define __S111	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE)
373 
374 /* Make it a device mapping for maximum safety (e.g. for mapping device
375    registers into user-space via /dev/map).  */
376 #define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE)
377 
378 /*
379  * Handling allocation failures during page table setup.
380  */
381 extern void __handle_bad_pmd_kernel(pmd_t * pmd);
382 #define __handle_bad_pmd(x)	__handle_bad_pmd_kernel(x)
383 
384 /*
385  * PTE level access routines.
386  *
387  * Note1:
388  * It's the tree walk leaf. This is physical address to be stored.
389  *
390  * Note 2:
391  * Regarding the choice of _PTE_EMPTY:
392 
393    We must choose a bit pattern that cannot be valid, whether or not the page
394    is present.  bit[2]==1 => present, bit[2]==0 => swapped out.  If swapped
395    out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is
396    left for us to select.  If we force bit[7]==0 when swapped out, we could use
397    the combination bit[7,2]=2'b10 to indicate an empty PTE.  Alternatively, if
398    we force bit[7]==1 when swapped out, we can use all zeroes to indicate
399    empty.  This is convenient, because the page tables get cleared to zero
400    when they are allocated.
401 
402  */
403 #define _PTE_EMPTY	0x0
404 #define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
405 #define pte_clear(xp)	(set_pte(xp, __pte(_PTE_EMPTY)))
406 #define pte_none(x)	(pte_val(x) == _PTE_EMPTY)
407 
408 /*
409  * Some definitions to translate between mem_map, PTEs, and page
410  * addresses:
411  */
412 
413 /*
414  * Given a PTE, return the index of the mem_map[] entry corresponding
415  * to the page frame the PTE. Get the absolute physical address, make
416  * a relative physical address and translate it to an index.
417  */
418 #define pte_pagenr(x)		(((unsigned long) (pte_val(x)) - \
419 				 __MEMORY_START) >> PAGE_SHIFT)
420 
421 /*
422  * Given a PTE, return the "struct page *".
423  */
424 #define pte_page(x)		(mem_map + pte_pagenr(x))
425 
426 /*
427  * Return number of (down rounded) MB corresponding to x pages.
428  */
429 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
430 
431 
432 /*
433  * The following have defined behavior only work if pte_present() is true.
434  */
pte_read(pte_t pte)435 extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
pte_exec(pte_t pte)436 extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXECUTE; }
pte_dirty(pte_t pte)437 extern inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)438 extern inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; }
pte_write(pte_t pte)439 extern inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; }
440 
pte_rdprotect(pte_t pte)441 extern inline pte_t pte_rdprotect(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_READ)); return pte; }
pte_wrprotect(pte_t pte)442 extern inline pte_t pte_wrprotect(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; }
pte_exprotect(pte_t pte)443 extern inline pte_t pte_exprotect(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_EXECUTE)); return pte; }
pte_mkclean(pte_t pte)444 extern inline pte_t pte_mkclean(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
pte_mkold(pte_t pte)445 extern inline pte_t pte_mkold(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
446 
pte_mkread(pte_t pte)447 extern inline pte_t pte_mkread(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_READ)); return pte; }
pte_mkwrite(pte_t pte)448 extern inline pte_t pte_mkwrite(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; }
pte_mkexec(pte_t pte)449 extern inline pte_t pte_mkexec(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_EXECUTE)); return pte; }
pte_mkdirty(pte_t pte)450 extern inline pte_t pte_mkdirty(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
pte_mkyoung(pte_t pte)451 extern inline pte_t pte_mkyoung(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
452 
453 /*
454  * Conversion functions: convert a page and protection to a page entry.
455  *
456  * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
457  */
458 #define mk_pte(page,pgprot)							\
459 ({										\
460 	pte_t __pte;								\
461 										\
462 	set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | 		\
463 		__MEMORY_START | pgprot_val((pgprot))));			\
464 	__pte;									\
465 })
466 
467 /*
468  * This takes a (absolute) physical page address that is used
469  * by the remapping functions
470  */
471 #define mk_pte_phys(physpage, pgprot) \
472 ({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; })
473 
pte_modify(pte_t pte,pgprot_t newprot)474 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
475 { set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; }
476 
477 #define page_pte_prot(page, prot) mk_pte(page, prot)
478 #define page_pte(page) page_pte_prot(page, __pgprot(0))
479 
480 #define pte_same(A,B)        (pte_val(A) == pte_val(B))
481 
482 
483 extern void update_mmu_cache(struct vm_area_struct * vma,
484 			     unsigned long address, pte_t pte);
485 
486 
487 /* Swap-related things */
488 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
489 
490 /* Encode and de-code a swap entry */
491 #define SWP_TYPE(x)			(((x).val & 3) + (((x).val >> 1) & 0x3c))
492 #define SWP_OFFSET(x)			((x).val >> 8)
493 
494 /* Avoid bit 2 for type */
SWP_ENTRY(unsigned long type,unsigned long offset)495 static inline swp_entry_t SWP_ENTRY(unsigned long type, unsigned long offset)
496 {
497 	unsigned long result;
498 	/* Assert bit[7], to make swapped out page table entries distinct
499 	   from unused/uninitialised ones */
500 	result = (offset << 8) + 0x80 + ((type & 0x3c) << 1) + (type & 3);
501 	return (swp_entry_t) {result};
502 }
503 #define pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
504 #define swp_entry_to_pte(x)		((pte_t) { (x).val })
505 
506 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
507 #define PageSkip(page)		(0)
508 #define kern_addr_valid(addr)	(1)
509 
510 #define io_remap_page_range remap_page_range
511 #endif /* !__ASSEMBLY__ */
512 
513 /*
514  * No page table caches to initialise
515  */
516 #define pgtable_cache_init()    do { } while (0)
517 
518 /* This must be implemented for ptrace() */
519 #if 0
520 #define flush_icache_user_range(vma,pg,adr,len)      do { } while (0)
521 #endif
522 
523 
524 #endif /* __ASM_SH64_PGTABLE_H */
525