1 /* CRIS pgtable.h - macros and functions to manipulate page tables
2  *
3  * HISTORY:
4  *
5  * $Log: pgtable.h,v $
6  * Revision 1.17  2002/12/02 08:14:08  starvik
7  * Merge of Linux 2.4.20
8  *
9  * Revision 1.16  2002/11/20 18:20:17  hp
10  * Make all static inline functions extern inline.
11  *
12  * Revision 1.15  2002/04/23 15:37:52  bjornw
13  * Removed page_address and added flush_icache_user_range
14  *
15  * Revision 1.14  2001/12/10 03:08:50  bjornw
16  * Added pgtable_cache_init dummy
17  *
18  * Revision 1.13  2001/11/12 18:05:38  pkj
19  * Added declaration of paging_init().
20  *
21  * Revision 1.12  2001/08/11 00:28:00  bjornw
22  * PAGE_CHG_MASK and PAGE_NONE had somewhat untraditional values
23  *
24  * Revision 1.11  2001/04/04 14:38:36  bjornw
25  * Removed bad_pagetable handling and the _kernel functions
26  *
27  * Revision 1.10  2001/03/23 07:46:42  starvik
28  * Corrected according to review remarks
29  *
30  * Revision 1.9  2000/11/22 14:57:53  bjornw
31  * * extern inline -> static inline
32  * * include asm-generic/pgtable.h
33  *
34  * Revision 1.8  2000/11/21 13:56:16  bjornw
35  * Use CONFIG_CRIS_LOW_MAP for the low VM map instead of explicit CPU type
36  *
37  * Revision 1.7  2000/10/06 15:05:32  bjornw
38  * VMALLOC area changed in memory mapping change
39  *
40  * Revision 1.6  2000/10/04 16:59:14  bjornw
41  * Changed comments
42  *
43  * Revision 1.5  2000/09/13 14:39:53  bjornw
44  * New macros
45  *
46  * Revision 1.4  2000/08/17 15:38:48  bjornw
47  * 2.4.0-test6 modifications:
48  *   * flush_dcache_page added
49  *   * MAP_NR removed
50  *   * virt_to_page added
51  *
52  * Plus some comments and type-clarifications.
53  *
54  * Revision 1.3  2000/08/15 16:33:35  bjornw
55  * pmd_bad should recognize both kernel and user page-tables
56  *
57  * Revision 1.2  2000/07/10 17:06:01  bjornw
58  * Fixed warnings
59  *
60  * Revision 1.1.1.1  2000/07/10 16:32:31  bjornw
61  * CRIS architecture, working draft
62  *
63  *
64  * Revision 1.11  2000/05/29 14:55:56  bjornw
65  * Small tweaks of pte_mk routines
66  *
67  * Revision 1.10  2000/01/27 01:49:06  bjornw
68  * * Ooops. The physical frame number in a PTE entry needs to point to the
69  *   DRAM directly, not to what the kernel thinks is DRAM (due to KSEG mapping).
70  *   Hence we need to strip bit 31 so 0xcXXXXXXX -> 0x4XXXXXXX.
71  *
72  * Revision 1.9  2000/01/26 16:25:50  bjornw
73  * Fixed PAGE_KERNEL bits
74  *
75  * Revision 1.8  2000/01/23 22:53:22  bjornw
76  * Correct flush_tlb_* macros and externs
77  *
78  * Revision 1.7  2000/01/18 16:22:55  bjornw
79  * Use PAGE_MASK instead of PFN_MASK.
80  *
81  * Revision 1.6  2000/01/17 02:42:53  bjornw
82  * Added the pmd_set macro.
83  *
84  * Revision 1.5  2000/01/16 19:53:42  bjornw
85  * Removed VMALLOC_OFFSET. Changed definitions of swapper_pg_dir and zero_page.
86  *
87  * Revision 1.4  2000/01/14 16:38:20  bjornw
88  * PAGE_DIRTY -> PAGE_SILENT_WRITE, removed PAGE_COW from PAGE_COPY.
89  *
90  * Revision 1.3  1999/12/04 20:12:21  bjornw
91  * * PTE bits have moved to asm/mmu.h
92  * * Fixed definitions of the higher level page protection bits
93  * * Added the pte_* functions, including dirty/accessed SW simulation
94  *   (these are exactly the same as for the MIPS port)
95  *
96  * Revision 1.2  1999/12/04 00:41:54  bjornw
97  * * Fixed page table offsets, sizes and shifts
98  * * Removed reference to i386 SMP stuff
99  * * Added stray comments about Linux/CRIS mm design
100  * * Include asm/mmu.h which will contain MMU details
101  *
102  * Revision 1.1  1999/12/03 15:04:02  bjornw
103  * Copied from include/asm-etrax100. For the new CRIS architecture.
104  */
105 
106 #ifndef _CRIS_PGTABLE_H
107 #define _CRIS_PGTABLE_H
108 
109 #include <linux/config.h>
110 #include <asm/mmu.h>
111 
112 /*
113  * The Linux memory management assumes a three-level page table setup. On
114  * CRIS, we use that, but "fold" the mid level into the top-level page
115  * table. Since the MMU TLB is software loaded through an interrupt, it
116  * supports any page table structure, so we could have used a three-level
117  * setup, but for the amounts of memory we normally use, a two-level is
118  * probably more efficient.
119  *
120  * This file contains the functions and defines necessary to modify and use
121  * the CRIS page table tree.
122  */
123 
124 extern void paging_init(void);
125 
126 /* The cache doesn't need to be flushed when TLB entries change because
127  * the cache is mapped to physical memory, not virtual memory
128  */
129 #define flush_cache_all()			do { } while (0)
130 #define flush_cache_mm(mm)			do { } while (0)
131 #define flush_cache_range(mm, start, end)	do { } while (0)
132 #define flush_cache_page(vma, vmaddr)		do { } while (0)
133 #define flush_page_to_ram(page)			do { } while (0)
134 #define flush_dcache_page(page)                 do { } while (0)
135 #define flush_icache_range(start, end)          do { } while (0)
136 #define flush_icache_page(vma,pg)               do { } while (0)
137 #define flush_icache_user_range(vma,pg,adr,len)	do { } while (0)
138 
139 /*
140  * TLB flushing (implemented in arch/cris/mm/tlb.c):
141  *
142  *  - flush_tlb() flushes the current mm struct TLBs
143  *  - flush_tlb_all() flushes all processes TLBs
144  *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
145  *  - flush_tlb_page(vma, vmaddr) flushes one page
146  *  - flush_tlb_range(mm, start, end) flushes a range of pages
147  *
148  */
149 
150 extern void flush_tlb_all(void);
151 extern void flush_tlb_mm(struct mm_struct *mm);
152 extern void flush_tlb_page(struct vm_area_struct *vma,
153 			   unsigned long addr);
154 extern void flush_tlb_range(struct mm_struct *mm,
155 			    unsigned long start,
156 			    unsigned long end);
157 
flush_tlb_pgtables(struct mm_struct * mm,unsigned long start,unsigned long end)158 extern inline void flush_tlb_pgtables(struct mm_struct *mm,
159                                       unsigned long start, unsigned long end)
160 {
161         /* CRIS does not keep any page table caches in TLB */
162 }
163 
164 
flush_tlb(void)165 extern inline void flush_tlb(void)
166 {
167 	flush_tlb_mm(current->mm);
168 }
169 
170 /* Certain architectures need to do special things when pte's
171  * within a page table are directly modified.  Thus, the following
172  * hook is made available.
173  */
174 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
175 #define set_pte_atomic(pteptr, pteval) ((*(pteptr)) = (pteval))
176 
177 /*
178  * (pmds are folded into pgds so this doesn't get actually called,
179  * but the define is needed for a generic inline function.)
180  */
181 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
182 #define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)
183 
184 /* PMD_SHIFT determines the size of the area a second-level page table can
185  * map. It is equal to the page size times the number of PTE's that fit in
186  * a PMD page. A PTE is 4-bytes in CRIS. Hence the following number.
187  */
188 
189 #define PMD_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT-2))
190 #define PMD_SIZE	(1UL << PMD_SHIFT)
191 #define PMD_MASK	(~(PMD_SIZE-1))
192 
193 /* PGDIR_SHIFT determines what a third-level page table entry can map.
194  * Since we fold into a two-level structure, this is the same as PMD_SHIFT.
195  */
196 
197 #define PGDIR_SHIFT	PMD_SHIFT
198 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
199 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
200 
201 /*
202  * entries per page directory level: we use a two-level, so
203  * we don't really have any PMD directory physically.
204  * pointers are 4 bytes so we can use the page size and
205  * divide it by 4 (shift by 2).
206  */
207 #define PTRS_PER_PTE	(1UL << (PAGE_SHIFT-2))
208 #define PTRS_PER_PMD	1
209 #define PTRS_PER_PGD	(1UL << (PAGE_SHIFT-2))
210 
211 /* calculate how many PGD entries a user-level program can use
212  * the first mappable virtual address is 0
213  * (TASK_SIZE is the maximum virtual address space)
214  */
215 
216 #define USER_PTRS_PER_PGD       (TASK_SIZE/PGDIR_SIZE)
217 #define FIRST_USER_PGD_NR       0
218 
219 /*
220  * Kernels own virtual memory area.
221  */
222 
223 #ifdef CONFIG_CRIS_LOW_MAP
224 #define VMALLOC_START     KSEG_7
225 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
226 #define VMALLOC_END       KSEG_8
227 #else
228 #define VMALLOC_START     KSEG_D
229 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
230 #define VMALLOC_END       KSEG_E
231 #endif
232 
233 /* Define some higher level generic page attributes. The PTE bits are
234  * defined in asm-cris/mmu.h, and these are just combinations of those.
235  */
236 
237 #define __READABLE      (_PAGE_READ | _PAGE_SILENT_READ | _PAGE_ACCESSED)
238 #define __WRITEABLE     (_PAGE_WRITE | _PAGE_SILENT_WRITE | _PAGE_MODIFIED)
239 
240 #define _PAGE_TABLE     (_PAGE_PRESENT | __READABLE | __WRITEABLE)
241 #define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_MODIFIED)
242 
243 #define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
244 #define PAGE_SHARED     __pgprot(_PAGE_PRESENT | __READABLE | _PAGE_WRITE | \
245 				 _PAGE_ACCESSED)
246 #define PAGE_COPY       __pgprot(_PAGE_PRESENT | __READABLE)  // | _PAGE_COW
247 #define PAGE_READONLY   __pgprot(_PAGE_PRESENT | __READABLE)
248 #define PAGE_KERNEL     __pgprot(_PAGE_GLOBAL | _PAGE_KERNEL | \
249 				 _PAGE_PRESENT | __READABLE | __WRITEABLE)
250 #define _KERNPG_TABLE   (_PAGE_TABLE | _PAGE_KERNEL)
251 
252 /*
253  * CRIS can't do page protection for execute, and considers read the same.
254  * Also, write permissions imply read permissions. This is the closest we can
255  * get..
256  */
257 
258 #define __P000	PAGE_NONE
259 #define __P001	PAGE_READONLY
260 #define __P010	PAGE_COPY
261 #define __P011	PAGE_COPY
262 #define __P100	PAGE_READONLY
263 #define __P101	PAGE_READONLY
264 #define __P110	PAGE_COPY
265 #define __P111	PAGE_COPY
266 
267 #define __S000	PAGE_NONE
268 #define __S001	PAGE_READONLY
269 #define __S010	PAGE_SHARED
270 #define __S011	PAGE_SHARED
271 #define __S100	PAGE_READONLY
272 #define __S101	PAGE_READONLY
273 #define __S110	PAGE_SHARED
274 #define __S111	PAGE_SHARED
275 
276 /* zero page used for uninitialized stuff */
277 extern unsigned long empty_zero_page;
278 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
279 
280 /* number of bits that fit into a memory pointer */
281 #define BITS_PER_PTR			(8*sizeof(unsigned long))
282 
283 /* to align the pointer to a pointer address */
284 #define PTR_MASK			(~(sizeof(void*)-1))
285 
286 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
287 /* 64-bit machines, beware!  SRB. */
288 #define SIZEOF_PTR_LOG2			2
289 
290 /* to find an entry in a page-table */
291 #define PAGE_PTR(address) \
292 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
293 
294 /* to set the page-dir */
295 #define SET_PAGE_DIR(tsk,pgdir)
296 
297 #define pte_none(x)	(!pte_val(x))
298 #define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
299 #define pte_clear(xp)	do { pte_val(*(xp)) = 0; } while (0)
300 
301 #define pmd_none(x)	(!pmd_val(x))
302 /* by removing the _PAGE_KERNEL bit from the comparision, the same pmd_bad
303  * works for both _PAGE_TABLE and _KERNPG_TABLE pmd entries.
304  */
305 #define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_KERNEL)) != _PAGE_TABLE)
306 #define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
307 #define pmd_clear(xp)	do { pmd_val(*(xp)) = 0; } while (0)
308 
309 /*
310  * The "pgd_xxx()" functions here are trivial for a folded two-level
311  * setup: the pgd is never bad, and a pmd always exists (as it's folded
312  * into the pgd entry)
313  */
pgd_none(pgd_t pgd)314 extern inline int pgd_none(pgd_t pgd)		{ return 0; }
pgd_bad(pgd_t pgd)315 extern inline int pgd_bad(pgd_t pgd)		{ return 0; }
pgd_present(pgd_t pgd)316 extern inline int pgd_present(pgd_t pgd)	{ return 1; }
pgd_clear(pgd_t * pgdp)317 extern inline void pgd_clear(pgd_t * pgdp)	{ }
318 
319 /*
320  * The following only work if pte_present() is true.
321  * Undefined behaviour if not..
322  */
323 
pte_read(pte_t pte)324 extern inline int pte_read(pte_t pte)           { return pte_val(pte) & _PAGE_READ; }
pte_write(pte_t pte)325 extern inline int pte_write(pte_t pte)          { return pte_val(pte) & _PAGE_WRITE; }
pte_exec(pte_t pte)326 extern inline int pte_exec(pte_t pte)           { return pte_val(pte) & _PAGE_READ; }
pte_dirty(pte_t pte)327 extern inline int pte_dirty(pte_t pte)          { return pte_val(pte) & _PAGE_MODIFIED; }
pte_young(pte_t pte)328 extern inline int pte_young(pte_t pte)          { return pte_val(pte) & _PAGE_ACCESSED; }
329 
pte_wrprotect(pte_t pte)330 extern inline pte_t pte_wrprotect(pte_t pte)
331 {
332         pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);
333         return pte;
334 }
335 
pte_rdprotect(pte_t pte)336 extern inline pte_t pte_rdprotect(pte_t pte)
337 {
338         pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ);
339 	return pte;
340 }
341 
pte_exprotect(pte_t pte)342 extern inline pte_t pte_exprotect(pte_t pte)
343 {
344         pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ);
345 	return pte;
346 }
347 
pte_mkclean(pte_t pte)348 extern inline pte_t pte_mkclean(pte_t pte)
349 {
350 	pte_val(pte) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE);
351 	return pte;
352 }
353 
pte_mkold(pte_t pte)354 extern inline pte_t pte_mkold(pte_t pte)
355 {
356 	pte_val(pte) &= ~(_PAGE_ACCESSED | _PAGE_SILENT_READ);
357 	return pte;
358 }
359 
pte_mkwrite(pte_t pte)360 extern inline pte_t pte_mkwrite(pte_t pte)
361 {
362         pte_val(pte) |= _PAGE_WRITE;
363         if (pte_val(pte) & _PAGE_MODIFIED)
364                 pte_val(pte) |= _PAGE_SILENT_WRITE;
365         return pte;
366 }
367 
pte_mkread(pte_t pte)368 extern inline pte_t pte_mkread(pte_t pte)
369 {
370         pte_val(pte) |= _PAGE_READ;
371         if (pte_val(pte) & _PAGE_ACCESSED)
372                 pte_val(pte) |= _PAGE_SILENT_READ;
373         return pte;
374 }
375 
pte_mkexec(pte_t pte)376 extern inline pte_t pte_mkexec(pte_t pte)
377 {
378         pte_val(pte) |= _PAGE_READ;
379         if (pte_val(pte) & _PAGE_ACCESSED)
380                 pte_val(pte) |= _PAGE_SILENT_READ;
381         return pte;
382 }
383 
pte_mkdirty(pte_t pte)384 extern inline pte_t pte_mkdirty(pte_t pte)
385 {
386         pte_val(pte) |= _PAGE_MODIFIED;
387         if (pte_val(pte) & _PAGE_WRITE)
388                 pte_val(pte) |= _PAGE_SILENT_WRITE;
389         return pte;
390 }
391 
pte_mkyoung(pte_t pte)392 extern inline pte_t pte_mkyoung(pte_t pte)
393 {
394         pte_val(pte) |= _PAGE_ACCESSED;
395         if (pte_val(pte) & _PAGE_READ)
396         {
397                 pte_val(pte) |= _PAGE_SILENT_READ;
398                 if ((pte_val(pte) & (_PAGE_WRITE | _PAGE_MODIFIED)) ==
399 		    (_PAGE_WRITE | _PAGE_MODIFIED))
400                         pte_val(pte) |= _PAGE_SILENT_WRITE;
401         }
402         return pte;
403 }
404 
405 /*
406  * Conversion functions: convert a page and protection to a page entry,
407  * and a page entry and page directory to the page they refer to.
408  */
409 
410 /* What actually goes as arguments to the various functions is less than
411  * obvious, but a rule of thumb is that struct page's goes as struct page *,
412  * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
413  * addresses (the 0xc0xxxxxx's) goes as void *'s.
414  */
415 
__mk_pte(void * page,pgprot_t pgprot)416 extern inline pte_t __mk_pte(void * page, pgprot_t pgprot)
417 {
418 	pte_t pte;
419 	/* the PTE needs a physical address */
420 	pte_val(pte) = __pa(page) | pgprot_val(pgprot);
421 	return pte;
422 }
423 
424 #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
425 
426 #define mk_pte_phys(physpage, pgprot) \
427 ({                                                                      \
428         pte_t __pte;                                                    \
429                                                                         \
430         pte_val(__pte) = (physpage) + pgprot_val(pgprot);               \
431         __pte;                                                          \
432 })
433 
pte_modify(pte_t pte,pgprot_t newprot)434 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
435 { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
436 
437 
438 /* pte_val refers to a page in the 0x4xxxxxxx physical DRAM interval
439  * __pte_page(pte_val) refers to the "virtual" DRAM interval
440  * pte_pagenr refers to the page-number counted starting from the virtual DRAM start
441  */
442 
__pte_page(pte_t pte)443 extern inline unsigned long __pte_page(pte_t pte)
444 {
445 	/* the PTE contains a physical address */
446 	return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
447 }
448 
449 #define pte_pagenr(pte)         ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
450 
451 /* permanent address of a page */
452 
453 #define __page_address(page)    (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
454 #define pte_page(pte)           (mem_map+pte_pagenr(pte))
455 
456 /* only the pte's themselves need to point to physical DRAM (see above)
457  * the pagetable links are purely handled within the kernel SW and thus
458  * don't need the __pa and __va transformations.
459  */
460 
pmd_page(pmd_t pmd)461 extern inline unsigned long pmd_page(pmd_t pmd)
462 { return pmd_val(pmd) & PAGE_MASK; }
463 
pmd_set(pmd_t * pmdp,pte_t * ptep)464 extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
465 { pmd_val(*pmdp) = _PAGE_TABLE | (unsigned long) ptep; }
466 
467 /* to find an entry in a page-table-directory. */
468 #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
469 
470 /* to find an entry in a page-table-directory */
pgd_offset(struct mm_struct * mm,unsigned long address)471 extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
472 {
473 	return mm->pgd + pgd_index(address);
474 }
475 
476 /* to find an entry in a kernel page-table-directory */
477 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
478 
479 /* Find an entry in the second-level page table.. */
pmd_offset(pgd_t * dir,unsigned long address)480 extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
481 {
482 	return (pmd_t *) dir;
483 }
484 
485 /* Find an entry in the third-level page table.. */
pte_offset(pmd_t * dir,unsigned long address)486 extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
487 {
488 	return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
489 }
490 
491 #define pte_ERROR(e) \
492         printk("%s:%d: bad pte %p(%08lx).\n", __FILE__, __LINE__, &(e), pte_val(e))
493 #define pmd_ERROR(e) \
494         printk("%s:%d: bad pmd %p(%08lx).\n", __FILE__, __LINE__, &(e), pmd_val(e))
495 #define pgd_ERROR(e) \
496         printk("%s:%d: bad pgd %p(%08lx).\n", __FILE__, __LINE__, &(e), pgd_val(e))
497 
498 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
499 
500 /*
501  * CRIS doesn't have any external MMU info: the kernel page
502  * tables contain all the necessary information.
503  *
504  * Actually I am not sure on what this could be used for.
505  */
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t pte)506 extern inline void update_mmu_cache(struct vm_area_struct * vma,
507 	unsigned long address, pte_t pte)
508 {
509 }
510 
511 /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
512 /* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
513 
514 #define SWP_TYPE(x)                     (((x).val >> 5) & 0x7f)
515 #define SWP_OFFSET(x)                   ((x).val >> 12)
516 #define SWP_ENTRY(type, offset)         ((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
517 #define pte_to_swp_entry(pte)           ((swp_entry_t) { pte_val(pte) })
518 #define swp_entry_to_pte(x)             ((pte_t) { (x).val })
519 
520 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
521 #define PageSkip(page)          (0)
522 #define kern_addr_valid(addr)   (1)
523 
524 #include <asm-generic/pgtable.h>
525 
526 /*
527  * No page table caches to initialise
528  */
529 #define pgtable_cache_init()   do { } while (0)
530 
531 #endif /* _CRIS_PGTABLE_H */
532