1 /*
2  *  include/asm-s390/pgtable.h
3  *
4  *  S390 64bit version
5  *    Copyright (C) 2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6  *    Author(s): Hartmut Penner (hp@de.ibm.com)
7  *               Ulrich Weigand (weigand@de.ibm.com)
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
9  *
10  *  Derived from "include/asm-i386/pgtable.h"
11  */
12 
13 #ifndef _ASM_S390_PGTABLE_H
14 #define _ASM_S390_PGTABLE_H
15 
16 /*
17  * The Linux memory management assumes a three-level page table setup. On
18  * the S390, we use that, but "fold" the mid level into the top-level page
19  * table, so that we physically have the same two-level page table as the
20  * S390 mmu expects.
21  *
22  * This file contains the functions and defines necessary to modify and use
23  * the S390 page table tree.
24  */
25 #ifndef __ASSEMBLY__
26 #include <asm/processor.h>
27 #include <linux/threads.h>
28 
29 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
30 extern void paging_init(void);
31 
32 /* Caches aren't brain-dead on S390. */
33 #define flush_cache_all()                       do { } while (0)
34 #define flush_cache_mm(mm)                      do { } while (0)
35 #define flush_cache_range(mm, start, end)       do { } while (0)
36 #define flush_cache_page(vma, vmaddr)           do { } while (0)
37 #define flush_page_to_ram(page)                 do { } while (0)
38 #define flush_dcache_page(page)			do { } while (0)
39 #define flush_icache_range(start, end)          do { } while (0)
40 #define flush_icache_page(vma,pg)               do { } while (0)
41 #define flush_icache_user_range(vma,pg,adr,len)	do { } while (0)
42 
43 /*
44  * The S390 doesn't have any external MMU info: the kernel page
45  * tables contain all the necessary information.
46  */
47 #define update_mmu_cache(vma, address, pte)     do { } while (0)
48 
49 /*
50  * ZERO_PAGE is a global shared page that is always zero: used
51  * for zero-mapped memory areas etc..
52  */
53 extern char empty_zero_page[PAGE_SIZE];
54 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
55 #endif /* !__ASSEMBLY__ */
56 
57 /*
58  * PMD_SHIFT determines the size of the area a second-level page
59  * table can map
60  */
61 #define PMD_SHIFT       21
62 #define PMD_SIZE        (1UL << PMD_SHIFT)
63 #define PMD_MASK        (~(PMD_SIZE-1))
64 
65 /* PGDIR_SHIFT determines what a third-level page table entry can map */
66 #define PGDIR_SHIFT     30
67 #define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
68 #define PGDIR_MASK      (~(PGDIR_SIZE-1))
69 
70 /*
71  * entries per page directory level: the S390 is two to five-level,
72  * currently we use a 3 level lookup
73  */
74 #define PTRS_PER_PTE    512
75 #define PTRS_PER_PMD    512
76 #define PTRS_PER_PGD    2048
77 
78 /*
79  * pgd entries used up by user/kernel:
80  */
81 #define USER_PTRS_PER_PGD  2048
82 #define USER_PGD_PTRS      2048
83 #define KERNEL_PGD_PTRS    2048
84 #define FIRST_USER_PGD_NR  0
85 
86 #define pte_ERROR(e) \
87 	printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
88 #define pmd_ERROR(e) \
89 	printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
90 #define pgd_ERROR(e) \
91 	printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
92 
93 #ifndef __ASSEMBLY__
94 /*
95  * Just any arbitrary offset to the start of the vmalloc VM area: the
96  * current 8MB value just means that there will be a 8MB "hole" after the
97  * physical memory until the kernel virtual memory starts.  That means that
98  * any out-of-bounds memory accesses will hopefully be caught.
99  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
100  * area for the same reason. ;)
101  */
102 #define VMALLOC_OFFSET  (8*1024*1024)
103 #define VMALLOC_START   (((unsigned long) high_memory + VMALLOC_OFFSET) \
104                          & ~(VMALLOC_OFFSET-1))
105 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
106 #define VMALLOC_END     (0x20000000000L)
107 
108 
109 /*
110  * A pagetable entry of S390 has following format:
111  * |                     PFRA                         |0IP0|  OS  |
112  * 0000000000111111111122222222223333333333444444444455555555556666
113  * 0123456789012345678901234567890123456789012345678901234567890123
114  *
115  * I Page-Invalid Bit:    Page is not available for address-translation
116  * P Page-Protection Bit: Store access not possible for page
117  *
118  * A segmenttable entry of S390 has following format:
119  * |        P-table origin                              |      TT
120  * 0000000000111111111122222222223333333333444444444455555555556666
121  * 0123456789012345678901234567890123456789012345678901234567890123
122  *
123  * I Segment-Invalid Bit:    Segment is not available for address-translation
124  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
125  * P Page-Protection Bit: Store access not possible for page
126  * TT Type 00
127  *
128  * A region table entry of S390 has following format:
129  * |        S-table origin                             |   TF  TTTL
130  * 0000000000111111111122222222223333333333444444444455555555556666
131  * 0123456789012345678901234567890123456789012345678901234567890123
132  *
133  * I Segment-Invalid Bit:    Segment is not available for address-translation
134  * TT Type 01
135  * TF
136  * TL Table lenght
137  *
138  * The regiontable origin of S390 has following format:
139  * |      region table origon                          |       DTTL
140  * 0000000000111111111122222222223333333333444444444455555555556666
141  * 0123456789012345678901234567890123456789012345678901234567890123
142  *
143  * X Space-Switch event:
144  * G Segment-Invalid Bit:
145  * P Private-Space Bit:
146  * S Storage-Alteration:
147  * R Real space
148  * TL Table-Length:
149  *
150  * A storage key has the following format:
151  * | ACC |F|R|C|0|
152  *  0   3 4 5 6 7
153  * ACC: access key
154  * F  : fetch protection bit
155  * R  : referenced bit
156  * C  : changed bit
157  */
158 
159 /* Bits in the page table entry */
160 #define _PAGE_PRESENT   0x001          /* Software                         */
161 #define _PAGE_ISCLEAN   0x004          /* Software                         */
162 #define _PAGE_RO        0x200          /* HW read-only                     */
163 #define _PAGE_INVALID   0x400          /* HW invalid                       */
164 
165 /* Bits in the segment table entry */
166 #define _PMD_ENTRY_INV	0x20		/* invalid segment table entry      */
167 #define _PMD_ENTRY	0x00
168 
169 /* Bits in the region third table entry */
170 #define _PGD_ENTRY_INV	0x20		/* region table entry invalid bit  */
171 #define _PGD_ENTRY_MASK 0x04		/* region third table entry mask   */
172 #define _PGD_ENTRY_LEN(x) ((x)&3)       /* region table length bits        */
173 #define _PGD_ENTRY_OFF(x) (((x)&3)<<6)  /* region table offset bits        */
174 
175 /*
176  * User and kernel page directory
177  */
178 #define _REGION_THIRD       0x4
179 #define _REGION_THIRD_LEN   0x1
180 #define _REGION_TABLE       (_REGION_THIRD|_REGION_THIRD_LEN|0x40|0x100)
181 #define _KERN_REGION_TABLE  (_REGION_THIRD|_REGION_THIRD_LEN)
182 
183 /* Bits in the storage key */
184 #define _PAGE_CHANGED    0x02          /* HW changed bit                   */
185 #define _PAGE_REFERENCED 0x04          /* HW referenced bit                */
186 
187 /*
188  * No mapping available
189  */
190 #define PAGE_INVALID	  __pgprot(_PAGE_INVALID)
191 #define PAGE_NONE_SHARED  __pgprot(_PAGE_PRESENT|_PAGE_INVALID)
192 #define PAGE_NONE_PRIVATE __pgprot(_PAGE_PRESENT|_PAGE_INVALID|_PAGE_ISCLEAN)
193 #define PAGE_RO_SHARED	  __pgprot(_PAGE_PRESENT|_PAGE_RO)
194 #define PAGE_RO_PRIVATE	  __pgprot(_PAGE_PRESENT|_PAGE_RO|_PAGE_ISCLEAN)
195 #define PAGE_COPY	  __pgprot(_PAGE_PRESENT|_PAGE_RO|_PAGE_ISCLEAN)
196 #define PAGE_SHARED	  __pgprot(_PAGE_PRESENT)
197 #define PAGE_KERNEL	  __pgprot(_PAGE_PRESENT)
198 
199 /*
200  * The S390 can't do page protection for execute, and considers that the
201  * same are read. Also, write permissions imply read permissions. This is
202  * the closest we can get..
203  */
204 #define __P000  PAGE_NONE_PRIVATE
205 #define __P001  PAGE_RO_PRIVATE
206 #define __P010  PAGE_COPY
207 #define __P011  PAGE_COPY
208 #define __P100  PAGE_RO_PRIVATE
209 #define __P101  PAGE_RO_PRIVATE
210 #define __P110  PAGE_COPY
211 #define __P111  PAGE_COPY
212 
213 #define __S000  PAGE_NONE_SHARED
214 #define __S001  PAGE_RO_SHARED
215 #define __S010  PAGE_SHARED
216 #define __S011  PAGE_SHARED
217 #define __S100  PAGE_RO_SHARED
218 #define __S101  PAGE_RO_SHARED
219 #define __S110  PAGE_SHARED
220 #define __S111  PAGE_SHARED
221 
222 /*
223  * Certain architectures need to do special things when PTEs
224  * within a page table are directly modified.  Thus, the following
225  * hook is made available.
226  */
set_pte(pte_t * pteptr,pte_t pteval)227 extern inline void set_pte(pte_t *pteptr, pte_t pteval)
228 {
229 	*pteptr = pteval;
230 }
231 
232 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
233 
234 /*
235  * pgd/pmd/pte query functions
236  */
__pgd_present(pgd_t * pgd)237 extern inline int __pgd_present(pgd_t *pgd)
238 {
239 	unsigned long addr = (unsigned long) pgd;
240 	unsigned long *pgd_slot = (unsigned long *) (addr & -8);
241 	unsigned long offset = (addr & 4) >> 1;
242 
243 	if (*pgd_slot & _PGD_ENTRY_INV)
244 		return 0;
245 	if ((*pgd_slot & _PGD_ENTRY_OFF(3)) > _PGD_ENTRY_OFF(offset))
246 		return 0;
247 	if ((*pgd_slot & _PGD_ENTRY_LEN(3)) < _PGD_ENTRY_LEN(offset))
248 		return 0;
249 	return 1;
250 }
251 #define pgd_present(pgd) __pgd_present(&(pgd))
252 
__pgd_none(pgd_t * pgd)253 extern inline int __pgd_none(pgd_t *pgd)
254 {
255 	return !__pgd_present(pgd);
256 }
257 #define pgd_none(pgd) __pgd_none(&(pgd))
258 
__pgd_bad(pgd_t * pgd)259 extern inline int __pgd_bad(pgd_t *pgd)
260 {
261 	unsigned long addr = (unsigned long) pgd;
262 	unsigned long *pgd_slot = (unsigned long *) (addr & -8);
263 
264 	return (*pgd_slot & (~PAGE_MASK & ~_PGD_ENTRY_INV & ~_PGD_ENTRY_MASK &
265 		             ~_PGD_ENTRY_LEN(3) & ~_PGD_ENTRY_OFF(3))) != 0;
266 }
267 #define pgd_bad(pgd) __pgd_bad(&(pgd))
268 
pmd_present(pmd_t pmd)269 extern inline int pmd_present(pmd_t pmd)
270 {
271 	return (pmd_val(pmd) & ~PAGE_MASK) == _PMD_ENTRY;
272 }
273 
pmd_none(pmd_t pmd)274 extern inline int pmd_none(pmd_t pmd)
275 {
276 	return pmd_val(pmd) & _PMD_ENTRY_INV;
277 }
278 
pmd_bad(pmd_t pmd)279 extern inline int pmd_bad(pmd_t pmd)
280 {
281 	return (pmd_val(pmd) & (~PAGE_MASK & ~_PMD_ENTRY_INV)) != _PMD_ENTRY;
282 }
283 
pte_present(pte_t pte)284 extern inline int pte_present(pte_t pte)
285 {
286 	return pte_val(pte) & _PAGE_PRESENT;
287 }
288 
pte_none(pte_t pte)289 extern inline int pte_none(pte_t pte)
290 {
291 	return ((pte_val(pte) &
292 		 (_PAGE_INVALID | _PAGE_RO | _PAGE_PRESENT)) == _PAGE_INVALID);
293 }
294 
295 #define pte_same(a,b)	(pte_val(a) == pte_val(b))
296 
297 /*
298  * query functions pte_write/pte_dirty/pte_young only work if
299  * pte_present() is true. Undefined behaviour if not..
300  */
pte_write(pte_t pte)301 extern inline int pte_write(pte_t pte)
302 {
303 	return (pte_val(pte) & _PAGE_RO) == 0;
304 }
305 
pte_dirty(pte_t pte)306 extern inline int pte_dirty(pte_t pte)
307 {
308 	int skey;
309 
310 	if (pte_val(pte) & _PAGE_ISCLEAN)
311 		return 0;
312 	asm volatile ("iske %0,%1" : "=d" (skey) : "a" (pte_val(pte)));
313 	return skey & _PAGE_CHANGED;
314 }
315 
pte_young(pte_t pte)316 extern inline int pte_young(pte_t pte)
317 {
318 	int skey;
319 
320 	asm volatile ("iske %0,%1" : "=d" (skey) : "a" (pte_val(pte)));
321 	return skey & _PAGE_REFERENCED;
322 }
323 
324 /*
325  * pgd/pmd/pte modification functions
326  */
pgd_clear(pgd_t * pgdp)327 extern inline void pgd_clear(pgd_t * pgdp)
328 {
329 	unsigned long addr = (unsigned long) pgdp;
330 	unsigned long *pgd_slot = (unsigned long *) (addr & -8);
331 	unsigned long offset = addr & 4;
332 
333 	if (*pgd_slot & _PGD_ENTRY_INV) {
334 		*pgd_slot = _PGD_ENTRY_INV;
335 		return;
336 	}
337 	if (offset == 0 && (*pgd_slot & _PGD_ENTRY_LEN(2)) != 0) {
338 		/* Clear lower pmd, upper pmd still used. */
339 		*pgd_slot = (*pgd_slot & PAGE_MASK) | _PGD_ENTRY_MASK |
340 			    _PGD_ENTRY_OFF(2) | _PGD_ENTRY_LEN(3);
341 		return;
342 	}
343 	if (offset == 4 && (*pgd_slot & _PGD_ENTRY_OFF(2)) == 0) {
344 		/* Clear upped pmd, lower pmd still used. */
345 		*pgd_slot = (*pgd_slot & PAGE_MASK) | _PGD_ENTRY_MASK |
346 			    _PGD_ENTRY_OFF(0) | _PGD_ENTRY_LEN(1);
347 		return;
348 	}
349 	*pgd_slot = _PGD_ENTRY_INV;
350 }
351 
pmd_clear(pmd_t * pmdp)352 extern inline void pmd_clear(pmd_t * pmdp)
353 {
354 	pmd_val(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY;
355 	pmd_val1(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY;
356 }
357 
pte_clear(pte_t * ptep)358 extern inline void pte_clear(pte_t *ptep)
359 {
360 	pte_val(*ptep) = _PAGE_INVALID;
361 }
362 
363 #define PTE_INIT(x) pte_clear(x)
364 
365 /*
366  * The following pte_modification functions only work if
367  * pte_present() is true. Undefined behaviour if not..
368  */
pte_modify(pte_t pte,pgprot_t newprot)369 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
370 {
371 	pte_val(pte) &= PAGE_MASK | _PAGE_ISCLEAN;
372 	pte_val(pte) |= pgprot_val(newprot) & ~_PAGE_ISCLEAN;
373 	return pte;
374 }
375 
pte_wrprotect(pte_t pte)376 extern inline pte_t pte_wrprotect(pte_t pte)
377 {
378 	pte_val(pte) |= _PAGE_RO;
379 	return pte;
380 }
381 
pte_mkwrite(pte_t pte)382 extern inline pte_t pte_mkwrite(pte_t pte)
383 {
384 	pte_val(pte) &= ~(_PAGE_RO | _PAGE_ISCLEAN);
385 	return pte;
386 }
387 
pte_mkclean(pte_t pte)388 extern inline pte_t pte_mkclean(pte_t pte)
389 {
390 	/* The only user of pte_mkclean is the fork() code.
391 	   We must *not* clear the *physical* page dirty bit
392 	   just because fork() wants to clear the dirty bit in
393 	   *one* of the page's mappings.  So we just do nothing. */
394 	return pte;
395 }
396 
pte_mkdirty(pte_t pte)397 extern inline pte_t pte_mkdirty(pte_t pte)
398 {
399 	/* We do not explicitly set the dirty bit because the
400 	 * sske instruction is slow. It is faster to let the
401 	 * next instruction set the dirty bit.
402 	 */
403 	pte_val(pte) &= ~_PAGE_ISCLEAN;
404 	return pte;
405 }
406 
pte_mkold(pte_t pte)407 extern inline pte_t pte_mkold(pte_t pte)
408 {
409 	asm volatile ("rrbe 0,%0" : : "a" (pte_val(pte)) : "cc" );
410 	return pte;
411 }
412 
pte_mkyoung(pte_t pte)413 extern inline pte_t pte_mkyoung(pte_t pte)
414 {
415 	/* To set the referenced bit we read the first word from the real
416 	 * page with a special instruction: load using real address (lura).
417 	 * Isn't S/390 a nice architecture ?! */
418 	asm volatile ("lura 0,%0" : : "a" (pte_val(pte) & PAGE_MASK) : "0" );
419 	return pte;
420 }
421 
ptep_test_and_clear_young(pte_t * ptep)422 static inline int ptep_test_and_clear_young(pte_t *ptep)
423 {
424 	int ccode;
425 
426 	asm volatile ("rrbe 0,%1\n\t"
427 		      "ipm  %0\n\t"
428 		      "srl  %0,28\n\t"
429 		      : "=d" (ccode) : "a" (pte_val(*ptep)) : "cc" );
430 	return ccode & 2;
431 }
432 
ptep_test_and_clear_dirty(pte_t * ptep)433 static inline int ptep_test_and_clear_dirty(pte_t *ptep)
434 {
435 	int skey;
436 
437 	if (pte_val(*ptep) & _PAGE_ISCLEAN)
438 		return 0;
439 	asm volatile ("iske %0,%1" : "=d" (skey) : "a" (*ptep));
440 	if ((skey & _PAGE_CHANGED) == 0)
441 		return 0;
442 	/* We can't clear the changed bit atomically. For now we
443          * clear (!) the page referenced bit. */
444 	asm volatile ("sske %0,%1"
445 	              : : "d" (0), "a" (*ptep));
446 	return 1;
447 }
448 
ptep_get_and_clear(pte_t * ptep)449 static inline pte_t ptep_get_and_clear(pte_t *ptep)
450 {
451 	pte_t pte = *ptep;
452 	pte_clear(ptep);
453 	return pte;
454 }
455 
ptep_set_wrprotect(pte_t * ptep)456 static inline void ptep_set_wrprotect(pte_t *ptep)
457 {
458 	pte_t old_pte = *ptep;
459 	set_pte(ptep, pte_wrprotect(old_pte));
460 }
461 
ptep_mkdirty(pte_t * ptep)462 static inline void ptep_mkdirty(pte_t *ptep)
463 {
464 	pte_mkdirty(*ptep);
465 }
466 
467 /*
468  * Conversion functions: convert a page and protection to a page entry,
469  * and a page entry and page directory to the page they refer to.
470  */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)471 extern inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
472 {
473 	pte_t __pte;
474 	pte_val(__pte) = physpage + pgprot_val(pgprot);
475 	return __pte;
476 }
477 
478 #define mk_pte(pg, pgprot)                                                \
479 ({                                                                        \
480 	struct page *__page = (pg);                                       \
481 	pgprot_t __pgprot = (pgprot);					  \
482 	unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT);  \
483 	pte_t __pte = mk_pte_phys(__physpage, __pgprot);                  \
484 	__pte;                                                            \
485 })
486 
487 #define SetPageUptodate(_page) \
488 	do {								  \
489 		struct page *__page = (_page);				  \
490 		if (!test_and_set_bit(PG_uptodate, &__page->flags))	  \
491 			asm volatile ("sske %0,%1" : : "d" (0),		  \
492 			      "a" (__pa((__page-mem_map) << PAGE_SHIFT)));\
493 	} while (0)
494 
495 #define pte_page(x) (mem_map+(unsigned long)((pte_val(x) >> PAGE_SHIFT)))
496 
497 #define pmd_page(pmd) \
498         ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
499 
500 /* to find an entry in a page-table-directory */
501 #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
502 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
503 
504 #define pgd_page(pgd) \
505         ((unsigned long) __va(__pgd_val(pgd) & PAGE_MASK))
506 
507 /* to find an entry in a kernel page-table-directory */
508 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
509 
510 /* Find an entry in the second-level page table.. */
511 #define pmd_offset(dir,addr) \
512 	((pmd_t *) pgd_page(dir) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
513 
514 /* Find an entry in the third-level page table.. */
515 #define pte_offset(dir,addr) \
516 	((pte_t *) pmd_page(*(dir)) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
517 
518 /*
519  * A page-table entry has some bits we have to treat in a special way.
520  * Bits 52 and bit 55 have to be zero, otherwise an specification
521  * exception will occur instead of a page translation exception. The
522  * specifiation exception has the bad habit not to store necessary
523  * information in the lowcore.
524  * Bit 53 and bit 54 are the page invalid bit and the page protection
525  * bit. We set both to indicate a swapped page.
526  * Bit 63 is used as the software page present bit. If a page is
527  * swapped this obviously has to be zero.
528  * This leaves the bits 0-51 and bits 56-62 to store type and offset.
529  * We use the 7 bits from 56-62 for the type and the 52 bits from 0-51
530  * for the offset.
531  * |                     offset                       |0110|type |0
532  * 0000000000111111111122222222223333333333444444444455555555556666
533  * 0123456789012345678901234567890123456789012345678901234567890123
534  */
mk_swap_pte(unsigned long type,unsigned long offset)535 extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
536 {
537 	pte_t pte;
538 	pte_val(pte) = (type << 1) | (offset << 12) | _PAGE_INVALID | _PAGE_RO;
539 	pte_val(pte) &= 0xfffffffffffff6fe;  /* better to be paranoid */
540 	return pte;
541 }
542 
543 #define SWP_TYPE(entry)		(((entry).val >> 1) & 0x3f)
544 #define SWP_OFFSET(entry)	((entry).val >> 12)
545 #define SWP_ENTRY(type,offset)	((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
546 
547 #define pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
548 #define swp_entry_to_pte(x)	((pte_t) { (x).val })
549 
550 #endif /* !__ASSEMBLY__ */
551 
552 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
553 #define PageSkip(page)          (0)
554 #define kern_addr_valid(addr)   (1)
555 
556 /*
557  * No page table caches to initialise
558  */
559 #define pgtable_cache_init()	do { } while (0)
560 
561 #endif /* _S390_PAGE_H */
562 
563