1 #ifdef __KERNEL__
2 #ifndef _PPC_PGTABLE_H
3 #define _PPC_PGTABLE_H
4 
5 #include <linux/config.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/sched.h>
9 #include <linux/threads.h>
10 #include <asm/processor.h>		/* For TASK_SIZE */
11 #include <asm/mmu.h>
12 #include <asm/page.h>
13 
14 extern void _tlbie(unsigned long address);
15 extern void _tlbia(void);
16 
17 #ifdef CONFIG_4xx
18 #ifdef CONFIG_PIN_TLB
19 /* When pinning entries on the 4xx, we have to use a software function
20  * to ensure we don't remove them since there isn't any hardware support
21  * for this.
22  */
23 #define __tlbia()	_tlbia()
24 #else
25 #define __tlbia()	asm volatile ("tlbia; sync" : : : "memory")
26 #endif
27 
local_flush_tlb_all(void)28 static inline void local_flush_tlb_all(void)
29 	{ __tlbia(); }
local_flush_tlb_mm(struct mm_struct * mm)30 static inline void local_flush_tlb_mm(struct mm_struct *mm)
31 	{ __tlbia(); }
local_flush_tlb_page(struct vm_area_struct * vma,unsigned long vmaddr)32 static inline void local_flush_tlb_page(struct vm_area_struct *vma,
33 				unsigned long vmaddr)
34 	{ _tlbie(vmaddr); }
local_flush_tlb_range(struct mm_struct * mm,unsigned long start,unsigned long end)35 static inline void local_flush_tlb_range(struct mm_struct *mm,
36 				unsigned long start, unsigned long end)
37 	{ __tlbia(); }
38 #define update_mmu_cache(vma, addr, pte)	do { } while (0)
39 
40 #elif defined(CONFIG_8xx)
41 #define __tlbia()	asm volatile ("tlbia; sync" : : : "memory")
42 
local_flush_tlb_all(void)43 static inline void local_flush_tlb_all(void)
44 	{ __tlbia(); }
local_flush_tlb_mm(struct mm_struct * mm)45 static inline void local_flush_tlb_mm(struct mm_struct *mm)
46 	{ __tlbia(); }
local_flush_tlb_page(struct vm_area_struct * vma,unsigned long vmaddr)47 static inline void local_flush_tlb_page(struct vm_area_struct *vma,
48 				unsigned long vmaddr)
49 	{ _tlbie(vmaddr); }
local_flush_tlb_range(struct mm_struct * mm,unsigned long start,unsigned long end)50 static inline void local_flush_tlb_range(struct mm_struct *mm,
51 				unsigned long start, unsigned long end)
52 	{ __tlbia(); }
53 #define update_mmu_cache(vma, addr, pte)	do { } while (0)
54 
55 #else	/* 6xx, 7xx, 7xxx cpus */
56 struct mm_struct;
57 struct vm_area_struct;
58 extern void local_flush_tlb_all(void);
59 extern void local_flush_tlb_mm(struct mm_struct *mm);
60 extern void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr);
61 extern void local_flush_tlb_range(struct mm_struct *mm, unsigned long start,
62 			    unsigned long end);
63 
64 /*
65  * This gets called at the end of handling a page fault, when
66  * the kernel has put a new PTE into the page table for the process.
67  * We use it to put a corresponding HPTE into the hash table
68  * ahead of time, instead of waiting for the inevitable extra
69  * hash-table miss exception.
70  */
71 extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
72 #endif
73 
74 #define flush_tlb_all local_flush_tlb_all
75 #define flush_tlb_mm local_flush_tlb_mm
76 #define flush_tlb_page local_flush_tlb_page
77 #define flush_tlb_range local_flush_tlb_range
78 
79 /*
80  * This is called in munmap when we have freed up some page-table
81  * pages.  We don't need to do anything here, there's nothing special
82  * about our page-table pages.  -- paulus
83  */
flush_tlb_pgtables(struct mm_struct * mm,unsigned long start,unsigned long end)84 static inline void flush_tlb_pgtables(struct mm_struct *mm,
85 				      unsigned long start, unsigned long end)
86 {
87 }
88 
89 /*
90  * No cache flushing is required when address mappings are
91  * changed, because the caches on PowerPCs are physically
92  * addressed.  -- paulus
93  * Also, when SMP we use the coherency (M) bit of the
94  * BATs and PTEs.  -- Cort
95  */
96 #define flush_cache_all()		do { } while (0)
97 #define flush_cache_mm(mm)		do { } while (0)
98 #define flush_cache_range(mm, a, b)	do { } while (0)
99 #define flush_cache_page(vma, p)	do { } while (0)
100 #define flush_page_to_ram(page)		do { } while (0)
101 
102 extern void flush_icache_user_range(struct vm_area_struct *vma,
103 		struct page *page, unsigned long addr, int len);
104 extern void flush_icache_range(unsigned long, unsigned long);
105 extern void __flush_dcache_icache(void *page_va);
106 extern void flush_dcache_page(struct page *page);
107 extern void flush_icache_page(struct vm_area_struct *vma, struct page *page);
108 
109 extern unsigned long va_to_phys(unsigned long address);
110 extern pte_t *va_to_pte(unsigned long address);
111 extern unsigned long ioremap_bot, ioremap_base;
112 extern unsigned long vmalloc_start;
113 
114 /* Start and end of the vmalloc area. */
115 #define VMALLOC_START	vmalloc_start
116 #define VMALLOC_END	ioremap_bot
117 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
118 
119 #endif /* __ASSEMBLY__ */
120 
121 /*
122  * The PowerPC MMU uses a hash table containing PTEs, together with
123  * a set of 16 segment registers (on 32-bit implementations), to define
124  * the virtual to physical address mapping.
125  *
126  * We use the hash table as an extended TLB, i.e. a cache of currently
127  * active mappings.  We maintain a two-level page table tree, much
128  * like that used by the i386, for the sake of the Linux memory
129  * management code.  Low-level assembler code in hashtable.S
130  * (procedure hash_page) is responsible for extracting ptes from the
131  * tree and putting them into the hash table when necessary, and
132  * updating the accessed and modified bits in the page table tree.
133  */
134 
135 /*
136  * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk.
137  * We also use the two level tables, but we can put the real bits in them
138  * needed for the TLB and tablewalk.  These definitions require Mx_CTR.PPM = 0,
139  * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1.  The level 2 descriptor has
140  * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit
141  * based upon user/super access.  The TLB does not have accessed nor write
142  * protect.  We assume that if the TLB get loaded with an entry it is
143  * accessed, and overload the changed bit for write protect.  We use
144  * two bits in the software pte that are supposed to be set to zero in
145  * the TLB entry (24 and 25) for these indicators.  Although the level 1
146  * descriptor contains the guarded and writethrough/copyback bits, we can
147  * set these at the page level since they get copied from the Mx_TWC
148  * register when the TLB entry is loaded.  We will use bit 27 for guard, since
149  * that is where it exists in the MD_TWC, and bit 26 for writethrough.
150  * These will get masked from the level 2 descriptor at TLB load time, and
151  * copied to the MD_TWC before it gets loaded.
152  * Large page sizes added.  We currently support two sizes, 4K and 8M.
153  * This also allows a TLB hander optimization because we can directly
154  * load the PMD into MD_TWC.  The 8M pages are only used for kernel
155  * mapping of well known areas.  The PMD (PGD) entries contain control
156  * flags in addition to the address, so care must be taken that the
157  * software no longer assumes these are only pointers.
158  */
159 
160 /*
161  * At present, all PowerPC 400-class processors share a similar TLB
162  * architecture. The instruction and data sides share a unified,
163  * 64-entry, fully-associative TLB which is maintained totally under
164  * software control. In addition, the instruction side has a
165  * hardware-managed, 4-entry, fully-associative TLB which serves as a
166  * first level to the shared TLB. These two TLBs are known as the UTLB
167  * and ITLB, respectively (see "mmu.h" for definitions).
168  */
169 
170 /*
171  * The normal case is that PTEs are 32-bits and we have a 1-page
172  * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
173  *
174  * For any >32-bit physical address platform, we can use the following
175  * two level page table layout where the pgdir is 8KB and the MS 13 bits
176  * are an index to the second level table.  The combined pgdir/pmd first
177  * level has 2048 entries and the second level has 512 64-bit PTE entries.
178  * -Matt
179  */
180 /* PMD_SHIFT determines the size of the area mapped by the PTE pages */
181 #define PMD_SHIFT	(PAGE_SHIFT + PTE_SHIFT)
182 #define PMD_SIZE	(1UL << PMD_SHIFT)
183 #define PMD_MASK	(~(PMD_SIZE-1))
184 
185 /* PGDIR_SHIFT determines what a top-level page table entry can map */
186 #define PGDIR_SHIFT	PMD_SHIFT
187 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
188 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
189 
190 /*
191  * entries per page directory level: our page-table tree is two-level, so
192  * we don't really have any PMD directory.
193  */
194 #define PTRS_PER_PTE	(1 << PTE_SHIFT)
195 #define PTRS_PER_PMD	1
196 #define PTRS_PER_PGD	(1 << (32 - PGDIR_SHIFT))
197 
198 #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
199 #define FIRST_USER_PGD_NR	0
200 
201 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
202 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
203 
204 #define pte_ERROR(e) \
205 	printk("%s:%d: bad pte "PTE_FMT".\n", __FILE__, __LINE__, pte_val(e))
206 #define pmd_ERROR(e) \
207 	printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
208 #define pgd_ERROR(e) \
209 	printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
210 
211 /*
212  * Bits in a linux-style PTE.  These match the bits in the
213  * (hardware-defined) PowerPC PTE as closely as possible.
214  */
215 
216 #if defined(CONFIG_40x)
217 
218 /* There are several potential gotchas here.  The 40x hardware TLBLO
219    field looks like this:
220 
221    0  1  2  3  4  ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
222    RPN.....................  0  0 EX WR ZSEL.......  W  I  M  G
223 
224    Where possible we make the Linux PTE bits match up with this
225 
226    - bits 20 and 21 must be cleared, because we use 4k pages (4xx can
227      support down to 1k pages), this is done in the TLBMiss exception
228      handler.
229    - We use only zones 0 (for kernel pages) and 1 (for user pages)
230      of the 16 available.  Bit 24-26 of the TLB are cleared in the TLB
231      miss handler.  Bit 27 is PAGE_USER, thus selecting the correct
232      zone.
233    - PRESENT *must* be in the bottom two bits because swap cache
234      entries use the top 30 bits.  Because 4xx doesn't support SMP
235      anyway, M is irrelevant so we borrow it for PAGE_PRESENT.  Bit 30
236      is cleared in the TLB miss handler before the TLB entry is loaded.
237    - All other bits of the PTE are loaded into TLBLO without
238      modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
239      software PTE bits.  We actually use use bits 21, 24, 25, and
240      30 respectively for the software bits: ACCESSED, DIRTY, RW, and
241      PRESENT.
242 */
243 
244 /* Definitions for 4xx embedded chips. */
245 #define	_PAGE_GUARDED	0x001	/* G: page is guarded from prefetch */
246 #define _PAGE_PRESENT	0x002	/* software: PTE contains a translation */
247 #define	_PAGE_NO_CACHE	0x004	/* I: caching is inhibited */
248 #define	_PAGE_WRITETHRU	0x008	/* W: caching is write-through */
249 #define	_PAGE_USER	0x010	/* matches one of the zone permission bits */
250 #define	_PAGE_RW	0x040	/* software: Writes permitted */
251 #define	_PAGE_DIRTY	0x080	/* software: dirty page */
252 #define _PAGE_HWWRITE	0x100	/* hardware: Dirty & RW, set in exception */
253 #define _PAGE_HWEXEC	0x200	/* hardware: EX permission */
254 #define _PAGE_ACCESSED	0x400	/* software: R: page referenced */
255 #define _PMD_PRESENT	PAGE_MASK
256 
257 #elif defined(CONFIG_44x)
258 /*
259  * Definitions for PPC44x
260  *
261  * Because of the 3 word TLB entries to support 36-bit addressing,
262  * the attribute are difficult to map in such a fashion that they
263  * are easily loaded during exception processing.  I decided to
264  * organize the entry so the ERPN is the only portion in the
265  * upper word of the PTE and the attribute bits below are packed
266  * in as sensibly as they can be in the area below a 4KB page size
267  * oriented RPN.  This at least makes it easy to load the RPN and
268  * ERPN fields in the TLB. -Matt
269  *
270  * Note that these bits preclude future use of a page size
271  * less than 4KB.
272  */
273 #define _PAGE_PRESENT	0x00000001		/* S: PTE valid */
274 #define	_PAGE_RW	0x00000002		/* S: Write permission */
275 #define	_PAGE_DIRTY	0x00000004		/* S: Page dirty */
276 #define _PAGE_ACCESSED	0x00000008		/* S: Page referenced */
277 #define _PAGE_HWWRITE	0x00000010		/* H: Dirty & RW */
278 #define _PAGE_HWEXEC	0x00000020		/* H: Execute permission */
279 #define	_PAGE_USER	0x00000040		/* S: User page */
280 #define	_PAGE_ENDIAN	0x00000080		/* H: E bit */
281 #define	_PAGE_GUARDED	0x00000100		/* H: G bit */
282 #define	_PAGE_COHERENT	0x00000200		/* H: M bit */
283 #define _PAGE_FILE	0x00000400		/* S: nonlinear file mapping */
284 #define	_PAGE_NO_CACHE	0x00000400		/* H: I bit */
285 #define	_PAGE_WRITETHRU	0x00000800		/* H: W bit */
286 
287 /* TODO: Add large page lowmem mapping support */
288 #define _PMD_PRESENT	PAGE_MASK
289 #define _PMD_PRESENT_MASK (PAGE_MASK)
290 #define _PMD_BAD	(~PAGE_MASK)
291 
292 /* ERPN in a PTE never gets cleared, ignore it */
293 #define _PTE_NONE_MASK 0xffffffff00000000ULL
294 
295 #elif defined(CONFIG_8xx)
296 /* Definitions for 8xx embedded chips. */
297 #define _PAGE_PRESENT	0x0001	/* Page is valid */
298 #define _PAGE_NO_CACHE	0x0002	/* I: cache inhibit */
299 #define _PAGE_SHARED	0x0004	/* No ASID (context) compare */
300 
301 /* These five software bits must be masked out when the entry is loaded
302  * into the TLB.
303  */
304 #define _PAGE_EXEC	0x0008	/* software: i-cache coherency required */
305 #define _PAGE_GUARDED	0x0010	/* software: guarded access */
306 #define _PAGE_DIRTY	0x0020	/* software: page changed */
307 #define _PAGE_RW	0x0040	/* software: user write access allowed */
308 #define _PAGE_ACCESSED	0x0080	/* software: page referenced */
309 
310 /* Setting any bits in the nibble with the follow two controls will
311  * require a TLB exception handler change.  It is assumed unused bits
312  * are always zero.
313  */
314 #define _PAGE_HWWRITE	0x0100	/* h/w write enable: never set in Linux PTE */
315 #define _PAGE_USER	0x0800	/* One of the PP bits, the other is USER&~RW */
316 
317 #define _PMD_PRESENT	PAGE_MASK
318 #define _PMD_PAGE_MASK	0x000c
319 #define _PMD_PAGE_8M	0x000c
320 
321 /*
322  * The 8xx TLB miss handler allegedly sets _PAGE_ACCESSED in the PTE
323  * for an address even if _PAGE_PRESENT is not set, as a performance
324  * optimization.  This is a bug if you ever want to use swap unless
325  * _PAGE_ACCESSED is 2, which it isn't, or unless you have 8xx-specific
326  * definitions for __swp_entry etc. below, which would be gross.
327  *  -- paulus
328  */
329 #define _PTE_NONE_MASK	_PAGE_ACCESSED
330 
331 #else /* CONFIG_6xx */
332 /* Definitions for 60x, 740/750, etc. */
333 #define _PAGE_PRESENT	0x001	/* software: pte contains a translation */
334 #define _PAGE_HASHPTE	0x002	/* hash_page has made an HPTE for this pte */
335 #define _PAGE_USER	0x004	/* usermode access allowed */
336 #define _PAGE_GUARDED	0x008	/* G: prohibit speculative access */
337 #define _PAGE_COHERENT	0x010	/* M: enforce memory coherence (SMP systems) */
338 #define _PAGE_NO_CACHE	0x020	/* I: cache inhibit */
339 #define _PAGE_WRITETHRU	0x040	/* W: cache write-through */
340 #define _PAGE_DIRTY	0x080	/* C: page changed */
341 #define _PAGE_ACCESSED	0x100	/* R: page referenced */
342 #define _PAGE_EXEC	0x200	/* software: i-cache coherency required */
343 #define _PAGE_RW	0x400	/* software: user write access allowed */
344 #define _PMD_PRESENT	PAGE_MASK
345 
346 #define _PTE_NONE_MASK	_PAGE_HASHPTE
347 
348 #endif
349 
350 /*
351  * Some bits are only used on some cpu families...
352  */
353 #ifndef _PAGE_HASHPTE
354 #define _PAGE_HASHPTE	0
355 #endif
356 #ifndef _PTE_NONE_MASK
357 #define _PTE_NONE_MASK	0
358 #endif
359 #ifndef _PAGE_SHARED
360 #define _PAGE_SHARED	0
361 #endif
362 #ifndef _PAGE_HWWRITE
363 #define _PAGE_HWWRITE	0
364 #endif
365 #ifndef _PAGE_HWEXEC
366 #define _PAGE_HWEXEC	0
367 #endif
368 #ifndef _PAGE_EXEC
369 #define _PAGE_EXEC	0
370 #endif
371 
372 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
373 
374 /*
375  * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
376  * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
377  * to have it in the Linux PTE, and in fact the bit could be reused for
378  * another purpose.  -- paulus.
379  */
380 #define _PAGE_BASE	_PAGE_PRESENT | _PAGE_ACCESSED
381 #define _PAGE_WRENABLE	_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE
382 
383 /*
384  * 44x wants _PAGE_GUARDED on all kernel pages for various reasons.
385  * Allegedly that doesn't hurt performance.  -- paulus
386  */
387 #ifdef CONFIG_44x
388 #define _PAGE_KERNEL	_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC | _PAGE_GUARDED
389 #else
390 #define _PAGE_KERNEL	_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC
391 #endif
392 
393 #define _PAGE_IO	_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED
394 
395 #define PAGE_NONE	__pgprot(_PAGE_BASE)
396 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER)
397 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
398 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
399 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
400 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER)
401 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
402 
403 #define PAGE_KERNEL	__pgprot(_PAGE_KERNEL)
404 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_SHARED)
405 #define PAGE_KERNEL_CI	__pgprot(_PAGE_IO)
406 
407 /*
408  * The PowerPC can only do execute protection on a segment (256MB) basis,
409  * not on a page basis.  So we consider execute permission the same as read.
410  * Also, write permissions imply read permissions.
411  * This is the closest we can get..
412  */
413 #define __P000	PAGE_NONE
414 #define __P001	PAGE_READONLY_X
415 #define __P010	PAGE_COPY
416 #define __P011	PAGE_COPY_X
417 #define __P100	PAGE_READONLY
418 #define __P101	PAGE_READONLY_X
419 #define __P110	PAGE_COPY
420 #define __P111	PAGE_COPY_X
421 
422 #define __S000	PAGE_NONE
423 #define __S001	PAGE_READONLY_X
424 #define __S010	PAGE_SHARED
425 #define __S011	PAGE_SHARED_X
426 #define __S100	PAGE_READONLY
427 #define __S101	PAGE_READONLY_X
428 #define __S110	PAGE_SHARED
429 #define __S111	PAGE_SHARED_X
430 
431 #ifndef __ASSEMBLY__
432 /*
433  * ZERO_PAGE is a global shared page that is always zero: used
434  * for zero-mapped memory areas etc..
435  */
436 extern unsigned long empty_zero_page[1024];
437 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
438 
439 #endif /* __ASSEMBLY__ */
440 
441 #define pte_none(pte)		((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
442 #define pte_present(pte)	(pte_val(pte) & _PAGE_PRESENT)
443 #define pte_clear(ptep)		do { set_pte((ptep), __pte(0)); } while (0)
444 
445 #define pmd_none(pmd)		(!pmd_val(pmd))
446 #define	pmd_bad(pmd)		((pmd_val(pmd) & _PMD_PRESENT) == 0)
447 #define	pmd_present(pmd)	((pmd_val(pmd) & _PMD_PRESENT) != 0)
448 #define	pmd_clear(pmdp)		do { pmd_val(*(pmdp)) = 0; } while (0)
449 
450 #define pte_page(x)		(mem_map+(unsigned long)((pte_val(x)-PPC_MEMSTART) >> PAGE_SHIFT))
451 
452 #ifndef __ASSEMBLY__
453 /*
454  * The "pgd_xxx()" functions here are trivial for a folded two-level
455  * setup: the pgd is never bad, and a pmd always exists (as it's folded
456  * into the pgd entry)
457  */
pgd_none(pgd_t pgd)458 static inline int pgd_none(pgd_t pgd)		{ return 0; }
pgd_bad(pgd_t pgd)459 static inline int pgd_bad(pgd_t pgd)		{ return 0; }
pgd_present(pgd_t pgd)460 static inline int pgd_present(pgd_t pgd)	{ return 1; }
461 #define pgd_clear(xp)				do { } while (0)
462 #define pgd_page(pgd) \
463 	((unsigned long) __va(pgd_val(pgd) & PAGE_MASK))
464 
465 /*
466  * The following only work if pte_present() is true.
467  * Undefined behaviour if not..
468  */
pte_read(pte_t pte)469 static inline int pte_read(pte_t pte)		{ return pte_val(pte) & _PAGE_USER; }
pte_write(pte_t pte)470 static inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_RW; }
pte_exec(pte_t pte)471 static inline int pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_EXEC; }
pte_dirty(pte_t pte)472 static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)473 static inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
474 
pte_uncache(pte_t pte)475 static inline void pte_uncache(pte_t pte)       { pte_val(pte) |= _PAGE_NO_CACHE; }
pte_cache(pte_t pte)476 static inline void pte_cache(pte_t pte)         { pte_val(pte) &= ~_PAGE_NO_CACHE; }
477 
pte_rdprotect(pte_t pte)478 static inline pte_t pte_rdprotect(pte_t pte) {
479 	pte_val(pte) &= ~_PAGE_USER; return pte; }
pte_wrprotect(pte_t pte)480 static inline pte_t pte_wrprotect(pte_t pte) {
481 	pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
pte_exprotect(pte_t pte)482 static inline pte_t pte_exprotect(pte_t pte) {
483 	pte_val(pte) &= ~_PAGE_EXEC; return pte; }
pte_mkclean(pte_t pte)484 static inline pte_t pte_mkclean(pte_t pte) {
485 	pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
pte_mkold(pte_t pte)486 static inline pte_t pte_mkold(pte_t pte) {
487 	pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
488 
pte_mkread(pte_t pte)489 static inline pte_t pte_mkread(pte_t pte) {
490 	pte_val(pte) |= _PAGE_USER; return pte; }
pte_mkexec(pte_t pte)491 static inline pte_t pte_mkexec(pte_t pte) {
492 	pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
pte_mkwrite(pte_t pte)493 static inline pte_t pte_mkwrite(pte_t pte) {
494 	pte_val(pte) |= _PAGE_RW; return pte; }
pte_mkdirty(pte_t pte)495 static inline pte_t pte_mkdirty(pte_t pte) {
496 	pte_val(pte) |= _PAGE_DIRTY; return pte; }
pte_mkyoung(pte_t pte)497 static inline pte_t pte_mkyoung(pte_t pte) {
498 	pte_val(pte) |= _PAGE_ACCESSED; return pte; }
499 
500 /*
501  * Conversion functions: convert a page and protection to a page entry,
502  * and a page entry and page directory to the page they refer to.
503  */
504 
mk_pte_phys(phys_addr_t physpage,pgprot_t pgprot)505 static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
506 {
507 	pte_t pte;
508 	pte_val(pte) = physpage | pgprot_val(pgprot);
509 	return pte;
510 }
511 
512 #define mk_pte(page,pgprot) \
513 ({									\
514 	pte_t pte;							\
515 	pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + PPC_MEMSTART) | pgprot_val(pgprot); \
516 	pte;							\
517 })
518 
pte_modify(pte_t pte,pgprot_t newprot)519 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
520 {
521 	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
522 	return pte;
523 }
524 
525 /*
526  * Atomic PTE updates.
527  *
528  * pte_update clears and sets bit atomically, and returns
529  * the old pte value.
530  * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
531  * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
532  */
pte_update(pte_t * p,unsigned long clr,unsigned long set)533 static inline unsigned long pte_update(pte_t *p, unsigned long clr,
534 				       unsigned long set)
535 {
536 	unsigned long old, tmp;
537 
538 	__asm__ __volatile__("\
539 1:	lwarx	%0,0,%3\n\
540 	andc	%1,%0,%4\n\
541 	or	%1,%1,%5\n"
542 	PPC405_ERR77(0,%3)
543 "	stwcx.	%1,0,%3\n\
544 	bne-	1b"
545 	: "=&r" (old), "=&r" (tmp), "=m" (*p)
546 	: "r" ((unsigned long)(p+1) - 4), "r" (clr), "r" (set), "m" (*p)
547 	: "cc" );
548 	return old;
549 }
550 
551 /*
552  * set_pte stores a linux PTE into the linux page table.
553  * On machines which use an MMU hash table we avoid changing the
554  * _PAGE_HASHPTE bit.
555  */
set_pte(pte_t * ptep,pte_t pte)556 static inline void set_pte(pte_t *ptep, pte_t pte)
557 {
558 #if _PAGE_HASHPTE != 0
559 	pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte) & ~_PAGE_HASHPTE);
560 #else
561 	*ptep = pte;
562 #endif
563 }
564 
ptep_test_and_clear_young(pte_t * ptep)565 static inline int ptep_test_and_clear_young(pte_t *ptep)
566 {
567 	return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
568 }
569 
ptep_test_and_clear_dirty(pte_t * ptep)570 static inline int ptep_test_and_clear_dirty(pte_t *ptep)
571 {
572 	return (pte_update(ptep, (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
573 }
574 
ptep_get_and_clear(pte_t * ptep)575 static inline pte_t ptep_get_and_clear(pte_t *ptep)
576 {
577 	return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
578 }
579 
ptep_set_wrprotect(pte_t * ptep)580 static inline void ptep_set_wrprotect(pte_t *ptep)
581 {
582 	pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
583 }
584 
ptep_mkdirty(pte_t * ptep)585 static inline void ptep_mkdirty(pte_t *ptep)
586 {
587 	pte_update(ptep, 0, _PAGE_DIRTY);
588 }
589 
590 #define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
591 
592 #define pmd_page(pmd)	(pmd_val(pmd) & PAGE_MASK)
593 
594 /* to find an entry in a kernel page-table-directory */
595 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
596 
597 /* to find an entry in a page-table-directory */
598 #define pgd_index(address)	 ((address) >> PGDIR_SHIFT)
599 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
600 
601 /* Find an entry in the second-level page table.. */
pmd_offset(pgd_t * dir,unsigned long address)602 static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
603 {
604 	return (pmd_t *) dir;
605 }
606 
607 /* Find an entry in the third-level page table.. */
pte_offset(pmd_t * dir,unsigned long address)608 static inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
609 {
610 	return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
611 }
612 
613 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
614 
615 extern void paging_init(void);
616 
617 /*
618  * When flushing the tlb entry for a page, we also need to flush the hash
619  * table entry.  flush_hash_page is assembler (for speed) in hashtable.S.
620  */
621 extern int flush_hash_page(unsigned context, unsigned long va, pte_t *ptep);
622 
623 /* Add an HPTE to the hash table */
624 extern void add_hash_page(unsigned context, unsigned long va, pte_t *ptep);
625 
626 /*
627  * Encode and decode a swap entry.
628  * Note that the bits we use in a PTE for representing a swap entry
629  * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
630  * (if used).  -- paulus
631  */
632 #define SWP_TYPE(entry)			((entry).val & 0x3f)
633 #define SWP_OFFSET(entry)		((entry).val >> 6)
634 #define SWP_ENTRY(type, offset)		((swp_entry_t) { (type) | ((offset) << 6) })
635 #define pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 2 })
636 #define swp_entry_to_pte(x)		((pte_t) { (x).val << 2 })
637 
638 /* CONFIG_APUS */
639 /* For virtual address to physical address conversion */
640 extern void cache_clear(__u32 addr, int length);
641 extern void cache_push(__u32 addr, int length);
642 extern int mm_end_of_chunk (unsigned long addr, int len);
643 extern unsigned long iopa(unsigned long addr);
644 extern unsigned long mm_ptov(unsigned long addr) __attribute__ ((const));
645 
646 /* Values for nocacheflag and cmode */
647 /* These are not used by the APUS kernel_map, but prevents
648    compilation errors. */
649 #define	IOMAP_FULL_CACHING	0
650 #define	IOMAP_NOCACHE_SER	1
651 #define	IOMAP_NOCACHE_NONSER	2
652 #define	IOMAP_NO_COPYBACK	3
653 
654 /*
655  * Map some physical address range into the kernel address space.
656  */
657 extern unsigned long kernel_map(unsigned long paddr, unsigned long size,
658 				int nocacheflag, unsigned long *memavailp );
659 
660 /*
661  * Set cache mode of (kernel space) address range.
662  */
663 extern void kernel_set_cachemode (unsigned long address, unsigned long size,
664                                  unsigned int cmode);
665 
666 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
667 #define kern_addr_valid(addr)	(1)
668 
669 #define io_remap_page_range remap_page_range
670 
671 /*
672  * No page table caches to initialise
673  */
674 #define pgtable_cache_init()	do { } while (0)
675 
676 #endif /* __ASSEMBLY__ */
677 #endif /* _PPC_PGTABLE_H */
678 #endif /* __KERNEL__ */
679