1 /*
2  * linux/include/asm/dma.h: Defines for using and allocating dma channels.
3  * Written by Hennus Bergman, 1992.
4  * High DMA channel support & info by Hannu Savolainen
5  * and John Boyd, Nov. 1992.
6  *
7  * NOTE: all this is true *only* for ISA/EISA expansions on Mips boards
8  * and can only be used for expansion cards. Onboard DMA controllers, such
9  * as the R4030 on Jazz boards behave totally different!
10  */
11 
12 #ifndef _ASM_DMA_H
13 #define _ASM_DMA_H
14 
15 #include <linux/config.h>
16 #include <asm/io.h>			/* need byte IO */
17 #include <linux/spinlock.h>		/* And spinlocks */
18 #include <linux/delay.h>
19 #include <asm/system.h>
20 
21 
22 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
23 #define dma_outb	outb_p
24 #else
25 #define dma_outb	outb
26 #endif
27 
28 #define dma_inb		inb
29 
30 /*
31  * NOTES about DMA transfers:
32  *
33  *  controller 1: channels 0-3, byte operations, ports 00-1F
34  *  controller 2: channels 4-7, word operations, ports C0-DF
35  *
36  *  - ALL registers are 8 bits only, regardless of transfer size
37  *  - channel 4 is not used - cascades 1 into 2.
38  *  - channels 0-3 are byte - addresses/counts are for physical bytes
39  *  - channels 5-7 are word - addresses/counts are for physical words
40  *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
41  *  - transfer count loaded to registers is 1 less than actual count
42  *  - controller 2 offsets are all even (2x offsets for controller 1)
43  *  - page registers for 5-7 don't use data bit 0, represent 128K pages
44  *  - page registers for 0-3 use bit 0, represent 64K pages
45  *
46  * DMA transfers are limited to the lower 16MB of _physical_ memory.
47  * Note that addresses loaded into registers must be _physical_ addresses,
48  * not logical addresses (which may differ if paging is active).
49  *
50  *  Address mapping for channels 0-3:
51  *
52  *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
53  *    |  ...  |   |  ... |   |  ... |
54  *    |  ...  |   |  ... |   |  ... |
55  *    |  ...  |   |  ... |   |  ... |
56  *   P7  ...  P0  A7 ... A0  A7 ... A0
57  * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
58  *
59  *  Address mapping for channels 5-7:
60  *
61  *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
62  *    |  ...  |   \   \   ... \  \  \  ... \  \
63  *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
64  *    |  ...  |     \   \   ... \  \  \  ... \
65  *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
66  * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
67  *
68  * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
69  * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
70  * the hardware level, so odd-byte transfers aren't possible).
71  *
72  * Transfer count (_not # bytes_) is limited to 64K, represented as actual
73  * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
74  * and up to 128K bytes may be transferred on channels 5-7 in one operation.
75  *
76  */
77 
78 #define MAX_DMA_CHANNELS	8
79 
80 /*
81  * The maximum address in KSEG0 that we can perform a DMA transfer to on this
82  * platform.  This describes only the PC style part of the DMA logic like on
83  * Deskstations or Acer PICA but not the much more versatile DMA logic used
84  * for the local devices on Acer PICA or Magnums.
85  */
86 #ifdef CONFIG_SGI_IP22
87 /* Horrible hack to have a correct DMA window on IP22 */
88 #include <asm/sgi/mc.h>
89 #define MAX_DMA_ADDRESS		(PAGE_OFFSET + SGIMC_SEG0_BADDR + 0x01000000)
90 #else
91 #define MAX_DMA_ADDRESS		(PAGE_OFFSET + 0x01000000)
92 #endif
93 
94 /* 8237 DMA controllers */
95 #define IO_DMA1_BASE	0x00	/* 8 bit slave DMA, channels 0..3 */
96 #define IO_DMA2_BASE	0xC0	/* 16 bit master DMA, ch 4(=slave input)..7 */
97 
98 /* DMA controller registers */
99 #define DMA1_CMD_REG		0x08	/* command register (w) */
100 #define DMA1_STAT_REG		0x08	/* status register (r) */
101 #define DMA1_REQ_REG            0x09    /* request register (w) */
102 #define DMA1_MASK_REG		0x0A	/* single-channel mask (w) */
103 #define DMA1_MODE_REG		0x0B	/* mode register (w) */
104 #define DMA1_CLEAR_FF_REG	0x0C	/* clear pointer flip-flop (w) */
105 #define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
106 #define DMA1_RESET_REG		0x0D	/* Master Clear (w) */
107 #define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
108 #define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
109 
110 #define DMA2_CMD_REG		0xD0	/* command register (w) */
111 #define DMA2_STAT_REG		0xD0	/* status register (r) */
112 #define DMA2_REQ_REG            0xD2    /* request register (w) */
113 #define DMA2_MASK_REG		0xD4	/* single-channel mask (w) */
114 #define DMA2_MODE_REG		0xD6	/* mode register (w) */
115 #define DMA2_CLEAR_FF_REG	0xD8	/* clear pointer flip-flop (w) */
116 #define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
117 #define DMA2_RESET_REG		0xDA	/* Master Clear (w) */
118 #define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
119 #define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
120 
121 #define DMA_ADDR_0              0x00    /* DMA address registers */
122 #define DMA_ADDR_1              0x02
123 #define DMA_ADDR_2              0x04
124 #define DMA_ADDR_3              0x06
125 #define DMA_ADDR_4              0xC0
126 #define DMA_ADDR_5              0xC4
127 #define DMA_ADDR_6              0xC8
128 #define DMA_ADDR_7              0xCC
129 
130 #define DMA_CNT_0               0x01    /* DMA count registers */
131 #define DMA_CNT_1               0x03
132 #define DMA_CNT_2               0x05
133 #define DMA_CNT_3               0x07
134 #define DMA_CNT_4               0xC2
135 #define DMA_CNT_5               0xC6
136 #define DMA_CNT_6               0xCA
137 #define DMA_CNT_7               0xCE
138 
139 #define DMA_PAGE_0              0x87    /* DMA page registers */
140 #define DMA_PAGE_1              0x83
141 #define DMA_PAGE_2              0x81
142 #define DMA_PAGE_3              0x82
143 #define DMA_PAGE_5              0x8B
144 #define DMA_PAGE_6              0x89
145 #define DMA_PAGE_7              0x8A
146 
147 #define DMA_MODE_READ	0x44	/* I/O to memory, no autoinit, increment, single mode */
148 #define DMA_MODE_WRITE	0x48	/* memory to I/O, no autoinit, increment, single mode */
149 #define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
150 
151 #define DMA_AUTOINIT	0x10
152 
153 extern spinlock_t  dma_spin_lock;
154 
claim_dma_lock(void)155 static __inline__ unsigned long claim_dma_lock(void)
156 {
157 	unsigned long flags;
158 	spin_lock_irqsave(&dma_spin_lock, flags);
159 	return flags;
160 }
161 
release_dma_lock(unsigned long flags)162 static __inline__ void release_dma_lock(unsigned long flags)
163 {
164 	spin_unlock_irqrestore(&dma_spin_lock, flags);
165 }
166 
167 /* enable/disable a specific DMA channel */
enable_dma(unsigned int dmanr)168 static __inline__ void enable_dma(unsigned int dmanr)
169 {
170 	if (dmanr<=3)
171 		dma_outb(dmanr,  DMA1_MASK_REG);
172 	else
173 		dma_outb(dmanr & 3,  DMA2_MASK_REG);
174 }
175 
disable_dma(unsigned int dmanr)176 static __inline__ void disable_dma(unsigned int dmanr)
177 {
178 	if (dmanr<=3)
179 		dma_outb(dmanr | 4,  DMA1_MASK_REG);
180 	else
181 		dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
182 }
183 
184 /* Clear the 'DMA Pointer Flip Flop'.
185  * Write 0 for LSB/MSB, 1 for MSB/LSB access.
186  * Use this once to initialize the FF to a known state.
187  * After that, keep track of it. :-)
188  * --- In order to do that, the DMA routines below should ---
189  * --- only be used while holding the DMA lock ! ---
190  */
clear_dma_ff(unsigned int dmanr)191 static __inline__ void clear_dma_ff(unsigned int dmanr)
192 {
193 	if (dmanr<=3)
194 		dma_outb(0,  DMA1_CLEAR_FF_REG);
195 	else
196 		dma_outb(0,  DMA2_CLEAR_FF_REG);
197 }
198 
199 /* set mode (above) for a specific DMA channel */
set_dma_mode(unsigned int dmanr,char mode)200 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
201 {
202 	if (dmanr<=3)
203 		dma_outb(mode | dmanr,  DMA1_MODE_REG);
204 	else
205 		dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
206 }
207 
208 /* Set only the page register bits of the transfer address.
209  * This is used for successive transfers when we know the contents of
210  * the lower 16 bits of the DMA current address register, but a 64k boundary
211  * may have been crossed.
212  */
set_dma_page(unsigned int dmanr,char pagenr)213 static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
214 {
215 	switch(dmanr) {
216 		case 0:
217 			dma_outb(pagenr, DMA_PAGE_0);
218 			break;
219 		case 1:
220 			dma_outb(pagenr, DMA_PAGE_1);
221 			break;
222 		case 2:
223 			dma_outb(pagenr, DMA_PAGE_2);
224 			break;
225 		case 3:
226 			dma_outb(pagenr, DMA_PAGE_3);
227 			break;
228 		case 5:
229 			dma_outb(pagenr & 0xfe, DMA_PAGE_5);
230 			break;
231 		case 6:
232 			dma_outb(pagenr & 0xfe, DMA_PAGE_6);
233 			break;
234 		case 7:
235 			dma_outb(pagenr & 0xfe, DMA_PAGE_7);
236 			break;
237 	}
238 }
239 
240 
241 /* Set transfer address & page bits for specific DMA channel.
242  * Assumes dma flipflop is clear.
243  */
set_dma_addr(unsigned int dmanr,unsigned int a)244 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
245 {
246 	set_dma_page(dmanr, a>>16);
247 	if (dmanr <= 3)  {
248 	    dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
249             dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
250 	}  else  {
251 	    dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
252 	    dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
253 	}
254 }
255 
256 
257 /* Set transfer size (max 64k for DMA0..3, 128k for DMA5..7) for
258  * a specific DMA channel.
259  * You must ensure the parameters are valid.
260  * NOTE: from a manual: "the number of transfers is one more
261  * than the initial word count"! This is taken into account.
262  * Assumes dma flip-flop is clear.
263  * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
264  */
set_dma_count(unsigned int dmanr,unsigned int count)265 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
266 {
267         count--;
268 	if (dmanr <= 3)  {
269 	    dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
270 	    dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
271         } else {
272 	    dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
273 	    dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
274         }
275 }
276 
277 
278 /* Get DMA residue count. After a DMA transfer, this
279  * should return zero. Reading this while a DMA transfer is
280  * still in progress will return unpredictable results.
281  * If called before the channel has been used, it may return 1.
282  * Otherwise, it returns the number of _bytes_ left to transfer.
283  *
284  * Assumes DMA flip-flop is clear.
285  */
get_dma_residue(unsigned int dmanr)286 static __inline__ int get_dma_residue(unsigned int dmanr)
287 {
288 	unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
289 					 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
290 
291 	/* using short to get 16-bit wrap around */
292 	unsigned short count;
293 
294 	count = 1 + dma_inb(io_port);
295 	count += dma_inb(io_port) << 8;
296 
297 	return (dmanr<=3)? count : (count<<1);
298 }
299 
300 
301 /* These are in kernel/dma.c: */
302 extern int request_dma(unsigned int dmanr, const char * device_id);	/* reserve a DMA channel */
303 extern void free_dma(unsigned int dmanr);	/* release it again */
304 
305 /* From PCI */
306 
307 #ifdef CONFIG_PCI
308 extern int isa_dma_bridge_buggy;
309 #else
310 #define isa_dma_bridge_buggy	(0)
311 #endif
312 
313 #endif /* _ASM_DMA_H */
314