1 /*
2  * Copyright (c) 2000-2003 Silicon Graphics, Inc.  All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11  *
12  * Further, this software is distributed without any warranty that it is
13  * free of the rightful claim of any third person regarding infringement
14  * or the like.  Any license provided herein, whether implied or
15  * otherwise, applies only to this software file.  Patent licenses, if
16  * any, provided herein do not apply to combinations of this program with
17  * other software, or any other product whatsoever.
18  *
19  * You should have received a copy of the GNU General Public License along
20  * with this program; if not, write the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22  *
23  * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24  * Mountain View, CA  94043, or:
25  *
26  * http://www.sgi.com
27  *
28  * For further information regarding this notice, see:
29  *
30  * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31  */
32 
33 #include "xfs.h"
34 #include "xfs_macros.h"
35 #include "xfs_types.h"
36 #include "xfs_inum.h"
37 #include "xfs_log.h"
38 #include "xfs_trans.h"
39 #include "xfs_trans_priv.h"
40 #include "xfs_sb.h"
41 #include "xfs_ag.h"
42 #include "xfs_dir.h"
43 #include "xfs_dir2.h"
44 #include "xfs_dmapi.h"
45 #include "xfs_mount.h"
46 #include "xfs_alloc_btree.h"
47 #include "xfs_bmap_btree.h"
48 #include "xfs_ialloc_btree.h"
49 #include "xfs_btree.h"
50 #include "xfs_imap.h"
51 #include "xfs_alloc.h"
52 #include "xfs_ialloc.h"
53 #include "xfs_attr_sf.h"
54 #include "xfs_dir_sf.h"
55 #include "xfs_dir2_sf.h"
56 #include "xfs_dinode.h"
57 #include "xfs_inode_item.h"
58 #include "xfs_inode.h"
59 #include "xfs_bmap.h"
60 #include "xfs_buf_item.h"
61 #include "xfs_rw.h"
62 #include "xfs_error.h"
63 #include "xfs_bit.h"
64 #include "xfs_utils.h"
65 #include "xfs_dir2_trace.h"
66 #include "xfs_quota.h"
67 #include "xfs_mac.h"
68 #include "xfs_acl.h"
69 
70 
71 kmem_zone_t *xfs_ifork_zone;
72 kmem_zone_t *xfs_inode_zone;
73 kmem_zone_t *xfs_chashlist_zone;
74 
75 /*
76  * Used in xfs_itruncate().  This is the maximum number of extents
77  * freed from a file in a single transaction.
78  */
79 #define	XFS_ITRUNC_MAX_EXTENTS	2
80 
81 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
82 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
83 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
84 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
85 
86 
87 #ifdef DEBUG
88 /*
89  * Make sure that the extents in the given memory buffer
90  * are valid.
91  */
92 STATIC void
xfs_validate_extents(xfs_bmbt_rec_t * ep,int nrecs,int disk,xfs_exntfmt_t fmt)93 xfs_validate_extents(
94 	xfs_bmbt_rec_t		*ep,
95 	int			nrecs,
96 	int			disk,
97 	xfs_exntfmt_t		fmt)
98 {
99 	xfs_bmbt_irec_t		irec;
100 	xfs_bmbt_rec_t		rec;
101 	int			i;
102 
103 	for (i = 0; i < nrecs; i++) {
104 		rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
105 		rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
106 		if (disk)
107 			xfs_bmbt_disk_get_all(&rec, &irec);
108 		else
109 			xfs_bmbt_get_all(&rec, &irec);
110 		if (fmt == XFS_EXTFMT_NOSTATE)
111 			ASSERT(irec.br_state == XFS_EXT_NORM);
112 		ep++;
113 	}
114 }
115 #else /* DEBUG */
116 #define xfs_validate_extents(ep, nrecs, disk, fmt)
117 #endif /* DEBUG */
118 
119 /*
120  * Check that none of the inode's in the buffer have a next
121  * unlinked field of 0.
122  */
123 #if defined(DEBUG)
124 void
xfs_inobp_check(xfs_mount_t * mp,xfs_buf_t * bp)125 xfs_inobp_check(
126 	xfs_mount_t	*mp,
127 	xfs_buf_t	*bp)
128 {
129 	int		i;
130 	int		j;
131 	xfs_dinode_t	*dip;
132 
133 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
134 
135 	for (i = 0; i < j; i++) {
136 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
137 					i * mp->m_sb.sb_inodesize);
138 		if (INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT))  {
139 			xfs_fs_cmn_err(CE_ALERT, mp,
140 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
141 				bp);
142 			ASSERT(!INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT));
143 		}
144 	}
145 }
146 #endif
147 
148 /*
149  * called from bwrite on xfs inode buffers
150  */
151 void
xfs_inobp_bwcheck(xfs_buf_t * bp)152 xfs_inobp_bwcheck(xfs_buf_t *bp)
153 {
154 	xfs_mount_t	*mp;
155 	int		i;
156 	int		j;
157 	xfs_dinode_t	*dip;
158 
159 	ASSERT(XFS_BUF_FSPRIVATE3(bp, void *) != NULL);
160 
161 	mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *);
162 
163 
164 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
165 
166 	for (i = 0; i < j; i++)  {
167 		dip = (xfs_dinode_t *) xfs_buf_offset(bp,
168 						i * mp->m_sb.sb_inodesize);
169 		if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
170 			cmn_err(CE_WARN,
171 "Bad magic # 0x%x in XFS inode buffer 0x%Lx, starting blockno %Ld, offset 0x%x",
172 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
173 				(__uint64_t)(__psunsigned_t) bp,
174 				(__int64_t) XFS_BUF_ADDR(bp),
175 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
176 			xfs_fs_cmn_err(CE_WARN, mp,
177 				"corrupt, unmount and run xfs_repair");
178 		}
179 		if (INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT))  {
180 			cmn_err(CE_WARN,
181 "Bad next_unlinked field (0) in XFS inode buffer 0x%p, starting blockno %Ld, offset 0x%x",
182 				(__uint64_t)(__psunsigned_t) bp,
183 				(__int64_t) XFS_BUF_ADDR(bp),
184 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
185 			xfs_fs_cmn_err(CE_WARN, mp,
186 				"corrupt, unmount and run xfs_repair");
187 		}
188 	}
189 
190 	return;
191 }
192 
193 /*
194  * This routine is called to map an inode number within a file
195  * system to the buffer containing the on-disk version of the
196  * inode.  It returns a pointer to the buffer containing the
197  * on-disk inode in the bpp parameter, and in the dip parameter
198  * it returns a pointer to the on-disk inode within that buffer.
199  *
200  * If a non-zero error is returned, then the contents of bpp and
201  * dipp are undefined.
202  *
203  * Use xfs_imap() to determine the size and location of the
204  * buffer to read from disk.
205  */
206 int
xfs_inotobp(xfs_mount_t * mp,xfs_trans_t * tp,xfs_ino_t ino,xfs_dinode_t ** dipp,xfs_buf_t ** bpp,int * offset)207 xfs_inotobp(
208 	xfs_mount_t	*mp,
209 	xfs_trans_t	*tp,
210 	xfs_ino_t	ino,
211 	xfs_dinode_t	**dipp,
212 	xfs_buf_t	**bpp,
213 	int		*offset)
214 {
215 	int		di_ok;
216 	xfs_imap_t	imap;
217 	xfs_buf_t	*bp;
218 	int		error;
219 	xfs_dinode_t	*dip;
220 
221 	/*
222 	 * Call the space managment code to find the location of the
223 	 * inode on disk.
224 	 */
225 	imap.im_blkno = 0;
226 	error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
227 	if (error != 0) {
228 		cmn_err(CE_WARN,
229 	"xfs_inotobp: xfs_imap()  returned an "
230 	"error %d on %s.  Returning error.", error, mp->m_fsname);
231 		return error;
232 	}
233 
234 	/*
235 	 * If the inode number maps to a block outside the bounds of the
236 	 * file system then return NULL rather than calling read_buf
237 	 * and panicing when we get an error from the driver.
238 	 */
239 	if ((imap.im_blkno + imap.im_len) >
240 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
241 		cmn_err(CE_WARN,
242 	"xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds "
243 	"of the file system %s.  Returning EINVAL.",
244 			imap.im_blkno, imap.im_len,mp->m_fsname);
245 		return XFS_ERROR(EINVAL);
246 	}
247 
248 	/*
249 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
250 	 * default to just a read_buf() call.
251 	 */
252 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
253 				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
254 
255 	if (error) {
256 		cmn_err(CE_WARN,
257 	"xfs_inotobp: xfs_trans_read_buf()  returned an "
258 	"error %d on %s.  Returning error.", error, mp->m_fsname);
259 		return error;
260 	}
261 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
262 	di_ok =
263 		INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
264 		XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
265 	if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
266 			XFS_RANDOM_ITOBP_INOTOBP))) {
267 		XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
268 		xfs_trans_brelse(tp, bp);
269 		cmn_err(CE_WARN,
270 	"xfs_inotobp: XFS_TEST_ERROR()  returned an "
271 	"error on %s.  Returning EFSCORRUPTED.",  mp->m_fsname);
272 		return XFS_ERROR(EFSCORRUPTED);
273 	}
274 
275 	xfs_inobp_check(mp, bp);
276 
277 	/*
278 	 * Set *dipp to point to the on-disk inode in the buffer.
279 	 */
280 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
281 	*bpp = bp;
282 	*offset = imap.im_boffset;
283 	return 0;
284 }
285 
286 
287 /*
288  * This routine is called to map an inode to the buffer containing
289  * the on-disk version of the inode.  It returns a pointer to the
290  * buffer containing the on-disk inode in the bpp parameter, and in
291  * the dip parameter it returns a pointer to the on-disk inode within
292  * that buffer.
293  *
294  * If a non-zero error is returned, then the contents of bpp and
295  * dipp are undefined.
296  *
297  * If the inode is new and has not yet been initialized, use xfs_imap()
298  * to determine the size and location of the buffer to read from disk.
299  * If the inode has already been mapped to its buffer and read in once,
300  * then use the mapping information stored in the inode rather than
301  * calling xfs_imap().  This allows us to avoid the overhead of looking
302  * at the inode btree for small block file systems (see xfs_dilocate()).
303  * We can tell whether the inode has been mapped in before by comparing
304  * its disk block address to 0.  Only uninitialized inodes will have
305  * 0 for the disk block address.
306  */
307 int
xfs_itobp(xfs_mount_t * mp,xfs_trans_t * tp,xfs_inode_t * ip,xfs_dinode_t ** dipp,xfs_buf_t ** bpp,xfs_daddr_t bno)308 xfs_itobp(
309 	xfs_mount_t	*mp,
310 	xfs_trans_t	*tp,
311 	xfs_inode_t	*ip,
312 	xfs_dinode_t	**dipp,
313 	xfs_buf_t	**bpp,
314 	xfs_daddr_t	bno)
315 {
316 	xfs_buf_t	*bp;
317 	int		error;
318 	xfs_imap_t	imap;
319 #ifdef __KERNEL__
320 	int		i;
321 	int		ni;
322 #endif
323 
324 	if (ip->i_blkno == (xfs_daddr_t)0) {
325 		/*
326 		 * Call the space management code to find the location of the
327 		 * inode on disk.
328 		 */
329 		imap.im_blkno = bno;
330 		error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP);
331 		if (error != 0) {
332 			return error;
333 		}
334 
335 		/*
336 		 * If the inode number maps to a block outside the bounds
337 		 * of the file system then return NULL rather than calling
338 		 * read_buf and panicing when we get an error from the
339 		 * driver.
340 		 */
341 		if ((imap.im_blkno + imap.im_len) >
342 		    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
343 #ifdef DEBUG
344 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
345 					"(imap.im_blkno (0x%llx) "
346 					"+ imap.im_len (0x%llx)) > "
347 					" XFS_FSB_TO_BB(mp, "
348 					"mp->m_sb.sb_dblocks) (0x%llx)",
349 					(unsigned long long) imap.im_blkno,
350 					(unsigned long long) imap.im_len,
351 					XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
352 #endif /* DEBUG */
353 			return XFS_ERROR(EINVAL);
354 		}
355 
356 		/*
357 		 * Fill in the fields in the inode that will be used to
358 		 * map the inode to its buffer from now on.
359 		 */
360 		ip->i_blkno = imap.im_blkno;
361 		ip->i_len = imap.im_len;
362 		ip->i_boffset = imap.im_boffset;
363 	} else {
364 		/*
365 		 * We've already mapped the inode once, so just use the
366 		 * mapping that we saved the first time.
367 		 */
368 		imap.im_blkno = ip->i_blkno;
369 		imap.im_len = ip->i_len;
370 		imap.im_boffset = ip->i_boffset;
371 	}
372 	ASSERT(bno == 0 || bno == imap.im_blkno);
373 
374 	/*
375 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
376 	 * default to just a read_buf() call.
377 	 */
378 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
379 				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
380 
381 	if (error) {
382 #ifdef DEBUG
383 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
384 				"xfs_trans_read_buf() returned error %d, "
385 				"imap.im_blkno 0x%llx, imap.im_len 0x%llx",
386 				error, (unsigned long long) imap.im_blkno,
387 				(unsigned long long) imap.im_len);
388 #endif /* DEBUG */
389 		return error;
390 	}
391 #ifdef __KERNEL__
392 	/*
393 	 * Validate the magic number and version of every inode in the buffer
394 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
395 	 */
396 #ifdef DEBUG
397 	ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
398 #else
399 	ni = 1;
400 #endif
401 	for (i = 0; i < ni; i++) {
402 		int		di_ok;
403 		xfs_dinode_t	*dip;
404 
405 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
406 					(i << mp->m_sb.sb_inodelog));
407 		di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
408 			    XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
409 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
410 				 XFS_RANDOM_ITOBP_INOTOBP))) {
411 #ifdef DEBUG
412 			prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
413 				mp->m_ddev_targp,
414 				(unsigned long long)imap.im_blkno, i,
415 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
416 #endif
417 			XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
418 					     mp, dip);
419 			xfs_trans_brelse(tp, bp);
420 			return XFS_ERROR(EFSCORRUPTED);
421 		}
422 	}
423 #endif	/* __KERNEL__ */
424 
425 	xfs_inobp_check(mp, bp);
426 
427 	/*
428 	 * Mark the buffer as an inode buffer now that it looks good
429 	 */
430 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
431 
432 	/*
433 	 * Set *dipp to point to the on-disk inode in the buffer.
434 	 */
435 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
436 	*bpp = bp;
437 	return 0;
438 }
439 
440 /*
441  * Move inode type and inode format specific information from the
442  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
443  * this means set if_rdev to the proper value.  For files, directories,
444  * and symlinks this means to bring in the in-line data or extent
445  * pointers.  For a file in B-tree format, only the root is immediately
446  * brought in-core.  The rest will be in-lined in if_extents when it
447  * is first referenced (see xfs_iread_extents()).
448  */
449 STATIC int
xfs_iformat(xfs_inode_t * ip,xfs_dinode_t * dip)450 xfs_iformat(
451 	xfs_inode_t		*ip,
452 	xfs_dinode_t		*dip)
453 {
454 	xfs_attr_shortform_t	*atp;
455 	int			size;
456 	int			error;
457 	xfs_fsize_t             di_size;
458 	ip->i_df.if_ext_max =
459 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
460 	error = 0;
461 
462 	if (unlikely(
463 	    INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
464 		INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
465 	    INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
466 		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
467 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu."
468 			"  Unmount and run xfs_repair.",
469 			(unsigned long long)ip->i_ino,
470 			(int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
471 			    + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
472 			(unsigned long long)
473 			INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
474 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
475 				     ip->i_mount, dip);
476 		return XFS_ERROR(EFSCORRUPTED);
477 	}
478 
479 	if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
480 		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
481 			"corrupt dinode %Lu, forkoff = 0x%x."
482 			"  Unmount and run xfs_repair.",
483 			(unsigned long long)ip->i_ino,
484 			(int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
485 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
486 				     ip->i_mount, dip);
487 		return XFS_ERROR(EFSCORRUPTED);
488 	}
489 
490 	switch (ip->i_d.di_mode & S_IFMT) {
491 	case S_IFIFO:
492 	case S_IFCHR:
493 	case S_IFBLK:
494 	case S_IFSOCK:
495 		if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
496 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
497 					      ip->i_mount, dip);
498 			return XFS_ERROR(EFSCORRUPTED);
499 		}
500 		ip->i_d.di_size = 0;
501 		ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
502 		break;
503 
504 	case S_IFREG:
505 	case S_IFLNK:
506 	case S_IFDIR:
507 		switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
508 		case XFS_DINODE_FMT_LOCAL:
509 			/*
510 			 * no local regular files yet
511 			 */
512 			if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
513 				xfs_fs_cmn_err(CE_WARN, ip->i_mount,
514 					"corrupt inode (local format for regular file) %Lu.  Unmount and run xfs_repair.",
515 					(unsigned long long) ip->i_ino);
516 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
517 						     XFS_ERRLEVEL_LOW,
518 						     ip->i_mount, dip);
519 				return XFS_ERROR(EFSCORRUPTED);
520 			}
521 
522 			di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
523 			if (unlikely(di_size >
524 			    XFS_DFORK_DSIZE_ARCH(dip, ip->i_mount, ARCH_CONVERT))) {
525 				xfs_fs_cmn_err(CE_WARN, ip->i_mount,
526 					"corrupt inode %Lu (bad size %Ld for local inode).  Unmount and run xfs_repair.",
527 					(unsigned long long) ip->i_ino,
528 					(long long) di_size);
529 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
530 						     XFS_ERRLEVEL_LOW,
531 						     ip->i_mount, dip);
532 				return XFS_ERROR(EFSCORRUPTED);
533 			}
534 
535 			size = (int)di_size;
536 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
537 			break;
538 		case XFS_DINODE_FMT_EXTENTS:
539 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
540 			break;
541 		case XFS_DINODE_FMT_BTREE:
542 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
543 			break;
544 		default:
545 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
546 					 ip->i_mount);
547 			return XFS_ERROR(EFSCORRUPTED);
548 		}
549 		break;
550 
551 	default:
552 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
553 		return XFS_ERROR(EFSCORRUPTED);
554 	}
555 	if (error) {
556 		return error;
557 	}
558 	if (!XFS_DFORK_Q_ARCH(dip, ARCH_CONVERT))
559 		return 0;
560 	ASSERT(ip->i_afp == NULL);
561 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
562 	ip->i_afp->if_ext_max =
563 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
564 	switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
565 	case XFS_DINODE_FMT_LOCAL:
566 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR_ARCH(dip, ARCH_CONVERT);
567 		size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT);
568 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
569 		break;
570 	case XFS_DINODE_FMT_EXTENTS:
571 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
572 		break;
573 	case XFS_DINODE_FMT_BTREE:
574 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
575 		break;
576 	default:
577 		error = XFS_ERROR(EFSCORRUPTED);
578 		break;
579 	}
580 	if (error) {
581 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
582 		ip->i_afp = NULL;
583 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
584 	}
585 	return error;
586 }
587 
588 /*
589  * The file is in-lined in the on-disk inode.
590  * If it fits into if_inline_data, then copy
591  * it there, otherwise allocate a buffer for it
592  * and copy the data there.  Either way, set
593  * if_data to point at the data.
594  * If we allocate a buffer for the data, make
595  * sure that its size is a multiple of 4 and
596  * record the real size in i_real_bytes.
597  */
598 STATIC int
xfs_iformat_local(xfs_inode_t * ip,xfs_dinode_t * dip,int whichfork,int size)599 xfs_iformat_local(
600 	xfs_inode_t	*ip,
601 	xfs_dinode_t	*dip,
602 	int		whichfork,
603 	int		size)
604 {
605 	xfs_ifork_t	*ifp;
606 	int		real_size;
607 
608 	/*
609 	 * If the size is unreasonable, then something
610 	 * is wrong and we just bail out rather than crash in
611 	 * kmem_alloc() or memcpy() below.
612 	 */
613 	if (unlikely(size > XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT))) {
614 		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
615 			"corrupt inode %Lu (bad size %d for local fork, size = %d).  Unmount and run xfs_repair.",
616 			(unsigned long long) ip->i_ino, size,
617 			XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT));
618 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
619 				     ip->i_mount, dip);
620 		return XFS_ERROR(EFSCORRUPTED);
621 	}
622 	ifp = XFS_IFORK_PTR(ip, whichfork);
623 	real_size = 0;
624 	if (size == 0)
625 		ifp->if_u1.if_data = NULL;
626 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
627 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
628 	else {
629 		real_size = roundup(size, 4);
630 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
631 	}
632 	ifp->if_bytes = size;
633 	ifp->if_real_bytes = real_size;
634 	if (size)
635 		memcpy(ifp->if_u1.if_data,
636 			XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT), size);
637 	ifp->if_flags &= ~XFS_IFEXTENTS;
638 	ifp->if_flags |= XFS_IFINLINE;
639 	return 0;
640 }
641 
642 /*
643  * The file consists of a set of extents all
644  * of which fit into the on-disk inode.
645  * If there are few enough extents to fit into
646  * the if_inline_ext, then copy them there.
647  * Otherwise allocate a buffer for them and copy
648  * them into it.  Either way, set if_extents
649  * to point at the extents.
650  */
651 STATIC int
xfs_iformat_extents(xfs_inode_t * ip,xfs_dinode_t * dip,int whichfork)652 xfs_iformat_extents(
653 	xfs_inode_t	*ip,
654 	xfs_dinode_t	*dip,
655 	int		whichfork)
656 {
657 	xfs_bmbt_rec_t	*ep, *dp;
658 	xfs_ifork_t	*ifp;
659 	int		nex;
660 	int		real_size;
661 	int		size;
662 	int		i;
663 
664 	ifp = XFS_IFORK_PTR(ip, whichfork);
665 	nex = XFS_DFORK_NEXTENTS_ARCH(dip, whichfork, ARCH_CONVERT);
666 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
667 
668 	/*
669 	 * If the number of extents is unreasonable, then something
670 	 * is wrong and we just bail out rather than crash in
671 	 * kmem_alloc() or memcpy() below.
672 	 */
673 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT))) {
674 		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
675 			"corrupt inode %Lu ((a)extents = %d).  Unmount and run xfs_repair.",
676 			(unsigned long long) ip->i_ino, nex);
677 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
678 				     ip->i_mount, dip);
679 		return XFS_ERROR(EFSCORRUPTED);
680 	}
681 
682 	real_size = 0;
683 	if (nex == 0)
684 		ifp->if_u1.if_extents = NULL;
685 	else if (nex <= XFS_INLINE_EXTS)
686 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
687 	else {
688 		ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
689 		ASSERT(ifp->if_u1.if_extents != NULL);
690 		real_size = size;
691 	}
692 	ifp->if_bytes = size;
693 	ifp->if_real_bytes = real_size;
694 	if (size) {
695 		dp = (xfs_bmbt_rec_t *)
696 			XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT);
697 		xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip));
698 		ep = ifp->if_u1.if_extents;
699 		for (i = 0; i < nex; i++, ep++, dp++) {
700 			ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
701 								ARCH_CONVERT);
702 			ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
703 								ARCH_CONVERT);
704 		}
705 		xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
706 			whichfork);
707 		if (whichfork != XFS_DATA_FORK ||
708 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
709 				if (unlikely(xfs_check_nostate_extents(
710 				    ifp->if_u1.if_extents, nex))) {
711 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
712 							 XFS_ERRLEVEL_LOW,
713 							 ip->i_mount);
714 					return XFS_ERROR(EFSCORRUPTED);
715 				}
716 	}
717 	ifp->if_flags |= XFS_IFEXTENTS;
718 	return 0;
719 }
720 
721 /*
722  * The file has too many extents to fit into
723  * the inode, so they are in B-tree format.
724  * Allocate a buffer for the root of the B-tree
725  * and copy the root into it.  The i_extents
726  * field will remain NULL until all of the
727  * extents are read in (when they are needed).
728  */
729 STATIC int
xfs_iformat_btree(xfs_inode_t * ip,xfs_dinode_t * dip,int whichfork)730 xfs_iformat_btree(
731 	xfs_inode_t		*ip,
732 	xfs_dinode_t		*dip,
733 	int			whichfork)
734 {
735 	xfs_bmdr_block_t	*dfp;
736 	xfs_ifork_t		*ifp;
737 	/* REFERENCED */
738 	int			nrecs;
739 	int			size;
740 
741 	ifp = XFS_IFORK_PTR(ip, whichfork);
742 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT);
743 	size = XFS_BMAP_BROOT_SPACE(dfp);
744 	nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
745 
746 	/*
747 	 * blow out if -- fork has less extents than can fit in
748 	 * fork (fork shouldn't be a btree format), root btree
749 	 * block has more records than can fit into the fork,
750 	 * or the number of extents is greater than the number of
751 	 * blocks.
752 	 */
753 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
754 	    || XFS_BMDR_SPACE_CALC(nrecs) >
755 			XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT)
756 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
757 		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
758 			"corrupt inode %Lu (btree).  Unmount and run xfs_repair.",
759 			(unsigned long long) ip->i_ino);
760 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
761 				 ip->i_mount);
762 		return XFS_ERROR(EFSCORRUPTED);
763 	}
764 
765 	ifp->if_broot_bytes = size;
766 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
767 	ASSERT(ifp->if_broot != NULL);
768 	/*
769 	 * Copy and convert from the on-disk structure
770 	 * to the in-memory structure.
771 	 */
772 	xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT),
773 		ifp->if_broot, size);
774 	ifp->if_flags &= ~XFS_IFEXTENTS;
775 	ifp->if_flags |= XFS_IFBROOT;
776 
777 	return 0;
778 }
779 
780 /*
781  * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
782  * and native format
783  *
784  * buf  = on-disk representation
785  * dip  = native representation
786  * dir  = direction - +ve -> disk to native
787  *                    -ve -> native to disk
788  * arch = on-disk architecture
789  */
790 void
xfs_xlate_dinode_core(xfs_caddr_t buf,xfs_dinode_core_t * dip,int dir,xfs_arch_t arch)791 xfs_xlate_dinode_core(
792 	xfs_caddr_t		buf,
793 	xfs_dinode_core_t	*dip,
794 	int			dir,
795 	xfs_arch_t		arch)
796 {
797 	xfs_dinode_core_t	*buf_core = (xfs_dinode_core_t *)buf;
798 	xfs_dinode_core_t	*mem_core = (xfs_dinode_core_t *)dip;
799 
800 	ASSERT(dir);
801 	if (arch == ARCH_NOCONVERT) {
802 		if (dir > 0) {
803 			memcpy((xfs_caddr_t)mem_core, (xfs_caddr_t)buf_core,
804 				sizeof(xfs_dinode_core_t));
805 		} else {
806 			memcpy((xfs_caddr_t)buf_core, (xfs_caddr_t)mem_core,
807 				sizeof(xfs_dinode_core_t));
808 		}
809 		return;
810 	}
811 
812 	INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
813 	INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
814 	INT_XLATE(buf_core->di_version,	mem_core->di_version, dir, arch);
815 	INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
816 	INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
817 	INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
818 	INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
819 	INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
820 	INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
821 
822 	if (dir > 0) {
823 		memcpy(mem_core->di_pad, buf_core->di_pad,
824 			sizeof(buf_core->di_pad));
825 	} else {
826 		memcpy(buf_core->di_pad, mem_core->di_pad,
827 			sizeof(buf_core->di_pad));
828 	}
829 
830 	INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
831 
832 	INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
833 			dir, arch);
834 	INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
835 			dir, arch);
836 	INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
837 			dir, arch);
838 	INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
839 			dir, arch);
840 	INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
841 			dir, arch);
842 	INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
843 			dir, arch);
844 	INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
845 	INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
846 	INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
847 	INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
848 	INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
849 	INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
850 	INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
851 	INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
852 	INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
853 	INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
854 	INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
855 }
856 
857 uint
xfs_dic2xflags(xfs_dinode_core_t * dic,xfs_arch_t arch)858 xfs_dic2xflags(
859 	xfs_dinode_core_t	*dic,
860 	xfs_arch_t		arch)
861 {
862 	__uint16_t		di_flags;
863 	uint			flags;
864 
865 	di_flags = INT_GET(dic->di_flags, arch);
866 	flags = XFS_CFORK_Q_ARCH(dic, arch) ? XFS_XFLAG_HASATTR : 0;
867 	if (di_flags & XFS_DIFLAG_ANY) {
868 		if (di_flags & XFS_DIFLAG_REALTIME)
869 			flags |= XFS_XFLAG_REALTIME;
870 		if (di_flags & XFS_DIFLAG_PREALLOC)
871 			flags |= XFS_XFLAG_PREALLOC;
872 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
873 			flags |= XFS_XFLAG_IMMUTABLE;
874 		if (di_flags & XFS_DIFLAG_APPEND)
875 			flags |= XFS_XFLAG_APPEND;
876 		if (di_flags & XFS_DIFLAG_SYNC)
877 			flags |= XFS_XFLAG_SYNC;
878 		if (di_flags & XFS_DIFLAG_NOATIME)
879 			flags |= XFS_XFLAG_NOATIME;
880 		if (di_flags & XFS_DIFLAG_NODUMP)
881 			flags |= XFS_XFLAG_NODUMP;
882 		if (di_flags & XFS_DIFLAG_RTINHERIT)
883 			flags |= XFS_XFLAG_RTINHERIT;
884 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
885 			flags |= XFS_XFLAG_PROJINHERIT;
886 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
887 			flags |= XFS_XFLAG_NOSYMLINKS;
888 	}
889 	return flags;
890 }
891 
892 /*
893  * Given a mount structure and an inode number, return a pointer
894  * to a newly allocated in-core inode coresponding to the given
895  * inode number.
896  *
897  * Initialize the inode's attributes and extent pointers if it
898  * already has them (it will not if the inode has no links).
899  */
900 int
xfs_iread(xfs_mount_t * mp,xfs_trans_t * tp,xfs_ino_t ino,xfs_inode_t ** ipp,xfs_daddr_t bno)901 xfs_iread(
902 	xfs_mount_t	*mp,
903 	xfs_trans_t	*tp,
904 	xfs_ino_t	ino,
905 	xfs_inode_t	**ipp,
906 	xfs_daddr_t	bno)
907 {
908 	xfs_buf_t	*bp;
909 	xfs_dinode_t	*dip;
910 	xfs_inode_t	*ip;
911 	int		error;
912 
913 	ASSERT(xfs_inode_zone != NULL);
914 
915 	ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
916 	ip->i_ino = ino;
917 	ip->i_mount = mp;
918 
919 	/*
920 	 * Get pointer's to the on-disk inode and the buffer containing it.
921 	 * If the inode number refers to a block outside the file system
922 	 * then xfs_itobp() will return NULL.  In this case we should
923 	 * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will
924 	 * know that this is a new incore inode.
925 	 */
926 	error = xfs_itobp(mp, tp, ip, &dip, &bp, bno);
927 
928 	if (error != 0) {
929 		kmem_zone_free(xfs_inode_zone, ip);
930 		return error;
931 	}
932 
933 	/*
934 	 * Initialize inode's trace buffers.
935 	 * Do this before xfs_iformat in case it adds entries.
936 	 */
937 #ifdef XFS_BMAP_TRACE
938 	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
939 #endif
940 #ifdef XFS_BMBT_TRACE
941 	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
942 #endif
943 #ifdef XFS_RW_TRACE
944 	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
945 #endif
946 #ifdef XFS_ILOCK_TRACE
947 	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
948 #endif
949 #ifdef XFS_DIR2_TRACE
950 	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
951 #endif
952 
953 	/*
954 	 * If we got something that isn't an inode it means someone
955 	 * (nfs or dmi) has a stale handle.
956 	 */
957 	if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
958 		kmem_zone_free(xfs_inode_zone, ip);
959 		xfs_trans_brelse(tp, bp);
960 #ifdef DEBUG
961 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
962 				"dip->di_core.di_magic (0x%x) != "
963 				"XFS_DINODE_MAGIC (0x%x)",
964 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
965 				XFS_DINODE_MAGIC);
966 #endif /* DEBUG */
967 		return XFS_ERROR(EINVAL);
968 	}
969 
970 	/*
971 	 * If the on-disk inode is already linked to a directory
972 	 * entry, copy all of the inode into the in-core inode.
973 	 * xfs_iformat() handles copying in the inode format
974 	 * specific information.
975 	 * Otherwise, just get the truly permanent information.
976 	 */
977 	if (!INT_ISZERO(dip->di_core.di_mode, ARCH_CONVERT)) {
978 		xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
979 		     &(ip->i_d), 1, ARCH_CONVERT);
980 		error = xfs_iformat(ip, dip);
981 		if (error)  {
982 			kmem_zone_free(xfs_inode_zone, ip);
983 			xfs_trans_brelse(tp, bp);
984 #ifdef DEBUG
985 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
986 					"xfs_iformat() returned error %d",
987 					error);
988 #endif /* DEBUG */
989 			return error;
990 		}
991 	} else {
992 		ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
993 		ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
994 		ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
995 		ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
996 		/*
997 		 * Make sure to pull in the mode here as well in
998 		 * case the inode is released without being used.
999 		 * This ensures that xfs_inactive() will see that
1000 		 * the inode is already free and not try to mess
1001 		 * with the uninitialized part of it.
1002 		 */
1003 		ip->i_d.di_mode = 0;
1004 		/*
1005 		 * Initialize the per-fork minima and maxima for a new
1006 		 * inode here.  xfs_iformat will do it for old inodes.
1007 		 */
1008 		ip->i_df.if_ext_max =
1009 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
1010 	}
1011 
1012 	INIT_LIST_HEAD(&ip->i_reclaim);
1013 
1014 	/*
1015 	 * The inode format changed when we moved the link count and
1016 	 * made it 32 bits long.  If this is an old format inode,
1017 	 * convert it in memory to look like a new one.  If it gets
1018 	 * flushed to disk we will convert back before flushing or
1019 	 * logging it.  We zero out the new projid field and the old link
1020 	 * count field.  We'll handle clearing the pad field (the remains
1021 	 * of the old uuid field) when we actually convert the inode to
1022 	 * the new format. We don't change the version number so that we
1023 	 * can distinguish this from a real new format inode.
1024 	 */
1025 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1026 		ip->i_d.di_nlink = ip->i_d.di_onlink;
1027 		ip->i_d.di_onlink = 0;
1028 		ip->i_d.di_projid = 0;
1029 	}
1030 
1031 	ip->i_delayed_blks = 0;
1032 
1033 	/*
1034 	 * Mark the buffer containing the inode as something to keep
1035 	 * around for a while.  This helps to keep recently accessed
1036 	 * meta-data in-core longer.
1037 	 */
1038 	 XFS_BUF_SET_REF(bp, XFS_INO_REF);
1039 
1040 	/*
1041 	 * Use xfs_trans_brelse() to release the buffer containing the
1042 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
1043 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
1044 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
1045 	 * will only release the buffer if it is not dirty within the
1046 	 * transaction.  It will be OK to release the buffer in this case,
1047 	 * because inodes on disk are never destroyed and we will be
1048 	 * locking the new in-core inode before putting it in the hash
1049 	 * table where other processes can find it.  Thus we don't have
1050 	 * to worry about the inode being changed just because we released
1051 	 * the buffer.
1052 	 */
1053 	xfs_trans_brelse(tp, bp);
1054 	*ipp = ip;
1055 	return 0;
1056 }
1057 
1058 /*
1059  * Read in extents from a btree-format inode.
1060  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
1061  */
1062 int
xfs_iread_extents(xfs_trans_t * tp,xfs_inode_t * ip,int whichfork)1063 xfs_iread_extents(
1064 	xfs_trans_t	*tp,
1065 	xfs_inode_t	*ip,
1066 	int		whichfork)
1067 {
1068 	int		error;
1069 	xfs_ifork_t	*ifp;
1070 	size_t		size;
1071 
1072 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1073 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1074 				 ip->i_mount);
1075 		return XFS_ERROR(EFSCORRUPTED);
1076 	}
1077 	size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t);
1078 	ifp = XFS_IFORK_PTR(ip, whichfork);
1079 	/*
1080 	 * We know that the size is valid (it's checked in iformat_btree)
1081 	 */
1082 	ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
1083 	ASSERT(ifp->if_u1.if_extents != NULL);
1084 	ifp->if_lastex = NULLEXTNUM;
1085 	ifp->if_bytes = ifp->if_real_bytes = (int)size;
1086 	ifp->if_flags |= XFS_IFEXTENTS;
1087 	error = xfs_bmap_read_extents(tp, ip, whichfork);
1088 	if (error) {
1089 		kmem_free(ifp->if_u1.if_extents, size);
1090 		ifp->if_u1.if_extents = NULL;
1091 		ifp->if_bytes = ifp->if_real_bytes = 0;
1092 		ifp->if_flags &= ~XFS_IFEXTENTS;
1093 		return error;
1094 	}
1095 	xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents,
1096 		XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip));
1097 	return 0;
1098 }
1099 
1100 /*
1101  * Allocate an inode on disk and return a copy of its in-core version.
1102  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1103  * appropriately within the inode.  The uid and gid for the inode are
1104  * set according to the contents of the given cred structure.
1105  *
1106  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1107  * has a free inode available, call xfs_iget()
1108  * to obtain the in-core version of the allocated inode.  Finally,
1109  * fill in the inode and log its initial contents.  In this case,
1110  * ialloc_context would be set to NULL and call_again set to false.
1111  *
1112  * If xfs_dialloc() does not have an available inode,
1113  * it will replenish its supply by doing an allocation. Since we can
1114  * only do one allocation within a transaction without deadlocks, we
1115  * must commit the current transaction before returning the inode itself.
1116  * In this case, therefore, we will set call_again to true and return.
1117  * The caller should then commit the current transaction, start a new
1118  * transaction, and call xfs_ialloc() again to actually get the inode.
1119  *
1120  * To ensure that some other process does not grab the inode that
1121  * was allocated during the first call to xfs_ialloc(), this routine
1122  * also returns the [locked] bp pointing to the head of the freelist
1123  * as ialloc_context.  The caller should hold this buffer across
1124  * the commit and pass it back into this routine on the second call.
1125  */
1126 int
xfs_ialloc(xfs_trans_t * tp,xfs_inode_t * pip,mode_t mode,nlink_t nlink,xfs_dev_t rdev,cred_t * cr,xfs_prid_t prid,int okalloc,xfs_buf_t ** ialloc_context,boolean_t * call_again,xfs_inode_t ** ipp)1127 xfs_ialloc(
1128 	xfs_trans_t	*tp,
1129 	xfs_inode_t	*pip,
1130 	mode_t		mode,
1131 	nlink_t		nlink,
1132 	xfs_dev_t	rdev,
1133 	cred_t		*cr,
1134 	xfs_prid_t	prid,
1135 	int		okalloc,
1136 	xfs_buf_t	**ialloc_context,
1137 	boolean_t	*call_again,
1138 	xfs_inode_t	**ipp)
1139 {
1140 	xfs_ino_t	ino;
1141 	xfs_inode_t	*ip;
1142 	vnode_t		*vp;
1143 	uint		flags;
1144 	int		error;
1145 
1146 	/*
1147 	 * Call the space management code to pick
1148 	 * the on-disk inode to be allocated.
1149 	 */
1150 	error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1151 			    ialloc_context, call_again, &ino);
1152 	if (error != 0) {
1153 		return error;
1154 	}
1155 	if (*call_again || ino == NULLFSINO) {
1156 		*ipp = NULL;
1157 		return 0;
1158 	}
1159 	ASSERT(*ialloc_context == NULL);
1160 
1161 	/*
1162 	 * Get the in-core inode with the lock held exclusively.
1163 	 * This is because we're setting fields here we need
1164 	 * to prevent others from looking at until we're done.
1165 	 */
1166 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1167 			IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1168 	if (error != 0) {
1169 		return error;
1170 	}
1171 	ASSERT(ip != NULL);
1172 
1173 	vp = XFS_ITOV(ip);
1174 	vp->v_type = IFTOVT(mode);
1175 	ip->i_d.di_mode = (__uint16_t)mode;
1176 	ip->i_d.di_onlink = 0;
1177 	ip->i_d.di_nlink = nlink;
1178 	ASSERT(ip->i_d.di_nlink == nlink);
1179 	ip->i_d.di_uid = current_fsuid(cr);
1180 	ip->i_d.di_gid = current_fsgid(cr);
1181 	ip->i_d.di_projid = prid;
1182 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1183 
1184 	/*
1185 	 * If the superblock version is up to where we support new format
1186 	 * inodes and this is currently an old format inode, then change
1187 	 * the inode version number now.  This way we only do the conversion
1188 	 * here rather than here and in the flush/logging code.
1189 	 */
1190 	if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1191 	    ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1192 		ip->i_d.di_version = XFS_DINODE_VERSION_2;
1193 		/*
1194 		 * We've already zeroed the old link count, the projid field,
1195 		 * and the pad field.
1196 		 */
1197 	}
1198 
1199 	/*
1200 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1201 	 */
1202 	if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1203 		xfs_bump_ino_vers2(tp, ip);
1204 
1205 	if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1206 		ip->i_d.di_gid = pip->i_d.di_gid;
1207 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1208 			ip->i_d.di_mode |= S_ISGID;
1209 		}
1210 	}
1211 
1212 	/*
1213 	 * If the group ID of the new file does not match the effective group
1214 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1215 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1216 	 */
1217 	if ((irix_sgid_inherit) &&
1218 	    (ip->i_d.di_mode & S_ISGID) &&
1219 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1220 		ip->i_d.di_mode &= ~S_ISGID;
1221 	}
1222 
1223 	ip->i_d.di_size = 0;
1224 	ip->i_d.di_nextents = 0;
1225 	ASSERT(ip->i_d.di_nblocks == 0);
1226 	xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1227 	/*
1228 	 * di_gen will have been taken care of in xfs_iread.
1229 	 */
1230 	ip->i_d.di_extsize = 0;
1231 	ip->i_d.di_dmevmask = 0;
1232 	ip->i_d.di_dmstate = 0;
1233 	ip->i_d.di_flags = 0;
1234 	flags = XFS_ILOG_CORE;
1235 	switch (mode & S_IFMT) {
1236 	case S_IFIFO:
1237 	case S_IFCHR:
1238 	case S_IFBLK:
1239 	case S_IFSOCK:
1240 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1241 		ip->i_df.if_u2.if_rdev = rdev;
1242 		ip->i_df.if_flags = 0;
1243 		flags |= XFS_ILOG_DEV;
1244 		break;
1245 	case S_IFREG:
1246 	case S_IFDIR:
1247 		if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1248 			if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1249 				if ((mode & S_IFMT) == S_IFDIR) {
1250 					ip->i_d.di_flags |= XFS_DIFLAG_RTINHERIT;
1251 				} else {
1252 					ip->i_d.di_flags |= XFS_DIFLAG_REALTIME;
1253 					ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1254 				}
1255 			}
1256 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1257 			    xfs_inherit_noatime)
1258 				ip->i_d.di_flags |= XFS_DIFLAG_NOATIME;
1259 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1260 			    xfs_inherit_nodump)
1261 				ip->i_d.di_flags |= XFS_DIFLAG_NODUMP;
1262 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1263 			    xfs_inherit_sync)
1264 				ip->i_d.di_flags |= XFS_DIFLAG_SYNC;
1265 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1266 			    xfs_inherit_nosymlinks)
1267 				ip->i_d.di_flags |= XFS_DIFLAG_NOSYMLINKS;
1268 		}
1269 		/* FALLTHROUGH */
1270 	case S_IFLNK:
1271 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1272 		ip->i_df.if_flags = XFS_IFEXTENTS;
1273 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1274 		ip->i_df.if_u1.if_extents = NULL;
1275 		break;
1276 	default:
1277 		ASSERT(0);
1278 	}
1279 	/*
1280 	 * Attribute fork settings for new inode.
1281 	 */
1282 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1283 	ip->i_d.di_anextents = 0;
1284 
1285 	/*
1286 	 * Log the new values stuffed into the inode.
1287 	 */
1288 	xfs_trans_log_inode(tp, ip, flags);
1289 
1290 	/* now that we have a v_type we can set Linux inode ops (& unlock) */
1291 	VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1292 
1293 	*ipp = ip;
1294 	return 0;
1295 }
1296 
1297 /*
1298  * Check to make sure that there are no blocks allocated to the
1299  * file beyond the size of the file.  We don't check this for
1300  * files with fixed size extents or real time extents, but we
1301  * at least do it for regular files.
1302  */
1303 #ifdef DEBUG
1304 void
xfs_isize_check(xfs_mount_t * mp,xfs_inode_t * ip,xfs_fsize_t isize)1305 xfs_isize_check(
1306 	xfs_mount_t	*mp,
1307 	xfs_inode_t	*ip,
1308 	xfs_fsize_t	isize)
1309 {
1310 	xfs_fileoff_t	map_first;
1311 	int		nimaps;
1312 	xfs_bmbt_irec_t	imaps[2];
1313 
1314 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1315 		return;
1316 
1317 	if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME )
1318 		return;
1319 
1320 	nimaps = 2;
1321 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1322 	/*
1323 	 * The filesystem could be shutting down, so bmapi may return
1324 	 * an error.
1325 	 */
1326 	if (xfs_bmapi(NULL, ip, map_first,
1327 			 (XFS_B_TO_FSB(mp,
1328 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1329 			  map_first),
1330 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1331 			 NULL))
1332 	    return;
1333 	ASSERT(nimaps == 1);
1334 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1335 }
1336 #endif	/* DEBUG */
1337 
1338 /*
1339  * Calculate the last possible buffered byte in a file.  This must
1340  * include data that was buffered beyond the EOF by the write code.
1341  * This also needs to deal with overflowing the xfs_fsize_t type
1342  * which can happen for sizes near the limit.
1343  *
1344  * We also need to take into account any blocks beyond the EOF.  It
1345  * may be the case that they were buffered by a write which failed.
1346  * In that case the pages will still be in memory, but the inode size
1347  * will never have been updated.
1348  */
1349 xfs_fsize_t
xfs_file_last_byte(xfs_inode_t * ip)1350 xfs_file_last_byte(
1351 	xfs_inode_t	*ip)
1352 {
1353 	xfs_mount_t	*mp;
1354 	xfs_fsize_t	last_byte;
1355 	xfs_fileoff_t	last_block;
1356 	xfs_fileoff_t	size_last_block;
1357 	int		error;
1358 
1359 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1360 
1361 	mp = ip->i_mount;
1362 	/*
1363 	 * Only check for blocks beyond the EOF if the extents have
1364 	 * been read in.  This eliminates the need for the inode lock,
1365 	 * and it also saves us from looking when it really isn't
1366 	 * necessary.
1367 	 */
1368 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1369 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1370 			XFS_DATA_FORK);
1371 		if (error) {
1372 			last_block = 0;
1373 		}
1374 	} else {
1375 		last_block = 0;
1376 	}
1377 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1378 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1379 
1380 	last_byte = XFS_FSB_TO_B(mp, last_block);
1381 	if (last_byte < 0) {
1382 		return XFS_MAXIOFFSET(mp);
1383 	}
1384 	last_byte += (1 << mp->m_writeio_log);
1385 	if (last_byte < 0) {
1386 		return XFS_MAXIOFFSET(mp);
1387 	}
1388 	return last_byte;
1389 }
1390 
1391 #if defined(XFS_RW_TRACE)
1392 STATIC void
xfs_itrunc_trace(int tag,xfs_inode_t * ip,int flag,xfs_fsize_t new_size,xfs_off_t toss_start,xfs_off_t toss_finish)1393 xfs_itrunc_trace(
1394 	int		tag,
1395 	xfs_inode_t	*ip,
1396 	int		flag,
1397 	xfs_fsize_t	new_size,
1398 	xfs_off_t	toss_start,
1399 	xfs_off_t	toss_finish)
1400 {
1401 	if (ip->i_rwtrace == NULL) {
1402 		return;
1403 	}
1404 
1405 	ktrace_enter(ip->i_rwtrace,
1406 		     (void*)((long)tag),
1407 		     (void*)ip,
1408 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1409 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1410 		     (void*)((long)flag),
1411 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1412 		     (void*)(unsigned long)(new_size & 0xffffffff),
1413 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1414 		     (void*)(unsigned long)(toss_start & 0xffffffff),
1415 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1416 		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1417 		     (void*)(unsigned long)current_cpu(),
1418 		     (void*)0,
1419 		     (void*)0,
1420 		     (void*)0,
1421 		     (void*)0);
1422 }
1423 #else
1424 #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1425 #endif
1426 
1427 /*
1428  * Start the truncation of the file to new_size.  The new size
1429  * must be smaller than the current size.  This routine will
1430  * clear the buffer and page caches of file data in the removed
1431  * range, and xfs_itruncate_finish() will remove the underlying
1432  * disk blocks.
1433  *
1434  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1435  * must NOT have the inode lock held at all.  This is because we're
1436  * calling into the buffer/page cache code and we can't hold the
1437  * inode lock when we do so.
1438  *
1439  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1440  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1441  * in the case that the caller is locking things out of order and
1442  * may not be able to call xfs_itruncate_finish() with the inode lock
1443  * held without dropping the I/O lock.  If the caller must drop the
1444  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1445  * must be called again with all the same restrictions as the initial
1446  * call.
1447  */
1448 void
xfs_itruncate_start(xfs_inode_t * ip,uint flags,xfs_fsize_t new_size)1449 xfs_itruncate_start(
1450 	xfs_inode_t	*ip,
1451 	uint		flags,
1452 	xfs_fsize_t	new_size)
1453 {
1454 	xfs_fsize_t	last_byte;
1455 	xfs_off_t	toss_start;
1456 	xfs_mount_t	*mp;
1457 	vnode_t		*vp;
1458 
1459 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1460 	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1461 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1462 	       (flags == XFS_ITRUNC_MAYBE));
1463 
1464 	mp = ip->i_mount;
1465 	vp = XFS_ITOV(ip);
1466 	/*
1467 	 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1468 	 * overlapping the region being removed.  We have to use
1469 	 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1470 	 * caller may not be able to finish the truncate without
1471 	 * dropping the inode's I/O lock.  Make sure
1472 	 * to catch any pages brought in by buffers overlapping
1473 	 * the EOF by searching out beyond the isize by our
1474 	 * block size. We round new_size up to a block boundary
1475 	 * so that we don't toss things on the same block as
1476 	 * new_size but before it.
1477 	 *
1478 	 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1479 	 * call remapf() over the same region if the file is mapped.
1480 	 * This frees up mapped file references to the pages in the
1481 	 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1482 	 * that we get the latest mapped changes flushed out.
1483 	 */
1484 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1485 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1486 	if (toss_start < 0) {
1487 		/*
1488 		 * The place to start tossing is beyond our maximum
1489 		 * file size, so there is no way that the data extended
1490 		 * out there.
1491 		 */
1492 		return;
1493 	}
1494 	last_byte = xfs_file_last_byte(ip);
1495 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1496 			 last_byte);
1497 	if (last_byte > toss_start) {
1498 		if (flags & XFS_ITRUNC_DEFINITE) {
1499 			VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1500 		} else {
1501 			VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1502 		}
1503 	}
1504 
1505 #ifdef DEBUG
1506 	if (new_size == 0) {
1507 		ASSERT(VN_CACHED(vp) == 0);
1508 	}
1509 #endif
1510 }
1511 
1512 /*
1513  * Shrink the file to the given new_size.  The new
1514  * size must be smaller than the current size.
1515  * This will free up the underlying blocks
1516  * in the removed range after a call to xfs_itruncate_start()
1517  * or xfs_atruncate_start().
1518  *
1519  * The transaction passed to this routine must have made
1520  * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1521  * This routine may commit the given transaction and
1522  * start new ones, so make sure everything involved in
1523  * the transaction is tidy before calling here.
1524  * Some transaction will be returned to the caller to be
1525  * committed.  The incoming transaction must already include
1526  * the inode, and both inode locks must be held exclusively.
1527  * The inode must also be "held" within the transaction.  On
1528  * return the inode will be "held" within the returned transaction.
1529  * This routine does NOT require any disk space to be reserved
1530  * for it within the transaction.
1531  *
1532  * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1533  * and it indicates the fork which is to be truncated.  For the
1534  * attribute fork we only support truncation to size 0.
1535  *
1536  * We use the sync parameter to indicate whether or not the first
1537  * transaction we perform might have to be synchronous.  For the attr fork,
1538  * it needs to be so if the unlink of the inode is not yet known to be
1539  * permanent in the log.  This keeps us from freeing and reusing the
1540  * blocks of the attribute fork before the unlink of the inode becomes
1541  * permanent.
1542  *
1543  * For the data fork, we normally have to run synchronously if we're
1544  * being called out of the inactive path or we're being called
1545  * out of the create path where we're truncating an existing file.
1546  * Either way, the truncate needs to be sync so blocks don't reappear
1547  * in the file with altered data in case of a crash.  wsync filesystems
1548  * can run the first case async because anything that shrinks the inode
1549  * has to run sync so by the time we're called here from inactive, the
1550  * inode size is permanently set to 0.
1551  *
1552  * Calls from the truncate path always need to be sync unless we're
1553  * in a wsync filesystem and the file has already been unlinked.
1554  *
1555  * The caller is responsible for correctly setting the sync parameter.
1556  * It gets too hard for us to guess here which path we're being called
1557  * out of just based on inode state.
1558  */
1559 int
xfs_itruncate_finish(xfs_trans_t ** tp,xfs_inode_t * ip,xfs_fsize_t new_size,int fork,int sync)1560 xfs_itruncate_finish(
1561 	xfs_trans_t	**tp,
1562 	xfs_inode_t	*ip,
1563 	xfs_fsize_t	new_size,
1564 	int		fork,
1565 	int		sync)
1566 {
1567 	xfs_fsblock_t	first_block;
1568 	xfs_fileoff_t	first_unmap_block;
1569 	xfs_fileoff_t	last_block;
1570 	xfs_filblks_t	unmap_len=0;
1571 	xfs_mount_t	*mp;
1572 	xfs_trans_t	*ntp;
1573 	int		done;
1574 	int		committed;
1575 	xfs_bmap_free_t	free_list;
1576 	int		error;
1577 
1578 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1579 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1580 	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1581 	ASSERT(*tp != NULL);
1582 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1583 	ASSERT(ip->i_transp == *tp);
1584 	ASSERT(ip->i_itemp != NULL);
1585 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1586 
1587 
1588 	ntp = *tp;
1589 	mp = (ntp)->t_mountp;
1590 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1591 
1592 	/*
1593 	 * We only support truncating the entire attribute fork.
1594 	 */
1595 	if (fork == XFS_ATTR_FORK) {
1596 		new_size = 0LL;
1597 	}
1598 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1599 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1600 	/*
1601 	 * The first thing we do is set the size to new_size permanently
1602 	 * on disk.  This way we don't have to worry about anyone ever
1603 	 * being able to look at the data being freed even in the face
1604 	 * of a crash.  What we're getting around here is the case where
1605 	 * we free a block, it is allocated to another file, it is written
1606 	 * to, and then we crash.  If the new data gets written to the
1607 	 * file but the log buffers containing the free and reallocation
1608 	 * don't, then we'd end up with garbage in the blocks being freed.
1609 	 * As long as we make the new_size permanent before actually
1610 	 * freeing any blocks it doesn't matter if they get writtten to.
1611 	 *
1612 	 * The callers must signal into us whether or not the size
1613 	 * setting here must be synchronous.  There are a few cases
1614 	 * where it doesn't have to be synchronous.  Those cases
1615 	 * occur if the file is unlinked and we know the unlink is
1616 	 * permanent or if the blocks being truncated are guaranteed
1617 	 * to be beyond the inode eof (regardless of the link count)
1618 	 * and the eof value is permanent.  Both of these cases occur
1619 	 * only on wsync-mounted filesystems.  In those cases, we're
1620 	 * guaranteed that no user will ever see the data in the blocks
1621 	 * that are being truncated so the truncate can run async.
1622 	 * In the free beyond eof case, the file may wind up with
1623 	 * more blocks allocated to it than it needs if we crash
1624 	 * and that won't get fixed until the next time the file
1625 	 * is re-opened and closed but that's ok as that shouldn't
1626 	 * be too many blocks.
1627 	 *
1628 	 * However, we can't just make all wsync xactions run async
1629 	 * because there's one call out of the create path that needs
1630 	 * to run sync where it's truncating an existing file to size
1631 	 * 0 whose size is > 0.
1632 	 *
1633 	 * It's probably possible to come up with a test in this
1634 	 * routine that would correctly distinguish all the above
1635 	 * cases from the values of the function parameters and the
1636 	 * inode state but for sanity's sake, I've decided to let the
1637 	 * layers above just tell us.  It's simpler to correctly figure
1638 	 * out in the layer above exactly under what conditions we
1639 	 * can run async and I think it's easier for others read and
1640 	 * follow the logic in case something has to be changed.
1641 	 * cscope is your friend -- rcc.
1642 	 *
1643 	 * The attribute fork is much simpler.
1644 	 *
1645 	 * For the attribute fork we allow the caller to tell us whether
1646 	 * the unlink of the inode that led to this call is yet permanent
1647 	 * in the on disk log.  If it is not and we will be freeing extents
1648 	 * in this inode then we make the first transaction synchronous
1649 	 * to make sure that the unlink is permanent by the time we free
1650 	 * the blocks.
1651 	 */
1652 	if (fork == XFS_DATA_FORK) {
1653 		if (ip->i_d.di_nextents > 0) {
1654 			ip->i_d.di_size = new_size;
1655 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1656 		}
1657 	} else if (sync) {
1658 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1659 		if (ip->i_d.di_anextents > 0)
1660 			xfs_trans_set_sync(ntp);
1661 	}
1662 	ASSERT(fork == XFS_DATA_FORK ||
1663 		(fork == XFS_ATTR_FORK &&
1664 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1665 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1666 
1667 	/*
1668 	 * Since it is possible for space to become allocated beyond
1669 	 * the end of the file (in a crash where the space is allocated
1670 	 * but the inode size is not yet updated), simply remove any
1671 	 * blocks which show up between the new EOF and the maximum
1672 	 * possible file size.  If the first block to be removed is
1673 	 * beyond the maximum file size (ie it is the same as last_block),
1674 	 * then there is nothing to do.
1675 	 */
1676 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1677 	ASSERT(first_unmap_block <= last_block);
1678 	done = 0;
1679 	if (last_block == first_unmap_block) {
1680 		done = 1;
1681 	} else {
1682 		unmap_len = last_block - first_unmap_block + 1;
1683 	}
1684 	while (!done) {
1685 		/*
1686 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1687 		 * will tell us whether it freed the entire range or
1688 		 * not.  If this is a synchronous mount (wsync),
1689 		 * then we can tell bunmapi to keep all the
1690 		 * transactions asynchronous since the unlink
1691 		 * transaction that made this inode inactive has
1692 		 * already hit the disk.  There's no danger of
1693 		 * the freed blocks being reused, there being a
1694 		 * crash, and the reused blocks suddenly reappearing
1695 		 * in this file with garbage in them once recovery
1696 		 * runs.
1697 		 */
1698 		XFS_BMAP_INIT(&free_list, &first_block);
1699 		error = xfs_bunmapi(ntp, ip, first_unmap_block,
1700 				    unmap_len,
1701 				    XFS_BMAPI_AFLAG(fork) |
1702 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1703 				    XFS_ITRUNC_MAX_EXTENTS,
1704 				    &first_block, &free_list, &done);
1705 		if (error) {
1706 			/*
1707 			 * If the bunmapi call encounters an error,
1708 			 * return to the caller where the transaction
1709 			 * can be properly aborted.  We just need to
1710 			 * make sure we're not holding any resources
1711 			 * that we were not when we came in.
1712 			 */
1713 			xfs_bmap_cancel(&free_list);
1714 			return error;
1715 		}
1716 
1717 		/*
1718 		 * Duplicate the transaction that has the permanent
1719 		 * reservation and commit the old transaction.
1720 		 */
1721 		error = xfs_bmap_finish(tp, &free_list, first_block,
1722 					&committed);
1723 		ntp = *tp;
1724 		if (error) {
1725 			/*
1726 			 * If the bmap finish call encounters an error,
1727 			 * return to the caller where the transaction
1728 			 * can be properly aborted.  We just need to
1729 			 * make sure we're not holding any resources
1730 			 * that we were not when we came in.
1731 			 *
1732 			 * Aborting from this point might lose some
1733 			 * blocks in the file system, but oh well.
1734 			 */
1735 			xfs_bmap_cancel(&free_list);
1736 			if (committed) {
1737 				/*
1738 				 * If the passed in transaction committed
1739 				 * in xfs_bmap_finish(), then we want to
1740 				 * add the inode to this one before returning.
1741 				 * This keeps things simple for the higher
1742 				 * level code, because it always knows that
1743 				 * the inode is locked and held in the
1744 				 * transaction that returns to it whether
1745 				 * errors occur or not.  We don't mark the
1746 				 * inode dirty so that this transaction can
1747 				 * be easily aborted if possible.
1748 				 */
1749 				xfs_trans_ijoin(ntp, ip,
1750 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1751 				xfs_trans_ihold(ntp, ip);
1752 			}
1753 			return error;
1754 		}
1755 
1756 		if (committed) {
1757 			/*
1758 			 * The first xact was committed,
1759 			 * so add the inode to the new one.
1760 			 * Mark it dirty so it will be logged
1761 			 * and moved forward in the log as
1762 			 * part of every commit.
1763 			 */
1764 			xfs_trans_ijoin(ntp, ip,
1765 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1766 			xfs_trans_ihold(ntp, ip);
1767 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1768 		}
1769 		ntp = xfs_trans_dup(ntp);
1770 		(void) xfs_trans_commit(*tp, 0, NULL);
1771 		*tp = ntp;
1772 		error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1773 					  XFS_TRANS_PERM_LOG_RES,
1774 					  XFS_ITRUNCATE_LOG_COUNT);
1775 		/*
1776 		 * Add the inode being truncated to the next chained
1777 		 * transaction.
1778 		 */
1779 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1780 		xfs_trans_ihold(ntp, ip);
1781 		if (error)
1782 			return (error);
1783 	}
1784 	/*
1785 	 * Only update the size in the case of the data fork, but
1786 	 * always re-log the inode so that our permanent transaction
1787 	 * can keep on rolling it forward in the log.
1788 	 */
1789 	if (fork == XFS_DATA_FORK) {
1790 		xfs_isize_check(mp, ip, new_size);
1791 		ip->i_d.di_size = new_size;
1792 	}
1793 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1794 	ASSERT((new_size != 0) ||
1795 	       (fork == XFS_ATTR_FORK) ||
1796 	       (ip->i_delayed_blks == 0));
1797 	ASSERT((new_size != 0) ||
1798 	       (fork == XFS_ATTR_FORK) ||
1799 	       (ip->i_d.di_nextents == 0));
1800 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1801 	return 0;
1802 }
1803 
1804 
1805 /*
1806  * xfs_igrow_start
1807  *
1808  * Do the first part of growing a file: zero any data in the last
1809  * block that is beyond the old EOF.  We need to do this before
1810  * the inode is joined to the transaction to modify the i_size.
1811  * That way we can drop the inode lock and call into the buffer
1812  * cache to get the buffer mapping the EOF.
1813  */
1814 int
xfs_igrow_start(xfs_inode_t * ip,xfs_fsize_t new_size,cred_t * credp)1815 xfs_igrow_start(
1816 	xfs_inode_t	*ip,
1817 	xfs_fsize_t	new_size,
1818 	cred_t		*credp)
1819 {
1820 	xfs_fsize_t	isize;
1821 	int		error;
1822 
1823 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1824 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1825 	ASSERT(new_size > ip->i_d.di_size);
1826 
1827 	error = 0;
1828 	isize = ip->i_d.di_size;
1829 	/*
1830 	 * Zero any pages that may have been created by
1831 	 * xfs_write_file() beyond the end of the file
1832 	 * and any blocks between the old and new file sizes.
1833 	 */
1834 	error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize,
1835 				new_size);
1836 	return error;
1837 }
1838 
1839 /*
1840  * xfs_igrow_finish
1841  *
1842  * This routine is called to extend the size of a file.
1843  * The inode must have both the iolock and the ilock locked
1844  * for update and it must be a part of the current transaction.
1845  * The xfs_igrow_start() function must have been called previously.
1846  * If the change_flag is not zero, the inode change timestamp will
1847  * be updated.
1848  */
1849 void
xfs_igrow_finish(xfs_trans_t * tp,xfs_inode_t * ip,xfs_fsize_t new_size,int change_flag)1850 xfs_igrow_finish(
1851 	xfs_trans_t	*tp,
1852 	xfs_inode_t	*ip,
1853 	xfs_fsize_t	new_size,
1854 	int		change_flag)
1855 {
1856 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1857 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1858 	ASSERT(ip->i_transp == tp);
1859 	ASSERT(new_size > ip->i_d.di_size);
1860 
1861 	/*
1862 	 * Update the file size.  Update the inode change timestamp
1863 	 * if change_flag set.
1864 	 */
1865 	ip->i_d.di_size = new_size;
1866 	if (change_flag)
1867 		xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1868 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1869 
1870 }
1871 
1872 
1873 /*
1874  * This is called when the inode's link count goes to 0.
1875  * We place the on-disk inode on a list in the AGI.  It
1876  * will be pulled from this list when the inode is freed.
1877  */
1878 int
xfs_iunlink(xfs_trans_t * tp,xfs_inode_t * ip)1879 xfs_iunlink(
1880 	xfs_trans_t	*tp,
1881 	xfs_inode_t	*ip)
1882 {
1883 	xfs_mount_t	*mp;
1884 	xfs_agi_t	*agi;
1885 	xfs_dinode_t	*dip;
1886 	xfs_buf_t	*agibp;
1887 	xfs_buf_t	*ibp;
1888 	xfs_agnumber_t	agno;
1889 	xfs_daddr_t	agdaddr;
1890 	xfs_agino_t	agino;
1891 	short		bucket_index;
1892 	int		offset;
1893 	int		error;
1894 	int		agi_ok;
1895 
1896 	ASSERT(ip->i_d.di_nlink == 0);
1897 	ASSERT(ip->i_d.di_mode != 0);
1898 	ASSERT(ip->i_transp == tp);
1899 
1900 	mp = tp->t_mountp;
1901 
1902 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1903 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1904 
1905 	/*
1906 	 * Get the agi buffer first.  It ensures lock ordering
1907 	 * on the list.
1908 	 */
1909 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1910 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1911 	if (error) {
1912 		return error;
1913 	}
1914 	/*
1915 	 * Validate the magic number of the agi block.
1916 	 */
1917 	agi = XFS_BUF_TO_AGI(agibp);
1918 	agi_ok =
1919 		INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
1920 		XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
1921 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1922 			XFS_RANDOM_IUNLINK))) {
1923 		XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1924 		xfs_trans_brelse(tp, agibp);
1925 		return XFS_ERROR(EFSCORRUPTED);
1926 	}
1927 	/*
1928 	 * Get the index into the agi hash table for the
1929 	 * list this inode will go on.
1930 	 */
1931 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1932 	ASSERT(agino != 0);
1933 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1934 	ASSERT(!INT_ISZERO(agi->agi_unlinked[bucket_index], ARCH_CONVERT));
1935 	ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino);
1936 
1937 	if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) {
1938 		/*
1939 		 * There is already another inode in the bucket we need
1940 		 * to add ourselves to.  Add us at the front of the list.
1941 		 * Here we put the head pointer into our next pointer,
1942 		 * and then we fall through to point the head at us.
1943 		 */
1944 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1945 		if (error) {
1946 			return error;
1947 		}
1948 		ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1949 		ASSERT(!INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT));
1950 		/* both on-disk, don't endian flip twice */
1951 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1952 		offset = ip->i_boffset +
1953 			offsetof(xfs_dinode_t, di_next_unlinked);
1954 		xfs_trans_inode_buf(tp, ibp);
1955 		xfs_trans_log_buf(tp, ibp, offset,
1956 				  (offset + sizeof(xfs_agino_t) - 1));
1957 		xfs_inobp_check(mp, ibp);
1958 	}
1959 
1960 	/*
1961 	 * Point the bucket head pointer at the inode being inserted.
1962 	 */
1963 	ASSERT(agino != 0);
1964 	INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino);
1965 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1966 		(sizeof(xfs_agino_t) * bucket_index);
1967 	xfs_trans_log_buf(tp, agibp, offset,
1968 			  (offset + sizeof(xfs_agino_t) - 1));
1969 	return 0;
1970 }
1971 
1972 /*
1973  * Pull the on-disk inode from the AGI unlinked list.
1974  */
1975 STATIC int
xfs_iunlink_remove(xfs_trans_t * tp,xfs_inode_t * ip)1976 xfs_iunlink_remove(
1977 	xfs_trans_t	*tp,
1978 	xfs_inode_t	*ip)
1979 {
1980 	xfs_ino_t	next_ino;
1981 	xfs_mount_t	*mp;
1982 	xfs_agi_t	*agi;
1983 	xfs_dinode_t	*dip;
1984 	xfs_buf_t	*agibp;
1985 	xfs_buf_t	*ibp;
1986 	xfs_agnumber_t	agno;
1987 	xfs_daddr_t	agdaddr;
1988 	xfs_agino_t	agino;
1989 	xfs_agino_t	next_agino;
1990 	xfs_buf_t	*last_ibp;
1991 	xfs_dinode_t	*last_dip;
1992 	short		bucket_index;
1993 	int		offset, last_offset;
1994 	int		error;
1995 	int		agi_ok;
1996 
1997 	/*
1998 	 * First pull the on-disk inode from the AGI unlinked list.
1999 	 */
2000 	mp = tp->t_mountp;
2001 
2002 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2003 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2004 
2005 	/*
2006 	 * Get the agi buffer first.  It ensures lock ordering
2007 	 * on the list.
2008 	 */
2009 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2010 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2011 	if (error) {
2012 		cmn_err(CE_WARN,
2013 			"xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.",
2014 			error, mp->m_fsname);
2015 		return error;
2016 	}
2017 	/*
2018 	 * Validate the magic number of the agi block.
2019 	 */
2020 	agi = XFS_BUF_TO_AGI(agibp);
2021 	agi_ok =
2022 		INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
2023 		XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
2024 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2025 			XFS_RANDOM_IUNLINK_REMOVE))) {
2026 		XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2027 				     mp, agi);
2028 		xfs_trans_brelse(tp, agibp);
2029 		cmn_err(CE_WARN,
2030 			"xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.",
2031 			 mp->m_fsname);
2032 		return XFS_ERROR(EFSCORRUPTED);
2033 	}
2034 	/*
2035 	 * Get the index into the agi hash table for the
2036 	 * list this inode will go on.
2037 	 */
2038 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2039 	ASSERT(agino != 0);
2040 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2041 	ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO);
2042 	ASSERT(!INT_ISZERO(agi->agi_unlinked[bucket_index], ARCH_CONVERT));
2043 
2044 	if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) {
2045 		/*
2046 		 * We're at the head of the list.  Get the inode's
2047 		 * on-disk buffer to see if there is anyone after us
2048 		 * on the list.  Only modify our next pointer if it
2049 		 * is not already NULLAGINO.  This saves us the overhead
2050 		 * of dealing with the buffer when there is no need to
2051 		 * change it.
2052 		 */
2053 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2054 		if (error) {
2055 			cmn_err(CE_WARN,
2056 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2057 				error, mp->m_fsname);
2058 			return error;
2059 		}
2060 		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2061 		ASSERT(next_agino != 0);
2062 		if (next_agino != NULLAGINO) {
2063 			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2064 			offset = ip->i_boffset +
2065 				offsetof(xfs_dinode_t, di_next_unlinked);
2066 			xfs_trans_inode_buf(tp, ibp);
2067 			xfs_trans_log_buf(tp, ibp, offset,
2068 					  (offset + sizeof(xfs_agino_t) - 1));
2069 			xfs_inobp_check(mp, ibp);
2070 		} else {
2071 			xfs_trans_brelse(tp, ibp);
2072 		}
2073 		/*
2074 		 * Point the bucket head pointer at the next inode.
2075 		 */
2076 		ASSERT(next_agino != 0);
2077 		ASSERT(next_agino != agino);
2078 		INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino);
2079 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2080 			(sizeof(xfs_agino_t) * bucket_index);
2081 		xfs_trans_log_buf(tp, agibp, offset,
2082 				  (offset + sizeof(xfs_agino_t) - 1));
2083 	} else {
2084 		/*
2085 		 * We need to search the list for the inode being freed.
2086 		 */
2087 		next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT);
2088 		last_ibp = NULL;
2089 		while (next_agino != agino) {
2090 			/*
2091 			 * If the last inode wasn't the one pointing to
2092 			 * us, then release its buffer since we're not
2093 			 * going to do anything with it.
2094 			 */
2095 			if (last_ibp != NULL) {
2096 				xfs_trans_brelse(tp, last_ibp);
2097 			}
2098 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2099 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2100 					    &last_ibp, &last_offset);
2101 			if (error) {
2102 				cmn_err(CE_WARN,
2103 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
2104 					error, mp->m_fsname);
2105 				return error;
2106 			}
2107 			next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2108 			ASSERT(next_agino != NULLAGINO);
2109 			ASSERT(next_agino != 0);
2110 		}
2111 		/*
2112 		 * Now last_ibp points to the buffer previous to us on
2113 		 * the unlinked list.  Pull us from the list.
2114 		 */
2115 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2116 		if (error) {
2117 			cmn_err(CE_WARN,
2118 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2119 				error, mp->m_fsname);
2120 			return error;
2121 		}
2122 		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2123 		ASSERT(next_agino != 0);
2124 		ASSERT(next_agino != agino);
2125 		if (next_agino != NULLAGINO) {
2126 			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2127 			offset = ip->i_boffset +
2128 				offsetof(xfs_dinode_t, di_next_unlinked);
2129 			xfs_trans_inode_buf(tp, ibp);
2130 			xfs_trans_log_buf(tp, ibp, offset,
2131 					  (offset + sizeof(xfs_agino_t) - 1));
2132 			xfs_inobp_check(mp, ibp);
2133 		} else {
2134 			xfs_trans_brelse(tp, ibp);
2135 		}
2136 		/*
2137 		 * Point the previous inode on the list to the next inode.
2138 		 */
2139 		INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2140 		ASSERT(next_agino != 0);
2141 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2142 		xfs_trans_inode_buf(tp, last_ibp);
2143 		xfs_trans_log_buf(tp, last_ibp, offset,
2144 				  (offset + sizeof(xfs_agino_t) - 1));
2145 		xfs_inobp_check(mp, last_ibp);
2146 	}
2147 	return 0;
2148 }
2149 
xfs_inode_clean(xfs_inode_t * ip)2150 static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2151 {
2152 	return (((ip->i_itemp == NULL) ||
2153 		!(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2154 		(ip->i_update_core == 0));
2155 }
2156 
2157 void
xfs_ifree_cluster(xfs_inode_t * free_ip,xfs_trans_t * tp,xfs_ino_t inum)2158 xfs_ifree_cluster(
2159 	xfs_inode_t	*free_ip,
2160 	xfs_trans_t	*tp,
2161 	xfs_ino_t	inum)
2162 {
2163 	xfs_mount_t		*mp = free_ip->i_mount;
2164 	int			blks_per_cluster;
2165 	int			nbufs;
2166 	int			ninodes;
2167 	int			i, j, found, pre_flushed;
2168 	xfs_daddr_t		blkno;
2169 	xfs_buf_t		*bp;
2170 	xfs_ihash_t		*ih;
2171 	xfs_inode_t		*ip, **ip_found;
2172 	xfs_inode_log_item_t	*iip;
2173 	xfs_log_item_t		*lip;
2174 	SPLDECL(s);
2175 
2176 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2177 		blks_per_cluster = 1;
2178 		ninodes = mp->m_sb.sb_inopblock;
2179 		nbufs = XFS_IALLOC_BLOCKS(mp);
2180 	} else {
2181 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2182 					mp->m_sb.sb_blocksize;
2183 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2184 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2185 	}
2186 
2187 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2188 
2189 	for (j = 0; j < nbufs; j++, inum += ninodes) {
2190 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2191 					 XFS_INO_TO_AGBNO(mp, inum));
2192 
2193 
2194 		/*
2195 		 * Look for each inode in memory and attempt to lock it,
2196 		 * we can be racing with flush and tail pushing here.
2197 		 * any inode we get the locks on, add to an array of
2198 		 * inode items to process later.
2199 		 *
2200 		 * The get the buffer lock, we could beat a flush
2201 		 * or tail pushing thread to the lock here, in which
2202 		 * case they will go looking for the inode buffer
2203 		 * and fail, we need some other form of interlock
2204 		 * here.
2205 		 */
2206 		found = 0;
2207 		for (i = 0; i < ninodes; i++) {
2208 			ih = XFS_IHASH(mp, inum + i);
2209 			read_lock(&ih->ih_lock);
2210 			for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2211 				if (ip->i_ino == inum + i)
2212 					break;
2213 			}
2214 
2215 			/* Inode not in memory or we found it already,
2216 			 * nothing to do
2217 			 */
2218 			if (!ip || (ip->i_flags & XFS_ISTALE)) {
2219 				read_unlock(&ih->ih_lock);
2220 				continue;
2221 			}
2222 
2223 			if (xfs_inode_clean(ip)) {
2224 				read_unlock(&ih->ih_lock);
2225 				continue;
2226 			}
2227 
2228 			/* If we can get the locks then add it to the
2229 			 * list, otherwise by the time we get the bp lock
2230 			 * below it will already be attached to the
2231 			 * inode buffer.
2232 			 */
2233 
2234 			/* This inode will already be locked - by us, lets
2235 			 * keep it that way.
2236 			 */
2237 
2238 			if (ip == free_ip) {
2239 				if (xfs_iflock_nowait(ip)) {
2240 					ip->i_flags |= XFS_ISTALE;
2241 
2242 					if (xfs_inode_clean(ip)) {
2243 						xfs_ifunlock(ip);
2244 					} else {
2245 						ip_found[found++] = ip;
2246 					}
2247 				}
2248 				read_unlock(&ih->ih_lock);
2249 				continue;
2250 			}
2251 
2252 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2253 				if (xfs_iflock_nowait(ip)) {
2254 					ip->i_flags |= XFS_ISTALE;
2255 
2256 					if (xfs_inode_clean(ip)) {
2257 						xfs_ifunlock(ip);
2258 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2259 					} else {
2260 						ip_found[found++] = ip;
2261 					}
2262 				} else {
2263 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2264 				}
2265 			}
2266 
2267 			read_unlock(&ih->ih_lock);
2268 		}
2269 
2270 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2271 					mp->m_bsize * blks_per_cluster,
2272 					XFS_BUF_LOCK);
2273 
2274 		pre_flushed = 0;
2275 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2276 		while (lip) {
2277 			if (lip->li_type == XFS_LI_INODE) {
2278 				iip = (xfs_inode_log_item_t *)lip;
2279 				ASSERT(iip->ili_logged == 1);
2280 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2281 				AIL_LOCK(mp,s);
2282 				iip->ili_flush_lsn = iip->ili_item.li_lsn;
2283 				AIL_UNLOCK(mp, s);
2284 				iip->ili_inode->i_flags |= XFS_ISTALE;
2285 				pre_flushed++;
2286 			}
2287 			lip = lip->li_bio_list;
2288 		}
2289 
2290 		for (i = 0; i < found; i++) {
2291 			ip = ip_found[i];
2292 			iip = ip->i_itemp;
2293 
2294 			if (!iip) {
2295 				ip->i_update_core = 0;
2296 				xfs_ifunlock(ip);
2297 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2298 				continue;
2299 			}
2300 
2301 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2302 			iip->ili_format.ilf_fields = 0;
2303 			iip->ili_logged = 1;
2304 			AIL_LOCK(mp,s);
2305 			iip->ili_flush_lsn = iip->ili_item.li_lsn;
2306 			AIL_UNLOCK(mp, s);
2307 
2308 			xfs_buf_attach_iodone(bp,
2309 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2310 				xfs_istale_done, (xfs_log_item_t *)iip);
2311 			if (ip != free_ip) {
2312 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2313 			}
2314 		}
2315 
2316 		if (found || pre_flushed)
2317 			xfs_trans_stale_inode_buf(tp, bp);
2318 		xfs_trans_binval(tp, bp);
2319 	}
2320 
2321 	kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2322 }
2323 
2324 /*
2325  * This is called to return an inode to the inode free list.
2326  * The inode should already be truncated to 0 length and have
2327  * no pages associated with it.  This routine also assumes that
2328  * the inode is already a part of the transaction.
2329  *
2330  * The on-disk copy of the inode will have been added to the list
2331  * of unlinked inodes in the AGI. We need to remove the inode from
2332  * that list atomically with respect to freeing it here.
2333  */
2334 int
xfs_ifree(xfs_trans_t * tp,xfs_inode_t * ip,xfs_bmap_free_t * flist)2335 xfs_ifree(
2336 	xfs_trans_t	*tp,
2337 	xfs_inode_t	*ip,
2338 	xfs_bmap_free_t	*flist)
2339 {
2340 	int			error;
2341 	int			delete;
2342 	xfs_ino_t		first_ino;
2343 
2344 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2345 	ASSERT(ip->i_transp == tp);
2346 	ASSERT(ip->i_d.di_nlink == 0);
2347 	ASSERT(ip->i_d.di_nextents == 0);
2348 	ASSERT(ip->i_d.di_anextents == 0);
2349 	ASSERT((ip->i_d.di_size == 0) ||
2350 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2351 	ASSERT(ip->i_d.di_nblocks == 0);
2352 
2353 	/*
2354 	 * Pull the on-disk inode from the AGI unlinked list.
2355 	 */
2356 	error = xfs_iunlink_remove(tp, ip);
2357 	if (error != 0) {
2358 		return error;
2359 	}
2360 
2361 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2362 	if (error != 0) {
2363 		return error;
2364 	}
2365 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2366 	ip->i_d.di_flags = 0;
2367 	ip->i_d.di_dmevmask = 0;
2368 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2369 	ip->i_df.if_ext_max =
2370 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2371 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2372 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2373 	/*
2374 	 * Bump the generation count so no one will be confused
2375 	 * by reincarnations of this inode.
2376 	 */
2377 	ip->i_d.di_gen++;
2378 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2379 
2380 	if (delete) {
2381 		xfs_ifree_cluster(ip, tp, first_ino);
2382 	}
2383 
2384 	return 0;
2385 }
2386 
2387 /*
2388  * Reallocate the space for if_broot based on the number of records
2389  * being added or deleted as indicated in rec_diff.  Move the records
2390  * and pointers in if_broot to fit the new size.  When shrinking this
2391  * will eliminate holes between the records and pointers created by
2392  * the caller.  When growing this will create holes to be filled in
2393  * by the caller.
2394  *
2395  * The caller must not request to add more records than would fit in
2396  * the on-disk inode root.  If the if_broot is currently NULL, then
2397  * if we adding records one will be allocated.  The caller must also
2398  * not request that the number of records go below zero, although
2399  * it can go to zero.
2400  *
2401  * ip -- the inode whose if_broot area is changing
2402  * ext_diff -- the change in the number of records, positive or negative,
2403  *	 requested for the if_broot array.
2404  */
2405 void
xfs_iroot_realloc(xfs_inode_t * ip,int rec_diff,int whichfork)2406 xfs_iroot_realloc(
2407 	xfs_inode_t		*ip,
2408 	int			rec_diff,
2409 	int			whichfork)
2410 {
2411 	int			cur_max;
2412 	xfs_ifork_t		*ifp;
2413 	xfs_bmbt_block_t	*new_broot;
2414 	int			new_max;
2415 	size_t			new_size;
2416 	char			*np;
2417 	char			*op;
2418 
2419 	/*
2420 	 * Handle the degenerate case quietly.
2421 	 */
2422 	if (rec_diff == 0) {
2423 		return;
2424 	}
2425 
2426 	ifp = XFS_IFORK_PTR(ip, whichfork);
2427 	if (rec_diff > 0) {
2428 		/*
2429 		 * If there wasn't any memory allocated before, just
2430 		 * allocate it now and get out.
2431 		 */
2432 		if (ifp->if_broot_bytes == 0) {
2433 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2434 			ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2435 								     KM_SLEEP);
2436 			ifp->if_broot_bytes = (int)new_size;
2437 			return;
2438 		}
2439 
2440 		/*
2441 		 * If there is already an existing if_broot, then we need
2442 		 * to realloc() it and shift the pointers to their new
2443 		 * location.  The records don't change location because
2444 		 * they are kept butted up against the btree block header.
2445 		 */
2446 		cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2447 		new_max = cur_max + rec_diff;
2448 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2449 		ifp->if_broot = (xfs_bmbt_block_t *)
2450 		  kmem_realloc(ifp->if_broot,
2451 				new_size,
2452 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2453 				KM_SLEEP);
2454 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2455 						      ifp->if_broot_bytes);
2456 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2457 						      (int)new_size);
2458 		ifp->if_broot_bytes = (int)new_size;
2459 		ASSERT(ifp->if_broot_bytes <=
2460 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2461 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2462 		return;
2463 	}
2464 
2465 	/*
2466 	 * rec_diff is less than 0.  In this case, we are shrinking the
2467 	 * if_broot buffer.  It must already exist.  If we go to zero
2468 	 * records, just get rid of the root and clear the status bit.
2469 	 */
2470 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2471 	cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2472 	new_max = cur_max + rec_diff;
2473 	ASSERT(new_max >= 0);
2474 	if (new_max > 0)
2475 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2476 	else
2477 		new_size = 0;
2478 	if (new_size > 0) {
2479 		new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2480 		/*
2481 		 * First copy over the btree block header.
2482 		 */
2483 		memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2484 	} else {
2485 		new_broot = NULL;
2486 		ifp->if_flags &= ~XFS_IFBROOT;
2487 	}
2488 
2489 	/*
2490 	 * Only copy the records and pointers if there are any.
2491 	 */
2492 	if (new_max > 0) {
2493 		/*
2494 		 * First copy the records.
2495 		 */
2496 		op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2497 						     ifp->if_broot_bytes);
2498 		np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2499 						     (int)new_size);
2500 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2501 
2502 		/*
2503 		 * Then copy the pointers.
2504 		 */
2505 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2506 						     ifp->if_broot_bytes);
2507 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2508 						     (int)new_size);
2509 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2510 	}
2511 	kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2512 	ifp->if_broot = new_broot;
2513 	ifp->if_broot_bytes = (int)new_size;
2514 	ASSERT(ifp->if_broot_bytes <=
2515 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2516 	return;
2517 }
2518 
2519 
2520 /*
2521  * This is called when the amount of space needed for if_extents
2522  * is increased or decreased.  The change in size is indicated by
2523  * the number of extents that need to be added or deleted in the
2524  * ext_diff parameter.
2525  *
2526  * If the amount of space needed has decreased below the size of the
2527  * inline buffer, then switch to using the inline buffer.  Otherwise,
2528  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2529  * to what is needed.
2530  *
2531  * ip -- the inode whose if_extents area is changing
2532  * ext_diff -- the change in the number of extents, positive or negative,
2533  *	 requested for the if_extents array.
2534  */
2535 void
xfs_iext_realloc(xfs_inode_t * ip,int ext_diff,int whichfork)2536 xfs_iext_realloc(
2537 	xfs_inode_t	*ip,
2538 	int		ext_diff,
2539 	int		whichfork)
2540 {
2541 	int		byte_diff;
2542 	xfs_ifork_t	*ifp;
2543 	int		new_size;
2544 	uint		rnew_size;
2545 
2546 	if (ext_diff == 0) {
2547 		return;
2548 	}
2549 
2550 	ifp = XFS_IFORK_PTR(ip, whichfork);
2551 	byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t);
2552 	new_size = (int)ifp->if_bytes + byte_diff;
2553 	ASSERT(new_size >= 0);
2554 
2555 	if (new_size == 0) {
2556 		if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2557 			ASSERT(ifp->if_real_bytes != 0);
2558 			kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2559 		}
2560 		ifp->if_u1.if_extents = NULL;
2561 		rnew_size = 0;
2562 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) {
2563 		/*
2564 		 * If the valid extents can fit in if_inline_ext,
2565 		 * copy them from the malloc'd vector and free it.
2566 		 */
2567 		if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2568 			/*
2569 			 * For now, empty files are format EXTENTS,
2570 			 * so the if_extents pointer is null.
2571 			 */
2572 			if (ifp->if_u1.if_extents) {
2573 				memcpy(ifp->if_u2.if_inline_ext,
2574 					ifp->if_u1.if_extents, new_size);
2575 				kmem_free(ifp->if_u1.if_extents,
2576 					  ifp->if_real_bytes);
2577 			}
2578 			ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2579 		}
2580 		rnew_size = 0;
2581 	} else {
2582 		rnew_size = new_size;
2583 		if ((rnew_size & (rnew_size - 1)) != 0)
2584 			rnew_size = xfs_iroundup(rnew_size);
2585 		/*
2586 		 * Stuck with malloc/realloc.
2587 		 */
2588 		if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) {
2589 			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2590 				kmem_alloc(rnew_size, KM_SLEEP);
2591 			memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
2592 			      sizeof(ifp->if_u2.if_inline_ext));
2593 		} else if (rnew_size != ifp->if_real_bytes) {
2594 			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2595 			  kmem_realloc(ifp->if_u1.if_extents,
2596 					rnew_size,
2597 					ifp->if_real_bytes,
2598 					KM_NOFS);
2599 		}
2600 	}
2601 	ifp->if_real_bytes = rnew_size;
2602 	ifp->if_bytes = new_size;
2603 }
2604 
2605 
2606 /*
2607  * This is called when the amount of space needed for if_data
2608  * is increased or decreased.  The change in size is indicated by
2609  * the number of bytes that need to be added or deleted in the
2610  * byte_diff parameter.
2611  *
2612  * If the amount of space needed has decreased below the size of the
2613  * inline buffer, then switch to using the inline buffer.  Otherwise,
2614  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2615  * to what is needed.
2616  *
2617  * ip -- the inode whose if_data area is changing
2618  * byte_diff -- the change in the number of bytes, positive or negative,
2619  *	 requested for the if_data array.
2620  */
2621 void
xfs_idata_realloc(xfs_inode_t * ip,int byte_diff,int whichfork)2622 xfs_idata_realloc(
2623 	xfs_inode_t	*ip,
2624 	int		byte_diff,
2625 	int		whichfork)
2626 {
2627 	xfs_ifork_t	*ifp;
2628 	int		new_size;
2629 	int		real_size;
2630 
2631 	if (byte_diff == 0) {
2632 		return;
2633 	}
2634 
2635 	ifp = XFS_IFORK_PTR(ip, whichfork);
2636 	new_size = (int)ifp->if_bytes + byte_diff;
2637 	ASSERT(new_size >= 0);
2638 
2639 	if (new_size == 0) {
2640 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2641 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2642 		}
2643 		ifp->if_u1.if_data = NULL;
2644 		real_size = 0;
2645 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2646 		/*
2647 		 * If the valid extents/data can fit in if_inline_ext/data,
2648 		 * copy them from the malloc'd vector and free it.
2649 		 */
2650 		if (ifp->if_u1.if_data == NULL) {
2651 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2652 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2653 			ASSERT(ifp->if_real_bytes != 0);
2654 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2655 			      new_size);
2656 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2657 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2658 		}
2659 		real_size = 0;
2660 	} else {
2661 		/*
2662 		 * Stuck with malloc/realloc.
2663 		 * For inline data, the underlying buffer must be
2664 		 * a multiple of 4 bytes in size so that it can be
2665 		 * logged and stay on word boundaries.  We enforce
2666 		 * that here.
2667 		 */
2668 		real_size = roundup(new_size, 4);
2669 		if (ifp->if_u1.if_data == NULL) {
2670 			ASSERT(ifp->if_real_bytes == 0);
2671 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2672 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2673 			/*
2674 			 * Only do the realloc if the underlying size
2675 			 * is really changing.
2676 			 */
2677 			if (ifp->if_real_bytes != real_size) {
2678 				ifp->if_u1.if_data =
2679 					kmem_realloc(ifp->if_u1.if_data,
2680 							real_size,
2681 							ifp->if_real_bytes,
2682 							KM_SLEEP);
2683 			}
2684 		} else {
2685 			ASSERT(ifp->if_real_bytes == 0);
2686 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2687 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2688 				ifp->if_bytes);
2689 		}
2690 	}
2691 	ifp->if_real_bytes = real_size;
2692 	ifp->if_bytes = new_size;
2693 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2694 }
2695 
2696 
2697 
2698 
2699 /*
2700  * Map inode to disk block and offset.
2701  *
2702  * mp -- the mount point structure for the current file system
2703  * tp -- the current transaction
2704  * ino -- the inode number of the inode to be located
2705  * imap -- this structure is filled in with the information necessary
2706  *	 to retrieve the given inode from disk
2707  * flags -- flags to pass to xfs_dilocate indicating whether or not
2708  *	 lookups in the inode btree were OK or not
2709  */
2710 int
xfs_imap(xfs_mount_t * mp,xfs_trans_t * tp,xfs_ino_t ino,xfs_imap_t * imap,uint flags)2711 xfs_imap(
2712 	xfs_mount_t	*mp,
2713 	xfs_trans_t	*tp,
2714 	xfs_ino_t	ino,
2715 	xfs_imap_t	*imap,
2716 	uint		flags)
2717 {
2718 	xfs_fsblock_t	fsbno;
2719 	int		len;
2720 	int		off;
2721 	int		error;
2722 
2723 	fsbno = imap->im_blkno ?
2724 		XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2725 	error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2726 	if (error != 0) {
2727 		return error;
2728 	}
2729 	imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2730 	imap->im_len = XFS_FSB_TO_BB(mp, len);
2731 	imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2732 	imap->im_ioffset = (ushort)off;
2733 	imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2734 	return 0;
2735 }
2736 
2737 void
xfs_idestroy_fork(xfs_inode_t * ip,int whichfork)2738 xfs_idestroy_fork(
2739 	xfs_inode_t	*ip,
2740 	int		whichfork)
2741 {
2742 	xfs_ifork_t	*ifp;
2743 
2744 	ifp = XFS_IFORK_PTR(ip, whichfork);
2745 	if (ifp->if_broot != NULL) {
2746 		kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2747 		ifp->if_broot = NULL;
2748 	}
2749 
2750 	/*
2751 	 * If the format is local, then we can't have an extents
2752 	 * array so just look for an inline data array.  If we're
2753 	 * not local then we may or may not have an extents list,
2754 	 * so check and free it up if we do.
2755 	 */
2756 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2757 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2758 		    (ifp->if_u1.if_data != NULL)) {
2759 			ASSERT(ifp->if_real_bytes != 0);
2760 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2761 			ifp->if_u1.if_data = NULL;
2762 			ifp->if_real_bytes = 0;
2763 		}
2764 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2765 		   (ifp->if_u1.if_extents != NULL) &&
2766 		   (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) {
2767 		ASSERT(ifp->if_real_bytes != 0);
2768 		kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2769 		ifp->if_u1.if_extents = NULL;
2770 		ifp->if_real_bytes = 0;
2771 	}
2772 	ASSERT(ifp->if_u1.if_extents == NULL ||
2773 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2774 	ASSERT(ifp->if_real_bytes == 0);
2775 	if (whichfork == XFS_ATTR_FORK) {
2776 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2777 		ip->i_afp = NULL;
2778 	}
2779 }
2780 
2781 /*
2782  * This is called free all the memory associated with an inode.
2783  * It must free the inode itself and any buffers allocated for
2784  * if_extents/if_data and if_broot.  It must also free the lock
2785  * associated with the inode.
2786  */
2787 void
xfs_idestroy(xfs_inode_t * ip)2788 xfs_idestroy(
2789 	xfs_inode_t	*ip)
2790 {
2791 
2792 	switch (ip->i_d.di_mode & S_IFMT) {
2793 	case S_IFREG:
2794 	case S_IFDIR:
2795 	case S_IFLNK:
2796 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
2797 		break;
2798 	}
2799 	if (ip->i_afp)
2800 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2801 	mrfree(&ip->i_lock);
2802 	mrfree(&ip->i_iolock);
2803 	freesema(&ip->i_flock);
2804 #ifdef XFS_BMAP_TRACE
2805 	ktrace_free(ip->i_xtrace);
2806 #endif
2807 #ifdef XFS_BMBT_TRACE
2808 	ktrace_free(ip->i_btrace);
2809 #endif
2810 #ifdef XFS_RW_TRACE
2811 	ktrace_free(ip->i_rwtrace);
2812 #endif
2813 #ifdef XFS_ILOCK_TRACE
2814 	ktrace_free(ip->i_lock_trace);
2815 #endif
2816 #ifdef XFS_DIR2_TRACE
2817 	ktrace_free(ip->i_dir_trace);
2818 #endif
2819 	if (ip->i_itemp) {
2820 		/* XXXdpd should be able to assert this but shutdown
2821 		 * is leaving the AIL behind. */
2822 		ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2823 		       XFS_FORCED_SHUTDOWN(ip->i_mount));
2824 		xfs_inode_item_destroy(ip);
2825 	}
2826 	kmem_zone_free(xfs_inode_zone, ip);
2827 }
2828 
2829 
2830 /*
2831  * Increment the pin count of the given buffer.
2832  * This value is protected by ipinlock spinlock in the mount structure.
2833  */
2834 void
xfs_ipin(xfs_inode_t * ip)2835 xfs_ipin(
2836 	xfs_inode_t	*ip)
2837 {
2838 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2839 
2840 	atomic_inc(&ip->i_pincount);
2841 }
2842 
2843 /*
2844  * Decrement the pin count of the given inode, and wake up
2845  * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2846  * inode must have been previoulsy pinned with a call to xfs_ipin().
2847  */
2848 void
xfs_iunpin(xfs_inode_t * ip)2849 xfs_iunpin(
2850 	xfs_inode_t	*ip)
2851 {
2852 	ASSERT(atomic_read(&ip->i_pincount) > 0);
2853 
2854 	if (atomic_dec_and_test(&ip->i_pincount)) {
2855 		vnode_t	*vp = XFS_ITOV_NULL(ip);
2856 
2857 		/* make sync come back and flush this inode */
2858 		if (vp) {
2859 			struct inode	*inode = LINVFS_GET_IP(vp);
2860 
2861 			if (!(inode->i_state & I_NEW))
2862 				mark_inode_dirty_sync(inode);
2863 		}
2864 
2865 		wake_up(&ip->i_ipin_wait);
2866 	}
2867 }
2868 
2869 /*
2870  * This is called to wait for the given inode to be unpinned.
2871  * It will sleep until this happens.  The caller must have the
2872  * inode locked in at least shared mode so that the buffer cannot
2873  * be subsequently pinned once someone is waiting for it to be
2874  * unpinned.
2875  */
2876 void
xfs_iunpin_wait(xfs_inode_t * ip)2877 xfs_iunpin_wait(
2878 	xfs_inode_t	*ip)
2879 {
2880 	xfs_inode_log_item_t	*iip;
2881 	xfs_lsn_t	lsn;
2882 
2883 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2884 
2885 	if (atomic_read(&ip->i_pincount) == 0) {
2886 		return;
2887 	}
2888 
2889 	iip = ip->i_itemp;
2890 	if (iip && iip->ili_last_lsn) {
2891 		lsn = iip->ili_last_lsn;
2892 	} else {
2893 		lsn = (xfs_lsn_t)0;
2894 	}
2895 
2896 	/*
2897 	 * Give the log a push so we don't wait here too long.
2898 	 */
2899 	xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2900 
2901 	wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2902 }
2903 
2904 
2905 /*
2906  * xfs_iextents_copy()
2907  *
2908  * This is called to copy the REAL extents (as opposed to the delayed
2909  * allocation extents) from the inode into the given buffer.  It
2910  * returns the number of bytes copied into the buffer.
2911  *
2912  * If there are no delayed allocation extents, then we can just
2913  * memcpy() the extents into the buffer.  Otherwise, we need to
2914  * examine each extent in turn and skip those which are delayed.
2915  */
2916 int
xfs_iextents_copy(xfs_inode_t * ip,xfs_bmbt_rec_t * buffer,int whichfork)2917 xfs_iextents_copy(
2918 	xfs_inode_t		*ip,
2919 	xfs_bmbt_rec_t		*buffer,
2920 	int			whichfork)
2921 {
2922 	int			copied;
2923 	xfs_bmbt_rec_t		*dest_ep;
2924 	xfs_bmbt_rec_t		*ep;
2925 #ifdef XFS_BMAP_TRACE
2926 	static char		fname[] = "xfs_iextents_copy";
2927 #endif
2928 	int			i;
2929 	xfs_ifork_t		*ifp;
2930 	int			nrecs;
2931 	xfs_fsblock_t		start_block;
2932 
2933 	ifp = XFS_IFORK_PTR(ip, whichfork);
2934 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2935 	ASSERT(ifp->if_bytes > 0);
2936 
2937 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2938 	xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2939 	ASSERT(nrecs > 0);
2940 
2941 	/*
2942 	 * There are some delayed allocation extents in the
2943 	 * inode, so copy the extents one at a time and skip
2944 	 * the delayed ones.  There must be at least one
2945 	 * non-delayed extent.
2946 	 */
2947 	ep = ifp->if_u1.if_extents;
2948 	dest_ep = buffer;
2949 	copied = 0;
2950 	for (i = 0; i < nrecs; i++) {
2951 		start_block = xfs_bmbt_get_startblock(ep);
2952 		if (ISNULLSTARTBLOCK(start_block)) {
2953 			/*
2954 			 * It's a delayed allocation extent, so skip it.
2955 			 */
2956 			ep++;
2957 			continue;
2958 		}
2959 
2960 		/* Translate to on disk format */
2961 		put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2962 			      (__uint64_t*)&dest_ep->l0);
2963 		put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2964 			      (__uint64_t*)&dest_ep->l1);
2965 		dest_ep++;
2966 		ep++;
2967 		copied++;
2968 	}
2969 	ASSERT(copied != 0);
2970 	xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip));
2971 
2972 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2973 }
2974 
2975 /*
2976  * Each of the following cases stores data into the same region
2977  * of the on-disk inode, so only one of them can be valid at
2978  * any given time. While it is possible to have conflicting formats
2979  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2980  * in EXTENTS format, this can only happen when the fork has
2981  * changed formats after being modified but before being flushed.
2982  * In these cases, the format always takes precedence, because the
2983  * format indicates the current state of the fork.
2984  */
2985 /*ARGSUSED*/
2986 STATIC int
xfs_iflush_fork(xfs_inode_t * ip,xfs_dinode_t * dip,xfs_inode_log_item_t * iip,int whichfork,xfs_buf_t * bp)2987 xfs_iflush_fork(
2988 	xfs_inode_t		*ip,
2989 	xfs_dinode_t		*dip,
2990 	xfs_inode_log_item_t	*iip,
2991 	int			whichfork,
2992 	xfs_buf_t		*bp)
2993 {
2994 	char			*cp;
2995 	xfs_ifork_t		*ifp;
2996 	xfs_mount_t		*mp;
2997 #ifdef XFS_TRANS_DEBUG
2998 	int			first;
2999 #endif
3000 	static const short	brootflag[2] =
3001 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
3002 	static const short	dataflag[2] =
3003 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
3004 	static const short	extflag[2] =
3005 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
3006 
3007 	if (iip == NULL)
3008 		return 0;
3009 	ifp = XFS_IFORK_PTR(ip, whichfork);
3010 	/*
3011 	 * This can happen if we gave up in iformat in an error path,
3012 	 * for the attribute fork.
3013 	 */
3014 	if (ifp == NULL) {
3015 		ASSERT(whichfork == XFS_ATTR_FORK);
3016 		return 0;
3017 	}
3018 	cp = XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT);
3019 	mp = ip->i_mount;
3020 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
3021 	case XFS_DINODE_FMT_LOCAL:
3022 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
3023 		    (ifp->if_bytes > 0)) {
3024 			ASSERT(ifp->if_u1.if_data != NULL);
3025 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
3026 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
3027 		}
3028 		if (whichfork == XFS_DATA_FORK) {
3029 			if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
3030 				XFS_ERROR_REPORT("xfs_iflush_fork",
3031 						 XFS_ERRLEVEL_LOW, mp);
3032 				return XFS_ERROR(EFSCORRUPTED);
3033 			}
3034 		}
3035 		break;
3036 
3037 	case XFS_DINODE_FMT_EXTENTS:
3038 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
3039 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
3040 		ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0));
3041 		ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0));
3042 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
3043 		    (ifp->if_bytes > 0)) {
3044 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3045 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3046 				whichfork);
3047 		}
3048 		break;
3049 
3050 	case XFS_DINODE_FMT_BTREE:
3051 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3052 		    (ifp->if_broot_bytes > 0)) {
3053 			ASSERT(ifp->if_broot != NULL);
3054 			ASSERT(ifp->if_broot_bytes <=
3055 			       (XFS_IFORK_SIZE(ip, whichfork) +
3056 				XFS_BROOT_SIZE_ADJ));
3057 			xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3058 				(xfs_bmdr_block_t *)cp,
3059 				XFS_DFORK_SIZE_ARCH(dip, mp, whichfork, ARCH_CONVERT));
3060 		}
3061 		break;
3062 
3063 	case XFS_DINODE_FMT_DEV:
3064 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3065 			ASSERT(whichfork == XFS_DATA_FORK);
3066 			INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3067 		}
3068 		break;
3069 
3070 	case XFS_DINODE_FMT_UUID:
3071 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3072 			ASSERT(whichfork == XFS_DATA_FORK);
3073 			memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3074 				sizeof(uuid_t));
3075 		}
3076 		break;
3077 
3078 	default:
3079 		ASSERT(0);
3080 		break;
3081 	}
3082 
3083 	return 0;
3084 }
3085 
3086 /*
3087  * xfs_iflush() will write a modified inode's changes out to the
3088  * inode's on disk home.  The caller must have the inode lock held
3089  * in at least shared mode and the inode flush semaphore must be
3090  * held as well.  The inode lock will still be held upon return from
3091  * the call and the caller is free to unlock it.
3092  * The inode flush lock will be unlocked when the inode reaches the disk.
3093  * The flags indicate how the inode's buffer should be written out.
3094  */
3095 int
xfs_iflush(xfs_inode_t * ip,uint flags)3096 xfs_iflush(
3097 	xfs_inode_t		*ip,
3098 	uint			flags)
3099 {
3100 	xfs_inode_log_item_t	*iip;
3101 	xfs_buf_t		*bp;
3102 	xfs_dinode_t		*dip;
3103 	xfs_mount_t		*mp;
3104 	int			error;
3105 	/* REFERENCED */
3106 	xfs_chash_t		*ch;
3107 	xfs_inode_t		*iq;
3108 	int			clcount;	/* count of inodes clustered */
3109 	int			bufwasdelwri;
3110 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3111 	SPLDECL(s);
3112 
3113 	XFS_STATS_INC(xs_iflush_count);
3114 
3115 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3116 	ASSERT(valusema(&ip->i_flock) <= 0);
3117 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3118 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3119 
3120 	iip = ip->i_itemp;
3121 	mp = ip->i_mount;
3122 
3123 	/*
3124 	 * If the inode isn't dirty, then just release the inode
3125 	 * flush lock and do nothing.
3126 	 */
3127 	if ((ip->i_update_core == 0) &&
3128 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3129 		ASSERT((iip != NULL) ?
3130 			 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3131 		xfs_ifunlock(ip);
3132 		return 0;
3133 	}
3134 
3135 	/*
3136 	 * We can't flush the inode until it is unpinned, so
3137 	 * wait for it.  We know noone new can pin it, because
3138 	 * we are holding the inode lock shared and you need
3139 	 * to hold it exclusively to pin the inode.
3140 	 */
3141 	xfs_iunpin_wait(ip);
3142 
3143 	/*
3144 	 * This may have been unpinned because the filesystem is shutting
3145 	 * down forcibly. If that's the case we must not write this inode
3146 	 * to disk, because the log record didn't make it to disk!
3147 	 */
3148 	if (XFS_FORCED_SHUTDOWN(mp)) {
3149 		ip->i_update_core = 0;
3150 		if (iip)
3151 			iip->ili_format.ilf_fields = 0;
3152 		xfs_ifunlock(ip);
3153 		return XFS_ERROR(EIO);
3154 	}
3155 
3156 	/*
3157 	 * Get the buffer containing the on-disk inode.
3158 	 */
3159 	error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0);
3160 	if (error != 0) {
3161 		xfs_ifunlock(ip);
3162 		return error;
3163 	}
3164 
3165 	/*
3166 	 * Decide how buffer will be flushed out.  This is done before
3167 	 * the call to xfs_iflush_int because this field is zeroed by it.
3168 	 */
3169 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3170 		/*
3171 		 * Flush out the inode buffer according to the directions
3172 		 * of the caller.  In the cases where the caller has given
3173 		 * us a choice choose the non-delwri case.  This is because
3174 		 * the inode is in the AIL and we need to get it out soon.
3175 		 */
3176 		switch (flags) {
3177 		case XFS_IFLUSH_SYNC:
3178 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3179 			flags = 0;
3180 			break;
3181 		case XFS_IFLUSH_ASYNC:
3182 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3183 			flags = INT_ASYNC;
3184 			break;
3185 		case XFS_IFLUSH_DELWRI:
3186 			flags = INT_DELWRI;
3187 			break;
3188 		default:
3189 			ASSERT(0);
3190 			flags = 0;
3191 			break;
3192 		}
3193 	} else {
3194 		switch (flags) {
3195 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3196 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3197 		case XFS_IFLUSH_DELWRI:
3198 			flags = INT_DELWRI;
3199 			break;
3200 		case XFS_IFLUSH_ASYNC:
3201 			flags = INT_ASYNC;
3202 			break;
3203 		case XFS_IFLUSH_SYNC:
3204 			flags = 0;
3205 			break;
3206 		default:
3207 			ASSERT(0);
3208 			flags = 0;
3209 			break;
3210 		}
3211 	}
3212 
3213 	/*
3214 	 * First flush out the inode that xfs_iflush was called with.
3215 	 */
3216 	error = xfs_iflush_int(ip, bp);
3217 	if (error) {
3218 		goto corrupt_out;
3219 	}
3220 
3221 	/*
3222 	 * inode clustering:
3223 	 * see if other inodes can be gathered into this write
3224 	 */
3225 
3226 	ip->i_chash->chl_buf = bp;
3227 
3228 	ch = XFS_CHASH(mp, ip->i_blkno);
3229 	s = mutex_spinlock(&ch->ch_lock);
3230 
3231 	clcount = 0;
3232 	for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3233 		/*
3234 		 * Do an un-protected check to see if the inode is dirty and
3235 		 * is a candidate for flushing.  These checks will be repeated
3236 		 * later after the appropriate locks are acquired.
3237 		 */
3238 		iip = iq->i_itemp;
3239 		if ((iq->i_update_core == 0) &&
3240 		    ((iip == NULL) ||
3241 		     !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3242 		      xfs_ipincount(iq) == 0) {
3243 			continue;
3244 		}
3245 
3246 		/*
3247 		 * Try to get locks.  If any are unavailable,
3248 		 * then this inode cannot be flushed and is skipped.
3249 		 */
3250 
3251 		/* get inode locks (just i_lock) */
3252 		if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3253 			/* get inode flush lock */
3254 			if (xfs_iflock_nowait(iq)) {
3255 				/* check if pinned */
3256 				if (xfs_ipincount(iq) == 0) {
3257 					/* arriving here means that
3258 					 * this inode can be flushed.
3259 					 * first re-check that it's
3260 					 * dirty
3261 					 */
3262 					iip = iq->i_itemp;
3263 					if ((iq->i_update_core != 0)||
3264 					    ((iip != NULL) &&
3265 					     (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3266 						clcount++;
3267 						error = xfs_iflush_int(iq, bp);
3268 						if (error) {
3269 							xfs_iunlock(iq,
3270 								    XFS_ILOCK_SHARED);
3271 							goto cluster_corrupt_out;
3272 						}
3273 					} else {
3274 						xfs_ifunlock(iq);
3275 					}
3276 				} else {
3277 					xfs_ifunlock(iq);
3278 				}
3279 			}
3280 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3281 		}
3282 	}
3283 	mutex_spinunlock(&ch->ch_lock, s);
3284 
3285 	if (clcount) {
3286 		XFS_STATS_INC(xs_icluster_flushcnt);
3287 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3288 	}
3289 
3290 	/*
3291 	 * If the buffer is pinned then push on the log so we won't
3292 	 * get stuck waiting in the write for too long.
3293 	 */
3294 	if (XFS_BUF_ISPINNED(bp)){
3295 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3296 	}
3297 
3298 	if (flags & INT_DELWRI) {
3299 		xfs_bdwrite(mp, bp);
3300 	} else if (flags & INT_ASYNC) {
3301 		xfs_bawrite(mp, bp);
3302 	} else {
3303 		error = xfs_bwrite(mp, bp);
3304 	}
3305 	return error;
3306 
3307 corrupt_out:
3308 	xfs_buf_relse(bp);
3309 	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3310 	xfs_iflush_abort(ip);
3311 	/*
3312 	 * Unlocks the flush lock
3313 	 */
3314 	return XFS_ERROR(EFSCORRUPTED);
3315 
3316 cluster_corrupt_out:
3317 	/* Corruption detected in the clustering loop.  Invalidate the
3318 	 * inode buffer and shut down the filesystem.
3319 	 */
3320 	mutex_spinunlock(&ch->ch_lock, s);
3321 
3322 	/*
3323 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
3324 	 * brelse can handle it with no problems.  If not, shut down the
3325 	 * filesystem before releasing the buffer.
3326 	 */
3327 	if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3328 		xfs_buf_relse(bp);
3329 	}
3330 
3331 	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3332 
3333 	if(!bufwasdelwri)  {
3334 		/*
3335 		 * Just like incore_relse: if we have b_iodone functions,
3336 		 * mark the buffer as an error and call them.  Otherwise
3337 		 * mark it as stale and brelse.
3338 		 */
3339 		if (XFS_BUF_IODONE_FUNC(bp)) {
3340 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3341 			XFS_BUF_UNDONE(bp);
3342 			XFS_BUF_STALE(bp);
3343 			XFS_BUF_SHUT(bp);
3344 			XFS_BUF_ERROR(bp,EIO);
3345 			xfs_biodone(bp);
3346 		} else {
3347 			XFS_BUF_STALE(bp);
3348 			xfs_buf_relse(bp);
3349 		}
3350 	}
3351 
3352 	xfs_iflush_abort(iq);
3353 	/*
3354 	 * Unlocks the flush lock
3355 	 */
3356 	return XFS_ERROR(EFSCORRUPTED);
3357 }
3358 
3359 
3360 STATIC int
xfs_iflush_int(xfs_inode_t * ip,xfs_buf_t * bp)3361 xfs_iflush_int(
3362 	xfs_inode_t		*ip,
3363 	xfs_buf_t		*bp)
3364 {
3365 	xfs_inode_log_item_t	*iip;
3366 	xfs_dinode_t		*dip;
3367 	xfs_mount_t		*mp;
3368 #ifdef XFS_TRANS_DEBUG
3369 	int			first;
3370 #endif
3371 	SPLDECL(s);
3372 
3373 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3374 	ASSERT(valusema(&ip->i_flock) <= 0);
3375 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3376 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3377 
3378 	iip = ip->i_itemp;
3379 	mp = ip->i_mount;
3380 
3381 
3382 	/*
3383 	 * If the inode isn't dirty, then just release the inode
3384 	 * flush lock and do nothing.
3385 	 */
3386 	if ((ip->i_update_core == 0) &&
3387 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3388 		xfs_ifunlock(ip);
3389 		return 0;
3390 	}
3391 
3392 	/* set *dip = inode's place in the buffer */
3393 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3394 
3395 	/*
3396 	 * Clear i_update_core before copying out the data.
3397 	 * This is for coordination with our timestamp updates
3398 	 * that don't hold the inode lock. They will always
3399 	 * update the timestamps BEFORE setting i_update_core,
3400 	 * so if we clear i_update_core after they set it we
3401 	 * are guaranteed to see their updates to the timestamps.
3402 	 * I believe that this depends on strongly ordered memory
3403 	 * semantics, but we have that.  We use the SYNCHRONIZE
3404 	 * macro to make sure that the compiler does not reorder
3405 	 * the i_update_core access below the data copy below.
3406 	 */
3407 	ip->i_update_core = 0;
3408 	SYNCHRONIZE();
3409 
3410 	if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3411 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3412 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3413 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3414 			ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3415 		goto corrupt_out;
3416 	}
3417 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3418 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3419 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3420 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3421 			ip->i_ino, ip, ip->i_d.di_magic);
3422 		goto corrupt_out;
3423 	}
3424 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3425 		if (XFS_TEST_ERROR(
3426 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3427 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3428 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3429 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3430 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3431 				ip->i_ino, ip);
3432 			goto corrupt_out;
3433 		}
3434 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3435 		if (XFS_TEST_ERROR(
3436 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3437 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3438 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3439 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3440 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3441 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3442 				ip->i_ino, ip);
3443 			goto corrupt_out;
3444 		}
3445 	}
3446 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3447 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3448 				XFS_RANDOM_IFLUSH_5)) {
3449 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3450 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3451 			ip->i_ino,
3452 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3453 			ip->i_d.di_nblocks,
3454 			ip);
3455 		goto corrupt_out;
3456 	}
3457 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3458 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3459 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3460 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3461 			ip->i_ino, ip->i_d.di_forkoff, ip);
3462 		goto corrupt_out;
3463 	}
3464 	/*
3465 	 * bump the flush iteration count, used to detect flushes which
3466 	 * postdate a log record during recovery.
3467 	 */
3468 
3469 	ip->i_d.di_flushiter++;
3470 
3471 	/*
3472 	 * Copy the dirty parts of the inode into the on-disk
3473 	 * inode.  We always copy out the core of the inode,
3474 	 * because if the inode is dirty at all the core must
3475 	 * be.
3476 	 */
3477 	xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d),
3478 		-1, ARCH_CONVERT);
3479 
3480 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3481 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3482 		ip->i_d.di_flushiter = 0;
3483 
3484 	/*
3485 	 * If this is really an old format inode and the superblock version
3486 	 * has not been updated to support only new format inodes, then
3487 	 * convert back to the old inode format.  If the superblock version
3488 	 * has been updated, then make the conversion permanent.
3489 	 */
3490 	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3491 	       XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3492 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3493 		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3494 			/*
3495 			 * Convert it back.
3496 			 */
3497 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3498 			INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3499 		} else {
3500 			/*
3501 			 * The superblock version has already been bumped,
3502 			 * so just make the conversion to the new inode
3503 			 * format permanent.
3504 			 */
3505 			ip->i_d.di_version = XFS_DINODE_VERSION_2;
3506 			INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3507 			ip->i_d.di_onlink = 0;
3508 			INT_ZERO(dip->di_core.di_onlink, ARCH_CONVERT);
3509 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3510 			memset(&(dip->di_core.di_pad[0]), 0,
3511 			      sizeof(dip->di_core.di_pad));
3512 			ASSERT(ip->i_d.di_projid == 0);
3513 		}
3514 	}
3515 
3516 	if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3517 		goto corrupt_out;
3518 	}
3519 
3520 	if (XFS_IFORK_Q(ip)) {
3521 		/*
3522 		 * The only error from xfs_iflush_fork is on the data fork.
3523 		 */
3524 		(void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3525 	}
3526 	xfs_inobp_check(mp, bp);
3527 
3528 	/*
3529 	 * We've recorded everything logged in the inode, so we'd
3530 	 * like to clear the ilf_fields bits so we don't log and
3531 	 * flush things unnecessarily.  However, we can't stop
3532 	 * logging all this information until the data we've copied
3533 	 * into the disk buffer is written to disk.  If we did we might
3534 	 * overwrite the copy of the inode in the log with all the
3535 	 * data after re-logging only part of it, and in the face of
3536 	 * a crash we wouldn't have all the data we need to recover.
3537 	 *
3538 	 * What we do is move the bits to the ili_last_fields field.
3539 	 * When logging the inode, these bits are moved back to the
3540 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3541 	 * clear ili_last_fields, since we know that the information
3542 	 * those bits represent is permanently on disk.  As long as
3543 	 * the flush completes before the inode is logged again, then
3544 	 * both ilf_fields and ili_last_fields will be cleared.
3545 	 *
3546 	 * We can play with the ilf_fields bits here, because the inode
3547 	 * lock must be held exclusively in order to set bits there
3548 	 * and the flush lock protects the ili_last_fields bits.
3549 	 * Set ili_logged so the flush done
3550 	 * routine can tell whether or not to look in the AIL.
3551 	 * Also, store the current LSN of the inode so that we can tell
3552 	 * whether the item has moved in the AIL from xfs_iflush_done().
3553 	 * In order to read the lsn we need the AIL lock, because
3554 	 * it is a 64 bit value that cannot be read atomically.
3555 	 */
3556 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3557 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3558 		iip->ili_format.ilf_fields = 0;
3559 		iip->ili_logged = 1;
3560 
3561 		ASSERT(sizeof(xfs_lsn_t) == 8);	/* don't lock if it shrinks */
3562 		AIL_LOCK(mp,s);
3563 		iip->ili_flush_lsn = iip->ili_item.li_lsn;
3564 		AIL_UNLOCK(mp, s);
3565 
3566 		/*
3567 		 * Attach the function xfs_iflush_done to the inode's
3568 		 * buffer.  This will remove the inode from the AIL
3569 		 * and unlock the inode's flush lock when the inode is
3570 		 * completely written to disk.
3571 		 */
3572 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3573 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3574 
3575 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3576 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3577 	} else {
3578 		/*
3579 		 * We're flushing an inode which is not in the AIL and has
3580 		 * not been logged but has i_update_core set.  For this
3581 		 * case we can use a B_DELWRI flush and immediately drop
3582 		 * the inode flush lock because we can avoid the whole
3583 		 * AIL state thing.  It's OK to drop the flush lock now,
3584 		 * because we've already locked the buffer and to do anything
3585 		 * you really need both.
3586 		 */
3587 		if (iip != NULL) {
3588 			ASSERT(iip->ili_logged == 0);
3589 			ASSERT(iip->ili_last_fields == 0);
3590 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3591 		}
3592 		xfs_ifunlock(ip);
3593 	}
3594 
3595 	return 0;
3596 
3597 corrupt_out:
3598 	return XFS_ERROR(EFSCORRUPTED);
3599 }
3600 
3601 
3602 /*
3603  * Flush all inactive inodes in mp.  Return true if no user references
3604  * were found, false otherwise.
3605  */
3606 int
xfs_iflush_all(xfs_mount_t * mp,int flag)3607 xfs_iflush_all(
3608 	xfs_mount_t	*mp,
3609 	int		flag)
3610 {
3611 	int		busy;
3612 	int		done;
3613 	int		purged;
3614 	xfs_inode_t	*ip;
3615 	vmap_t		vmap;
3616 	vnode_t		*vp;
3617 
3618 	busy = done = 0;
3619 	while (!done) {
3620 		purged = 0;
3621 		XFS_MOUNT_ILOCK(mp);
3622 		ip = mp->m_inodes;
3623 		if (ip == NULL) {
3624 			break;
3625 		}
3626 		do {
3627 			/* Make sure we skip markers inserted by sync */
3628 			if (ip->i_mount == NULL) {
3629 				ip = ip->i_mnext;
3630 				continue;
3631 			}
3632 
3633 			/*
3634 			 * It's up to our caller to purge the root
3635 			 * and quota vnodes later.
3636 			 */
3637 			vp = XFS_ITOV_NULL(ip);
3638 
3639 			if (!vp) {
3640 				XFS_MOUNT_IUNLOCK(mp);
3641 				xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3642 				purged = 1;
3643 				break;
3644 			}
3645 
3646 			if (vn_count(vp) != 0) {
3647 				if (vn_count(vp) == 1 &&
3648 				    (ip == mp->m_rootip ||
3649 				     (mp->m_quotainfo &&
3650 				      (ip->i_ino == mp->m_sb.sb_uquotino ||
3651 				       ip->i_ino == mp->m_sb.sb_gquotino)))) {
3652 
3653 					ip = ip->i_mnext;
3654 					continue;
3655 				}
3656 				if (!(flag & XFS_FLUSH_ALL)) {
3657 					busy = 1;
3658 					done = 1;
3659 					break;
3660 				}
3661 				/*
3662 				 * Ignore busy inodes but continue flushing
3663 				 * others.
3664 				 */
3665 				ip = ip->i_mnext;
3666 				continue;
3667 			}
3668 			/*
3669 			 * Sample vp mapping while holding mp locked on MP
3670 			 * systems, so we don't purge a reclaimed or
3671 			 * nonexistent vnode.  We break from the loop
3672 			 * since we know that we modify
3673 			 * it by pulling ourselves from it in xfs_reclaim()
3674 			 * called via vn_purge() below.  Set ip to the next
3675 			 * entry in the list anyway so we'll know below
3676 			 * whether we reached the end or not.
3677 			 */
3678 			VMAP(vp, vmap);
3679 			XFS_MOUNT_IUNLOCK(mp);
3680 
3681 			vn_purge(vp, &vmap);
3682 
3683 			purged = 1;
3684 			break;
3685 		} while (ip != mp->m_inodes);
3686 		/*
3687 		 * We need to distinguish between when we exit the loop
3688 		 * after a purge and when we simply hit the end of the
3689 		 * list.  We can't use the (ip == mp->m_inodes) test,
3690 		 * because when we purge an inode at the start of the list
3691 		 * the next inode on the list becomes mp->m_inodes.  That
3692 		 * would cause such a test to bail out early.  The purged
3693 		 * variable tells us how we got out of the loop.
3694 		 */
3695 		if (!purged) {
3696 			done = 1;
3697 		}
3698 	}
3699 	XFS_MOUNT_IUNLOCK(mp);
3700 	return !busy;
3701 }
3702 
3703 
3704 /*
3705  * xfs_iaccess: check accessibility of inode for mode.
3706  */
3707 int
xfs_iaccess(xfs_inode_t * ip,mode_t mode,cred_t * cr)3708 xfs_iaccess(
3709 	xfs_inode_t	*ip,
3710 	mode_t		mode,
3711 	cred_t		*cr)
3712 {
3713 	int		error;
3714 	mode_t		orgmode = mode;
3715 	struct inode	*inode = LINVFS_GET_IP(XFS_ITOV(ip));
3716 
3717 	if (mode & S_IWUSR) {
3718 		umode_t		imode = inode->i_mode;
3719 
3720 		if (IS_RDONLY(inode) &&
3721 		    (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3722 			return XFS_ERROR(EROFS);
3723 
3724 		if (IS_IMMUTABLE(inode))
3725 			return XFS_ERROR(EACCES);
3726 	}
3727 
3728 	/*
3729 	 * If there's an Access Control List it's used instead of
3730 	 * the mode bits.
3731 	 */
3732 	if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3733 		return error ? XFS_ERROR(error) : 0;
3734 
3735 	if (current_fsuid(cr) != ip->i_d.di_uid) {
3736 		mode >>= 3;
3737 		if (!in_group_p((gid_t)ip->i_d.di_gid))
3738 			mode >>= 3;
3739 	}
3740 
3741 	/*
3742 	 * If the DACs are ok we don't need any capability check.
3743 	 */
3744 	if ((ip->i_d.di_mode & mode) == mode)
3745 		return 0;
3746 	/*
3747 	 * Read/write DACs are always overridable.
3748 	 * Executable DACs are overridable if at least one exec bit is set.
3749 	 */
3750 	if (!(orgmode & S_IXUSR) ||
3751 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3752 		if (capable_cred(cr, CAP_DAC_OVERRIDE))
3753 			return 0;
3754 
3755 	if ((orgmode == S_IRUSR) ||
3756 	    (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3757 		if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3758 			return 0;
3759 #ifdef	NOISE
3760 		cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3761 #endif	/* NOISE */
3762 		return XFS_ERROR(EACCES);
3763 	}
3764 	return XFS_ERROR(EACCES);
3765 }
3766 
3767 /*
3768  * xfs_iroundup: round up argument to next power of two
3769  */
3770 uint
xfs_iroundup(uint v)3771 xfs_iroundup(
3772 	uint	v)
3773 {
3774 	int i;
3775 	uint m;
3776 
3777 	if ((v & (v - 1)) == 0)
3778 		return v;
3779 	ASSERT((v & 0x80000000) == 0);
3780 	if ((v & (v + 1)) == 0)
3781 		return v + 1;
3782 	for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3783 		if (v & m)
3784 			continue;
3785 		v |= m;
3786 		if ((v & (v + 1)) == 0)
3787 			return v + 1;
3788 	}
3789 	ASSERT(0);
3790 	return( 0 );
3791 }
3792 
3793 /*
3794  * Change the requested timestamp in the given inode.
3795  * We don't lock across timestamp updates, and we don't log them but
3796  * we do record the fact that there is dirty information in core.
3797  *
3798  * NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG
3799  *		with XFS_ICHGTIME_ACC to be sure that access time
3800  *		update will take.  Calling first with XFS_ICHGTIME_ACC
3801  *		and then XFS_ICHGTIME_MOD may fail to modify the access
3802  *		timestamp if the filesystem is mounted noacctm.
3803  */
3804 void
xfs_ichgtime(xfs_inode_t * ip,int flags)3805 xfs_ichgtime(xfs_inode_t *ip,
3806 	     int flags)
3807 {
3808 	timespec_t	tv;
3809 	vnode_t		*vp = XFS_ITOV(ip);
3810 	struct inode	*inode = LINVFS_GET_IP(vp);
3811 
3812 	/*
3813 	 * We're not supposed to change timestamps in readonly-mounted
3814 	 * filesystems.  Throw it away if anyone asks us.
3815 	 */
3816 	if (unlikely(vp->v_vfsp->vfs_flag & VFS_RDONLY))
3817 		return;
3818 
3819 	/*
3820 	 * Don't update access timestamps on reads if mounted "noatime"
3821 	 * Throw it away if anyone asks us.
3822 	 */
3823 	if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME || IS_NOATIME(inode)) &&
3824 	    ((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG))
3825 			== XFS_ICHGTIME_ACC))
3826 		return;
3827 
3828 	nanotime(&tv);
3829 	if (flags & XFS_ICHGTIME_MOD) {
3830 		VN_MTIMESET(vp, &tv);
3831 		ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
3832 		ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
3833 	}
3834 	if (flags & XFS_ICHGTIME_ACC) {
3835 		VN_ATIMESET(vp, &tv);
3836 		ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec;
3837 		ip->i_d.di_atime.t_nsec = (__int32_t)tv.tv_nsec;
3838 	}
3839 	if (flags & XFS_ICHGTIME_CHG) {
3840 		VN_CTIMESET(vp, &tv);
3841 		ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec;
3842 		ip->i_d.di_ctime.t_nsec = (__int32_t)tv.tv_nsec;
3843 	}
3844 
3845 	/*
3846 	 * We update the i_update_core field _after_ changing
3847 	 * the timestamps in order to coordinate properly with
3848 	 * xfs_iflush() so that we don't lose timestamp updates.
3849 	 * This keeps us from having to hold the inode lock
3850 	 * while doing this.  We use the SYNCHRONIZE macro to
3851 	 * ensure that the compiler does not reorder the update
3852 	 * of i_update_core above the timestamp updates above.
3853 	 */
3854 	SYNCHRONIZE();
3855 	ip->i_update_core = 1;
3856 	if (!(inode->i_state & I_LOCK))
3857 		mark_inode_dirty_sync(inode);
3858 }
3859 
3860 #ifdef XFS_ILOCK_TRACE
3861 ktrace_t	*xfs_ilock_trace_buf;
3862 
3863 void
xfs_ilock_trace(xfs_inode_t * ip,int lock,unsigned int lockflags,inst_t * ra)3864 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3865 {
3866 	ktrace_enter(ip->i_lock_trace,
3867 		     (void *)ip,
3868 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3869 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3870 		     (void *)ra,		/* caller of ilock */
3871 		     (void *)(unsigned long)current_cpu(),
3872 		     (void *)(unsigned long)current_pid(),
3873 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3874 }
3875 #endif
3876