1 /*
2 * PowerPC64 atomic bit operations.
3 * Dave Engebretsen, Todd Inglett, Don Reed, Pat McCarthy, Peter Bergner,
4 * Anton Blanchard
5 *
6 * Originally taken from the 32b PPC code. Modified to use 64b values for
7 * the various counters & memory references.
8 *
9 * Bitops are odd when viewed on big-endian systems. They were designed
10 * on little endian so the size of the bitset doesn't matter (low order bytes
11 * come first) as long as the bit in question is valid.
12 *
13 * Bits are "tested" often using the C expression (val & (1<<nr)) so we do
14 * our best to stay compatible with that. The assumption is that val will
15 * be unsigned long for such tests. As such, we assume the bits are stored
16 * as an array of unsigned long (the usual case is a single unsigned long,
17 * of course). Here's an example bitset with bit numbering:
18 *
19 * |63..........0|127........64|195.......128|255.......196|
20 *
21 * This leads to a problem. If an int, short or char is passed as a bitset
22 * it will be a bad memory reference since we want to store in chunks
23 * of unsigned long (64 bits here) size.
24 *
25 * This program is free software; you can redistribute it and/or
26 * modify it under the terms of the GNU General Public License
27 * as published by the Free Software Foundation; either version
28 * 2 of the License, or (at your option) any later version.
29 */
30
31 #ifndef _PPC64_BITOPS_H
32 #define _PPC64_BITOPS_H
33
34 #ifdef __KERNEL__
35
36 #include <asm/memory.h>
37
38 /*
39 * clear_bit doesn't imply a memory barrier
40 */
41 #define smp_mb__before_clear_bit() smp_mb()
42 #define smp_mb__after_clear_bit() smp_mb()
43
test_bit(unsigned long nr,__const__ volatile void * addr)44 static __inline__ int test_bit(unsigned long nr, __const__ volatile void *addr)
45 {
46 return (1UL & (((__const__ long *) addr)[nr >> 6] >> (nr & 63)));
47 }
48
set_bit(unsigned long nr,volatile void * addr)49 static __inline__ void set_bit(unsigned long nr, volatile void *addr)
50 {
51 unsigned long old;
52 unsigned long mask = 1UL << (nr & 0x3f);
53 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
54
55 __asm__ __volatile__(
56 "1: ldarx %0,0,%3 # set_bit\n\
57 or %0,%0,%2\n\
58 stdcx. %0,0,%3\n\
59 bne- 1b"
60 : "=&r" (old), "=m" (*p)
61 : "r" (mask), "r" (p), "m" (*p)
62 : "cc");
63 }
64
clear_bit(unsigned long nr,volatile void * addr)65 static __inline__ void clear_bit(unsigned long nr, volatile void *addr)
66 {
67 unsigned long old;
68 unsigned long mask = 1UL << (nr & 0x3f);
69 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
70
71 __asm__ __volatile__(
72 "1: ldarx %0,0,%3 # clear_bit\n\
73 andc %0,%0,%2\n\
74 stdcx. %0,0,%3\n\
75 bne- 1b"
76 : "=&r" (old), "=m" (*p)
77 : "r" (mask), "r" (p), "m" (*p)
78 : "cc");
79 }
80
change_bit(unsigned long nr,volatile void * addr)81 static __inline__ void change_bit(unsigned long nr, volatile void *addr)
82 {
83 unsigned long old;
84 unsigned long mask = 1UL << (nr & 0x3f);
85 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
86
87 __asm__ __volatile__(
88 "1: ldarx %0,0,%3 # change_bit\n\
89 xor %0,%0,%2\n\
90 stdcx. %0,0,%3\n\
91 bne- 1b"
92 : "=&r" (old), "=m" (*p)
93 : "r" (mask), "r" (p), "m" (*p)
94 : "cc");
95 }
96
test_and_set_bit(unsigned long nr,volatile void * addr)97 static __inline__ int test_and_set_bit(unsigned long nr, volatile void *addr)
98 {
99 unsigned long old, t;
100 unsigned long mask = 1UL << (nr & 0x3f);
101 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
102
103 __asm__ __volatile__(
104 EIEIO_ON_SMP
105 "1: ldarx %0,0,%3 # test_and_set_bit\n\
106 or %1,%0,%2 \n\
107 stdcx. %1,0,%3 \n\
108 bne- 1b"
109 ISYNC_ON_SMP
110 : "=&r" (old), "=&r" (t)
111 : "r" (mask), "r" (p)
112 : "cc", "memory");
113
114 return (old & mask) != 0;
115 }
116
test_and_clear_bit(unsigned long nr,volatile void * addr)117 static __inline__ int test_and_clear_bit(unsigned long nr, volatile void *addr)
118 {
119 unsigned long old, t;
120 unsigned long mask = 1UL << (nr & 0x3f);
121 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
122
123 __asm__ __volatile__(
124 EIEIO_ON_SMP
125 "1: ldarx %0,0,%3 # test_and_clear_bit\n\
126 andc %1,%0,%2\n\
127 stdcx. %1,0,%3\n\
128 bne- 1b"
129 ISYNC_ON_SMP
130 : "=&r" (old), "=&r" (t)
131 : "r" (mask), "r" (p)
132 : "cc", "memory");
133
134 return (old & mask) != 0;
135 }
136
test_and_change_bit(unsigned long nr,volatile void * addr)137 static __inline__ int test_and_change_bit(unsigned long nr, volatile void *addr)
138 {
139 unsigned long old, t;
140 unsigned long mask = 1UL << (nr & 0x3f);
141 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
142
143 __asm__ __volatile__(
144 EIEIO_ON_SMP
145 "1: ldarx %0,0,%3 # test_and_change_bit\n\
146 xor %1,%0,%2\n\
147 stdcx. %1,0,%3\n\
148 bne- 1b"
149 ISYNC_ON_SMP
150 : "=&r" (old), "=&r" (t)
151 : "r" (mask), "r" (p)
152 : "cc", "memory");
153
154 return (old & mask) != 0;
155 }
156
157 /*
158 * non-atomic versions
159 */
__set_bit(unsigned long nr,volatile void * addr)160 static __inline__ void __set_bit(unsigned long nr, volatile void *addr)
161 {
162 unsigned long mask = 1UL << (nr & 0x3f);
163 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
164
165 *p |= mask;
166 }
167
__clear_bit(unsigned long nr,volatile void * addr)168 static __inline__ void __clear_bit(unsigned long nr, volatile void *addr)
169 {
170 unsigned long mask = 1UL << (nr & 0x3f);
171 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
172
173 *p &= ~mask;
174 }
175
__change_bit(unsigned long nr,volatile void * addr)176 static __inline__ void __change_bit(unsigned long nr, volatile void *addr)
177 {
178 unsigned long mask = 1UL << (nr & 0x3f);
179 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
180
181 *p ^= mask;
182 }
183
__test_and_set_bit(unsigned long nr,volatile void * addr)184 static __inline__ int __test_and_set_bit(unsigned long nr, volatile void *addr)
185 {
186 unsigned long mask = 1UL << (nr & 0x3f);
187 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
188 unsigned long old = *p;
189
190 *p = old | mask;
191 return (old & mask) != 0;
192 }
193
__test_and_clear_bit(unsigned long nr,volatile void * addr)194 static __inline__ int __test_and_clear_bit(unsigned long nr, volatile void *addr)
195 {
196 unsigned long mask = 1UL << (nr & 0x3f);
197 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
198 unsigned long old = *p;
199
200 *p = old & ~mask;
201 return (old & mask) != 0;
202 }
203
__test_and_change_bit(unsigned long nr,volatile void * addr)204 static __inline__ int __test_and_change_bit(unsigned long nr, volatile void *addr)
205 {
206 unsigned long mask = 1UL << (nr & 0x3f);
207 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
208 unsigned long old = *p;
209
210 *p = old ^ mask;
211 return (old & mask) != 0;
212 }
213
214 /*
215 * Return the zero-based bit position (from RIGHT TO LEFT, 63 -> 0) of the
216 * most significant (left-most) 1-bit in a double word.
217 */
__ilog2(unsigned long x)218 static __inline__ int __ilog2(unsigned long x)
219 {
220 int lz;
221
222 asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
223 return 63 - lz;
224 }
225
226 /* Return the zero-based bit position
227 * from RIGHT TO LEFT 63 --> 0
228 * of the most significant (left-most) 1-bit in an 8-byte area.
229 */
cnt_trailing_zeros(unsigned long mask)230 static __inline__ long cnt_trailing_zeros(unsigned long mask)
231 {
232 long cnt;
233
234 asm(
235 " addi %0,%1,-1 \n\
236 andc %0,%0,%1 \n\
237 cntlzd %0,%0 \n\
238 subfic %0,%0,64"
239 : "=r" (cnt)
240 : "r" (mask));
241 return cnt;
242 }
243
244
245 /*
246 * ffz = Find First Zero in word.
247 * Determines the bit position of the least significant (rightmost) 0 bit
248 * in the specified double word. The returned bit position will be zero-based,
249 * starting from the right side (63 - 0).
250 */
ffz(unsigned long x)251 static __inline__ unsigned long ffz(unsigned long x)
252 {
253 /* no zero exists anywhere in the 8 byte area. */
254 if ((x = ~x) == 0)
255 return 64;
256
257 /*
258 * Calculate the bit position of the least signficant '1' bit in x
259 * (since x has been changed this will actually be the least signficant
260 * '0' bit in * the original x). Note: (x & -x) gives us a mask that
261 * is the least significant * (RIGHT-most) 1-bit of the value in x.
262 */
263 return __ilog2(x & -x);
264 }
265
__ffs(unsigned long x)266 static __inline__ int __ffs(unsigned long x)
267 {
268 return __ilog2(x & -x);
269 }
270
271 /*
272 * ffs: find first bit set. This is defined the same way as
273 * the libc and compiler builtin ffs routines, therefore
274 * differs in spirit from the above ffz (man ffs).
275 */
ffs(int x)276 static __inline__ int ffs(int x)
277 {
278 unsigned long i = (unsigned long)x;
279 return __ilog2(i & -i) + 1;
280 }
281
282 /*
283 * fls: find last (most-significant) bit set.
284 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
285 */
286 #define fls(x) generic_fls(x)
287
288 /*
289 * hweightN: returns the hamming weight (i.e. the number
290 * of bits set) of a N-bit word
291 */
292 #define hweight32(x) generic_hweight32(x)
293 #define hweight16(x) generic_hweight16(x)
294 #define hweight8(x) generic_hweight8(x)
295
296 extern unsigned long find_next_zero_bit(unsigned long* addr, unsigned long size, unsigned long offset);
297 #define find_first_zero_bit(addr, size) \
298 find_next_zero_bit((addr), (size), 0)
299
300 extern unsigned long find_next_bit(unsigned long* addr, unsigned long size, unsigned long offset);
301 #define find_first_bit(addr, size) \
302 find_next_bit((addr), (size), 0)
303
304 extern unsigned long find_next_zero_le_bit(unsigned long *addr, unsigned long size, unsigned long offset);
305 #define find_first_zero_le_bit(addr, size) \
306 find_next_zero_le_bit((addr), (size), 0)
307
test_le_bit(unsigned long nr,__const__ unsigned long * addr)308 static __inline__ int test_le_bit(unsigned long nr, __const__ unsigned long * addr)
309 {
310 __const__ unsigned char *ADDR = (__const__ unsigned char *) addr;
311 return (ADDR[nr >> 3] >> (nr & 7)) & 1;
312 }
313
314 /*
315 * non-atomic versions
316 */
__set_le_bit(unsigned long nr,unsigned long * addr)317 static __inline__ void __set_le_bit(unsigned long nr, unsigned long *addr)
318 {
319 unsigned char *ADDR = (unsigned char *)addr;
320
321 ADDR += nr >> 3;
322 *ADDR |= 1 << (nr & 0x07);
323 }
324
__clear_le_bit(unsigned long nr,unsigned long * addr)325 static __inline__ void __clear_le_bit(unsigned long nr, unsigned long *addr)
326 {
327 unsigned char *ADDR = (unsigned char *)addr;
328
329 ADDR += nr >> 3;
330 *ADDR &= ~(1 << (nr & 0x07));
331 }
332
__test_and_set_le_bit(unsigned long nr,unsigned long * addr)333 static __inline__ int __test_and_set_le_bit(unsigned long nr, unsigned long *addr)
334 {
335 int mask, retval;
336 unsigned char *ADDR = (unsigned char *)addr;
337
338 ADDR += nr >> 3;
339 mask = 1 << (nr & 0x07);
340 retval = (mask & *ADDR) != 0;
341 *ADDR |= mask;
342 return retval;
343 }
344
__test_and_clear_le_bit(unsigned long nr,unsigned long * addr)345 static __inline__ int __test_and_clear_le_bit(unsigned long nr, unsigned long *addr)
346 {
347 int mask, retval;
348 unsigned char *ADDR = (unsigned char *)addr;
349
350 ADDR += nr >> 3;
351 mask = 1 << (nr & 0x07);
352 retval = (mask & *ADDR) != 0;
353 *ADDR &= ~mask;
354 return retval;
355 }
356
357 #define ext2_set_bit(nr,addr) \
358 __test_and_set_le_bit((nr),(unsigned long*)addr)
359 #define ext2_clear_bit(nr, addr) \
360 __test_and_clear_le_bit((nr),(unsigned long*)addr)
361 #define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr)
362 #define ext2_find_first_zero_bit(addr, size) \
363 find_first_zero_le_bit((unsigned long*)addr, size)
364 #define ext2_find_next_zero_bit(addr, size, off) \
365 find_next_zero_le_bit((unsigned long*)addr, size, off)
366
367 #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
368 #define minix_set_bit(nr,addr) set_bit(nr,addr)
369 #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
370 #define minix_test_bit(nr,addr) test_bit(nr,addr)
371 #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
372
373 #endif /* __KERNEL__ */
374 #endif /* _PPC64_BITOPS_H */
375