1 #ifndef __ASM_SH64_PGTABLE_H
2 #define __ASM_SH64_PGTABLE_H
3
4 /*
5 * This file is subject to the terms and conditions of the GNU General Public
6 * License. See the file "COPYING" in the main directory of this archive
7 * for more details.
8 *
9 * include/asm-sh64/pgtable.h
10 *
11 * Copyright (C) 2000, 2001 Paolo Alberelli
12 * Copyright (C) 2003 Paul Mundt
13 * Copyright (C) 2003 Richard Curnow
14 *
15 * This file contains the functions and defines necessary to modify and use
16 * the SuperH page table tree.
17 */
18
19 #ifndef __ASSEMBLY__
20 #include <asm/processor.h>
21 #include <asm/page.h>
22 #include <linux/threads.h>
23 #include <linux/config.h>
24
25 extern void paging_init(void);
26
27 extern void flush_cache_all(void);
28 extern void flush_cache_mm(struct mm_struct *mm);
29 extern void flush_cache_range(struct mm_struct *mm, unsigned long start,
30 unsigned long end);
31 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long addr);
32
33 extern void flush_page_to_ram(struct page *page);
34
35 extern void flush_icache_range(unsigned long start, unsigned long end);
36 extern void flush_icache_page(struct vm_area_struct *vma, struct page *pg);
37
38 extern void flush_dcache_page(struct page *pg);
39
40 extern void flush_cache_sigtramp(unsigned long start, unsigned long end);
41
42 #ifdef CONFIG_DCACHE_DISABLED
43
44 #define sh64_dcache_purge_sets(base,sets) do { } while (0)
45 #define sh64_dcache_purge_all() do { } while (0)
46 #define sh64_dcache_purge_kernel_range(start,end) do { } while (0)
47 #define sh64_dcache_purge_coloured_phy_page(addr,eaddr) do { } while (0)
48 #define sh64_dcache_purge_phy_page(pg) do { } while (0)
49 #define sh64_dcache_purge_virt_page(mm,eaddr) do { } while (0)
50 #define sh64_dcache_purge_user_page(mm,eaddr) do { } while (0)
51 #define sh64_dcache_purge_user_range(mm,start,end) do { } while (0)
52 #define sh64_dcache_wback_current_user_range(start,end) do { } while (0)
53
54 #define copy_user_page(to, from, addr) memcpy(to, from, PAGE_SIZE)
55 #define clear_user_page(to, addr) memset(to, 0, PAGE_SIZE)
56
57 #endif /* CONFIG_DCACHE_DISABLED */
58
59 #ifdef CONFIG_ICACHE_DISABLED
60
61 #define sh64_icache_inv_all() do { } while (0)
62 #define sh64_icache_inv_kernel_range(start,end) do { } while (0)
63 #define sh64_icache_inv_user_page(vma,eaddr) do { } while (0)
64 #define sh64_icache_inv_user_page_range(mm,start,end) do { } while (0)
65 #define sh64_icache_inv_user_small_range(mm,start,len) do { } while (0)
66 #define sh64_icache_inv_current_user_range(start,end) do { } while (0)
67
68 #endif /* CONFIG_ICACHE_DISABLED */
69
70 /* We provide our own get_unmapped_area to avoid cache synonym issue */
71 #define HAVE_ARCH_UNMAPPED_AREA
72
73 /*
74 * Basically we have the same two-level (which is the logical three level
75 * Linux page table layout folded) page tables as the i386.
76 */
77
78 /*
79 * ZERO_PAGE is a global shared page that is always zero: used
80 * for zero-mapped memory areas etc..
81 */
82 extern unsigned char empty_zero_page[PAGE_SIZE];
83 #define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
84
85 #endif /* !__ASSEMBLY__ */
86
87 /*
88 * NEFF and NPHYS related defines.
89 * FIXME : These need to be model-dependent. For now this is OK, SH5-101 and SH5-103
90 * implement 32 bits effective and 32 bits physical. But future implementations may
91 * extend beyond this.
92 */
93 #define NEFF 32
94 #define NEFF_SIGN (1LL << (NEFF - 1))
95 #define NEFF_MASK (-1LL << NEFF)
96
97 #define NPHYS 32
98 #define NPHYS_SIGN (1LL << (NPHYS - 1))
99 #define NPHYS_MASK (-1LL << NPHYS)
100
101 /* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond
102 that 3-level would be appropriate. */
103 #if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
104 /* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */
105 #define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long))
106 #define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */
107 #define PTE_SHIFT PAGE_SHIFT
108 #define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE)
109
110 /* top level: PMD. */
111 #define PGDIR_SHIFT (PTE_SHIFT + PTE_BITS)
112 #define PGD_BITS (NEFF - PGDIR_SHIFT)
113 #define PTRS_PER_PGD (1<<PGD_BITS)
114
115 /* middle level: PMD. This doesn't do anything for the 2-level case. */
116 #define PTRS_PER_PMD (1)
117
118 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
119 #define PGDIR_MASK (~(PGDIR_SIZE-1))
120 #define PMD_SHIFT PGDIR_SHIFT
121 #define PMD_SIZE PGDIR_SIZE
122 #define PMD_MASK PGDIR_MASK
123
124 #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
125 /*
126 * three-level asymmetric paging structure: PGD is top level.
127 * The asymmetry comes from 32-bit pointers and 64-bit PTEs.
128 */
129 /* bottom level: PTE. It's 9 bits = 512 pointers */
130 #define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long))
131 #define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */
132 #define PTE_SHIFT PAGE_SHIFT
133 #define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE)
134
135 /* middle level: PMD. It's 10 bits = 1024 pointers */
136 #define PTRS_PER_PMD ((1<<PAGE_SHIFT)/sizeof(unsigned long long *))
137 #define PMD_MAGNITUDE 2 /* sizeof(unsigned long long *) magnit. */
138 #define PMD_SHIFT (PTE_SHIFT + PTE_BITS)
139 #define PMD_BITS (PAGE_SHIFT - PMD_MAGNITUDE)
140
141 /* top level: PMD. It's 1 bit = 2 pointers */
142 #define PGDIR_SHIFT (PMD_SHIFT + PMD_BITS)
143 #define PGD_BITS (NEFF - PGDIR_SHIFT)
144 #define PTRS_PER_PGD (1<<PGD_BITS)
145
146 #define PMD_SIZE (1UL << PMD_SHIFT)
147 #define PMD_MASK (~(PMD_SIZE-1))
148 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
149 #define PGDIR_MASK (~(PGDIR_SIZE-1))
150
151 #else
152 #error "No defined number of page table levels"
153 #endif
154
155 /*
156 * Error outputs.
157 */
158 #define pte_ERROR(e) \
159 printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e))
160 #define pmd_ERROR(e) \
161 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
162 #define pgd_ERROR(e) \
163 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
164
165 /*
166 * Table setting routines. Used within arch/mm only.
167 */
168 #define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)
169 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
170
set_pte(pte_t * pteptr,pte_t pteval)171 static __inline__ void set_pte(pte_t *pteptr, pte_t pteval)
172 {
173 unsigned long long x = ((unsigned long long) pteval.pte);
174 unsigned long long *xp = (unsigned long long *) pteptr;
175 /*
176 * Sign-extend based on NPHYS.
177 */
178 *(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x;
179 }
180
pmd_set(pmd_t * pmdp,pte_t * ptep)181 static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep)
182 {
183 pmd_val(*pmdp) = (unsigned long) ptep;
184 }
185
186 /*
187 * PGD defines. Top level.
188 */
189
190 /* To find an entry in a generic PGD. */
191 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
192 #define __pgd_offset(address) pgd_index(address)
193 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
194
195 /* To find an entry in a kernel PGD. */
196 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
197
198 /*
199 * PGD level access routines.
200 *
201 * Note1:
202 * There's no need to use physical addresses since the tree walk is all
203 * in performed in software, until the PTE translation.
204 *
205 * Note 2:
206 * A PGD entry can be uninitialized (_PGD_UNUSED), generically bad,
207 * clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain
208 * _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must
209 * be 1. Assuming an arbitrary clear value of bit 31 set to 0 and
210 * lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a
211 * bad pgd that must be notified via printk().
212 *
213 */
214 #define _PGD_EMPTY 0x0
215
216 #if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
pgd_none(pgd_t pgd)217 static inline int pgd_none(pgd_t pgd) { return 0; }
pgd_bad(pgd_t pgd)218 static inline int pgd_bad(pgd_t pgd) { return 0; }
pgd_present(pgd_t pgd)219 static inline int pgd_present(pgd_t pgd) { return 1; }
220 #define pgd_clear(xx) do { } while(0)
221
222 #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
223 #define pgd_present(pgd_entry) (1)
224 #define pgd_none(pgd_entry) (pgd_val((pgd_entry)) == _PGD_EMPTY)
225 /* TODO: Think later about what a useful definition of 'bad' would be now. */
226 #define pgd_bad(pgd_entry) (0)
227 #define pgd_clear(pgd_entry_p) (set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY)))
228
229 #endif
230
231
232 #define pgd_page(pgd_entry) ((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK))
233
234 /*
235 * PMD defines. Middle level.
236 */
237
238 /* PGD to PMD dereferencing */
239 #if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
pmd_offset(pgd_t * dir,unsigned long address)240 static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
241 {
242 return (pmd_t *) dir;
243 }
244 #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
245 #define __pmd_offset(address) \
246 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
247 #define pmd_offset(dir, addr) \
248 ((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr)))
249 #endif
250
251 /*
252 * PMD level access routines. Same notes as above.
253 */
254 #define _PMD_EMPTY 0x0
255 /* Either the PMD is empty or present, it's not paged out */
256 #define pmd_present(pmd_entry) (1)
257 #define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY)))
258 #define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY)
259 /* TODO: Think later about what a useful definition of 'bad' would be now. */
260 #define pmd_bad(pmd_entry) (0)
261 #define pmd_page(pmd_entry) ((unsigned long) (pmd_val(pmd_entry) & PAGE_MASK))
262
263 /* PMD to PTE dereferencing */
264 #define __pte_offset(address) \
265 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
266
267 #define pte_offset(dir, addr) \
268 ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + __pte_offset((addr)))
269
270 /* Round it up ! */
271 #define USER_PTRS_PER_PGD ((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE)
272 #define FIRST_USER_PGD_NR 0
273
274 #ifndef __ASSEMBLY__
275 #define VMALLOC_END 0xff000000
276 #define VMALLOC_START 0xf0000000
277 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
278
279 #define IOBASE_VADDR 0xff000000
280 #define IOBASE_END 0xffffffff
281
282 /*
283 * PTEL coherent flags.
284 * See Chapter 17 ST50 CPU Core Volume 1, Architecture.
285 */
286 /* The bits that are required in the SH-5 TLB are placed in the h/w-defined
287 positions, to avoid expensive bit shuffling on every refill. The remaining
288 bits are used for s/w purposes and masked out on each refill.
289
290 Note, the PTE slots are used to hold data of type swp_entry_t when a page is
291 swapped out. Only the _PAGE_PRESENT flag is significant when the page is
292 swapped out, and it must be placed so that it doesn't overlap either the
293 type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type
294 at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This
295 scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit
296 [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split
297 into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */
298 #define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */
299 #define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */
300 #define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */
301 #define _PAGE_PRESENT 0x004 /* software: if allocated */
302 #define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */
303 #define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */
304 #define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */
305 #define _PAGE_READ 0x040 /* PR0-bit : read access allowed */
306 #define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */
307 #define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */
308 #define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */
309 #define _PAGE_DIRTY 0x400 /* software: page accessed in write */
310 #define _PAGE_ACCESSED 0x800 /* software: page referenced */
311
312 /* Mask which drops software flags */
313 #define _PAGE_FLAGS_HARDWARE_MASK 0xfffffffffffff3dbLL
314 /* Flags default: 4KB, Read, Not write, Not execute, Not user */
315 #define _PAGE_FLAGS_HARDWARE_DEFAULT 0x0000000000000040LL
316
317 /*
318 * Default flags for a Kernel page.
319 * This is fundametally also SHARED because the main use of this define
320 * (other than for PGD/PMD entries) is for the VMALLOC pool which is
321 * contextless.
322 *
323 * _PAGE_EXECUTE is required for modules
324 *
325 */
326 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
327 _PAGE_EXECUTE | \
328 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \
329 _PAGE_SHARED)
330
331 /* Default flags for a User page */
332 #define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER)
333
334 #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
335
336 #define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED)
337 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
338 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \
339 _PAGE_SHARED)
340 /* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default
341 * protection mode for the stack. */
342 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
343 _PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE)
344 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
345 _PAGE_ACCESSED | _PAGE_USER)
346 #define PAGE_KERNEL __pgprot(_KERNPG_TABLE)
347
348
349 /*
350 * In ST50 we have full permissions (Read/Write/Execute/Shared).
351 * Just match'em all. These are for mmap(), therefore all at least
352 * User/Cachable/Present/Accessed. No point in making Fault on Write.
353 */
354 #define __MMAP_COMMON (_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED)
355 /* sxwr */
356 #define __P000 __pgprot(__MMAP_COMMON)
357 #define __P001 __pgprot(__MMAP_COMMON | _PAGE_READ)
358 #define __P010 __pgprot(__MMAP_COMMON)
359 #define __P011 __pgprot(__MMAP_COMMON | _PAGE_READ)
360 #define __P100 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
361 #define __P101 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
362 #define __P110 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
363 #define __P111 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
364
365 #define __S000 __pgprot(__MMAP_COMMON | _PAGE_SHARED)
366 #define __S001 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ)
367 #define __S010 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE)
368 #define __S011 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE)
369 #define __S100 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE)
370 #define __S101 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ)
371 #define __S110 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE)
372 #define __S111 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE)
373
374 /* Make it a device mapping for maximum safety (e.g. for mapping device
375 registers into user-space via /dev/map). */
376 #define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE)
377
378 /*
379 * Handling allocation failures during page table setup.
380 */
381 extern void __handle_bad_pmd_kernel(pmd_t * pmd);
382 #define __handle_bad_pmd(x) __handle_bad_pmd_kernel(x)
383
384 /*
385 * PTE level access routines.
386 *
387 * Note1:
388 * It's the tree walk leaf. This is physical address to be stored.
389 *
390 * Note 2:
391 * Regarding the choice of _PTE_EMPTY:
392
393 We must choose a bit pattern that cannot be valid, whether or not the page
394 is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped
395 out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is
396 left for us to select. If we force bit[7]==0 when swapped out, we could use
397 the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if
398 we force bit[7]==1 when swapped out, we can use all zeroes to indicate
399 empty. This is convenient, because the page tables get cleared to zero
400 when they are allocated.
401
402 */
403 #define _PTE_EMPTY 0x0
404 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
405 #define pte_clear(xp) (set_pte(xp, __pte(_PTE_EMPTY)))
406 #define pte_none(x) (pte_val(x) == _PTE_EMPTY)
407
408 /*
409 * Some definitions to translate between mem_map, PTEs, and page
410 * addresses:
411 */
412
413 /*
414 * Given a PTE, return the index of the mem_map[] entry corresponding
415 * to the page frame the PTE. Get the absolute physical address, make
416 * a relative physical address and translate it to an index.
417 */
418 #define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \
419 __MEMORY_START) >> PAGE_SHIFT)
420
421 /*
422 * Given a PTE, return the "struct page *".
423 */
424 #define pte_page(x) (mem_map + pte_pagenr(x))
425
426 /*
427 * Return number of (down rounded) MB corresponding to x pages.
428 */
429 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
430
431
432 /*
433 * The following have defined behavior only work if pte_present() is true.
434 */
pte_read(pte_t pte)435 extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
pte_exec(pte_t pte)436 extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXECUTE; }
pte_dirty(pte_t pte)437 extern inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)438 extern inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; }
pte_write(pte_t pte)439 extern inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; }
440
pte_rdprotect(pte_t pte)441 extern inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_READ)); return pte; }
pte_wrprotect(pte_t pte)442 extern inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; }
pte_exprotect(pte_t pte)443 extern inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_EXECUTE)); return pte; }
pte_mkclean(pte_t pte)444 extern inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
pte_mkold(pte_t pte)445 extern inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
446
pte_mkread(pte_t pte)447 extern inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_READ)); return pte; }
pte_mkwrite(pte_t pte)448 extern inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; }
pte_mkexec(pte_t pte)449 extern inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_EXECUTE)); return pte; }
pte_mkdirty(pte_t pte)450 extern inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
pte_mkyoung(pte_t pte)451 extern inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
452
453 /*
454 * Conversion functions: convert a page and protection to a page entry.
455 *
456 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
457 */
458 #define mk_pte(page,pgprot) \
459 ({ \
460 pte_t __pte; \
461 \
462 set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \
463 __MEMORY_START | pgprot_val((pgprot)))); \
464 __pte; \
465 })
466
467 /*
468 * This takes a (absolute) physical page address that is used
469 * by the remapping functions
470 */
471 #define mk_pte_phys(physpage, pgprot) \
472 ({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; })
473
pte_modify(pte_t pte,pgprot_t newprot)474 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
475 { set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; }
476
477 #define page_pte_prot(page, prot) mk_pte(page, prot)
478 #define page_pte(page) page_pte_prot(page, __pgprot(0))
479
480 #define pte_same(A,B) (pte_val(A) == pte_val(B))
481
482
483 extern void update_mmu_cache(struct vm_area_struct * vma,
484 unsigned long address, pte_t pte);
485
486
487 /* Swap-related things */
488 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
489
490 /* Encode and de-code a swap entry */
491 #define SWP_TYPE(x) (((x).val & 3) + (((x).val >> 1) & 0x3c))
492 #define SWP_OFFSET(x) ((x).val >> 8)
493
494 /* Avoid bit 2 for type */
SWP_ENTRY(unsigned long type,unsigned long offset)495 static inline swp_entry_t SWP_ENTRY(unsigned long type, unsigned long offset)
496 {
497 unsigned long result;
498 /* Assert bit[7], to make swapped out page table entries distinct
499 from unused/uninitialised ones */
500 result = (offset << 8) + 0x80 + ((type & 0x3c) << 1) + (type & 3);
501 return (swp_entry_t) {result};
502 }
503 #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
504 #define swp_entry_to_pte(x) ((pte_t) { (x).val })
505
506 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
507 #define PageSkip(page) (0)
508 #define kern_addr_valid(addr) (1)
509
510 #define io_remap_page_range remap_page_range
511 #endif /* !__ASSEMBLY__ */
512
513 /*
514 * No page table caches to initialise
515 */
516 #define pgtable_cache_init() do { } while (0)
517
518 /* This must be implemented for ptrace() */
519 #if 0
520 #define flush_icache_user_range(vma,pg,adr,len) do { } while (0)
521 #endif
522
523
524 #endif /* __ASM_SH64_PGTABLE_H */
525