1 /*
2  * Copyright (c) 2000-2003 Silicon Graphics, Inc.  All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11  *
12  * Further, this software is distributed without any warranty that it is
13  * free of the rightful claim of any third person regarding infringement
14  * or the like.  Any license provided herein, whether implied or
15  * otherwise, applies only to this software file.  Patent licenses, if
16  * any, provided herein do not apply to combinations of this program with
17  * other software, or any other product whatsoever.
18  *
19  * You should have received a copy of the GNU General Public License along
20  * with this program; if not, write the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22  *
23  * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24  * Mountain View, CA  94043, or:
25  *
26  * http://www.sgi.com
27  *
28  * For further information regarding this notice, see:
29  *
30  * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31  */
32 
33 #include "xfs.h"
34 
35 #include "xfs_macros.h"
36 #include "xfs_types.h"
37 #include "xfs_inum.h"
38 #include "xfs_log.h"
39 #include "xfs_trans.h"
40 #include "xfs_sb.h"
41 #include "xfs_ag.h"
42 #include "xfs_dir.h"
43 #include "xfs_dir2.h"
44 #include "xfs_dmapi.h"
45 #include "xfs_mount.h"
46 #include "xfs_alloc_btree.h"
47 #include "xfs_bmap_btree.h"
48 #include "xfs_ialloc_btree.h"
49 #include "xfs_btree.h"
50 #include "xfs_ialloc.h"
51 #include "xfs_attr_sf.h"
52 #include "xfs_dir_sf.h"
53 #include "xfs_dir2_sf.h"
54 #include "xfs_dinode.h"
55 #include "xfs_inode.h"
56 #include "xfs_quota.h"
57 #include "xfs_utils.h"
58 
59 /*
60  * Initialize the inode hash table for the newly mounted file system.
61  *
62  * mp -- this is the mount point structure for the file system being
63  *       initialized
64  */
65 void
xfs_ihash_init(xfs_mount_t * mp)66 xfs_ihash_init(xfs_mount_t *mp)
67 {
68 	int	i;
69 
70 	mp->m_ihsize = XFS_BUCKETS(mp);
71 	mp->m_ihash = (xfs_ihash_t *)kmem_zalloc(mp->m_ihsize
72 				      * sizeof(xfs_ihash_t), KM_SLEEP);
73 	ASSERT(mp->m_ihash != NULL);
74 	for (i = 0; i < mp->m_ihsize; i++) {
75 		rwlock_init(&(mp->m_ihash[i].ih_lock));
76 	}
77 }
78 
79 /*
80  * Free up structures allocated by xfs_ihash_init, at unmount time.
81  */
82 void
xfs_ihash_free(xfs_mount_t * mp)83 xfs_ihash_free(xfs_mount_t *mp)
84 {
85 	kmem_free(mp->m_ihash, mp->m_ihsize*sizeof(xfs_ihash_t));
86 	mp->m_ihash = NULL;
87 }
88 
89 /*
90  * Initialize the inode cluster hash table for the newly mounted file system.
91  *
92  * mp -- this is the mount point structure for the file system being
93  *       initialized
94  */
95 void
xfs_chash_init(xfs_mount_t * mp)96 xfs_chash_init(xfs_mount_t *mp)
97 {
98 	int	i;
99 
100 	/*
101 	 * m_chash size is based on m_ihash
102 	 * with a minimum of 37 entries
103 	 */
104 	mp->m_chsize = (XFS_BUCKETS(mp)) /
105 			 (XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog);
106 	if (mp->m_chsize < 37) {
107 		mp->m_chsize = 37;
108 	}
109 	mp->m_chash = (xfs_chash_t *)kmem_zalloc(mp->m_chsize
110 						 * sizeof(xfs_chash_t),
111 						 KM_SLEEP);
112 	ASSERT(mp->m_chash != NULL);
113 
114 	for (i = 0; i < mp->m_chsize; i++) {
115 		spinlock_init(&mp->m_chash[i].ch_lock,"xfshash");
116 	}
117 }
118 
119 /*
120  * Free up structures allocated by xfs_chash_init, at unmount time.
121  */
122 void
xfs_chash_free(xfs_mount_t * mp)123 xfs_chash_free(xfs_mount_t *mp)
124 {
125 	int	i;
126 
127 	for (i = 0; i < mp->m_chsize; i++) {
128 		spinlock_destroy(&mp->m_chash[i].ch_lock);
129 	}
130 
131 	kmem_free(mp->m_chash, mp->m_chsize*sizeof(xfs_chash_t));
132 	mp->m_chash = NULL;
133 }
134 
135 /*
136  * Look up an inode by number in the given file system.
137  * The inode is looked up in the hash table for the file system
138  * represented by the mount point parameter mp.  Each bucket of
139  * the hash table is guarded by an individual semaphore.
140  *
141  * If the inode is found in the hash table, its corresponding vnode
142  * is obtained with a call to vn_get().  This call takes care of
143  * coordination with the reclamation of the inode and vnode.  Note
144  * that the vmap structure is filled in while holding the hash lock.
145  * This gives us the state of the inode/vnode when we found it and
146  * is used for coordination in vn_get().
147  *
148  * If it is not in core, read it in from the file system's device and
149  * add the inode into the hash table.
150  *
151  * The inode is locked according to the value of the lock_flags parameter.
152  * This flag parameter indicates how and if the inode's IO lock and inode lock
153  * should be taken.
154  *
155  * mp -- the mount point structure for the current file system.  It points
156  *       to the inode hash table.
157  * tp -- a pointer to the current transaction if there is one.  This is
158  *       simply passed through to the xfs_iread() call.
159  * ino -- the number of the inode desired.  This is the unique identifier
160  *        within the file system for the inode being requested.
161  * lock_flags -- flags indicating how to lock the inode.  See the comment
162  *		 for xfs_ilock() for a list of valid values.
163  * bno -- the block number starting the buffer containing the inode,
164  *	  if known (as by bulkstat), else 0.
165  */
166 STATIC int
xfs_iget_core(vnode_t * vp,xfs_mount_t * mp,xfs_trans_t * tp,xfs_ino_t ino,uint flags,uint lock_flags,xfs_inode_t ** ipp,xfs_daddr_t bno)167 xfs_iget_core(
168 	vnode_t		*vp,
169 	xfs_mount_t	*mp,
170 	xfs_trans_t	*tp,
171 	xfs_ino_t	ino,
172 	uint		flags,
173 	uint		lock_flags,
174 	xfs_inode_t	**ipp,
175 	xfs_daddr_t	bno)
176 {
177 	xfs_ihash_t	*ih;
178 	xfs_inode_t	*ip;
179 	xfs_inode_t	*iq;
180 	vnode_t		*inode_vp;
181 	ulong		version;
182 	int		error;
183 	/* REFERENCED */
184 	xfs_chash_t	*ch;
185 	xfs_chashlist_t	*chl, *chlnew;
186 	SPLDECL(s);
187 
188 
189 	ih = XFS_IHASH(mp, ino);
190 
191 again:
192 	read_lock(&ih->ih_lock);
193 
194 	for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
195 		if (ip->i_ino == ino) {
196 			/*
197 			 * If INEW is set this inode is being set up
198 			 * we need to pause and try again.
199 			 */
200 			if (ip->i_flags & XFS_INEW) {
201 				read_unlock(&ih->ih_lock);
202 				delay(1);
203 				XFS_STATS_INC(xs_ig_frecycle);
204 
205 				goto again;
206 			}
207 
208 			inode_vp = XFS_ITOV_NULL(ip);
209 			if (inode_vp == NULL) {
210 				/*
211 				 * If IRECLAIM is set this inode is
212 				 * on its way out of the system,
213 				 * we need to pause and try again.
214 				 */
215 				if (ip->i_flags & XFS_IRECLAIM) {
216 					read_unlock(&ih->ih_lock);
217 					delay(1);
218 					XFS_STATS_INC(xs_ig_frecycle);
219 
220 					goto again;
221 				}
222 
223 				vn_trace_exit(vp, "xfs_iget.alloc",
224 					(inst_t *)__return_address);
225 
226 				XFS_STATS_INC(xs_ig_found);
227 
228 				ip->i_flags &= ~XFS_IRECLAIMABLE;
229 				read_unlock(&ih->ih_lock);
230 
231 				XFS_MOUNT_ILOCK(mp);
232 				list_del_init(&ip->i_reclaim);
233 				XFS_MOUNT_IUNLOCK(mp);
234 
235 				goto finish_inode;
236 
237 			} else if (vp != inode_vp) {
238 				struct inode *inode = LINVFS_GET_IP(inode_vp);
239 
240 				/* The inode is being torn down, pause and
241 				 * try again.
242 				 */
243 				if (inode->i_state & (I_FREEING | I_CLEAR)) {
244 					read_unlock(&ih->ih_lock);
245 					delay(1);
246 					XFS_STATS_INC(xs_ig_frecycle);
247 
248 					goto again;
249 				}
250 /* Chances are the other vnode (the one in the inode) is being torn
251  * down right now, and we landed on top of it. Question is, what do
252  * we do? Unhook the old inode and hook up the new one?
253  */
254 				cmn_err(CE_PANIC,
255 			"xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p",
256 						inode_vp, vp);
257 			}
258 
259 			read_unlock(&ih->ih_lock);
260 
261 			XFS_STATS_INC(xs_ig_found);
262 
263 finish_inode:
264 			if (ip->i_d.di_mode == 0) {
265 				if (!(flags & IGET_CREATE))
266 					return ENOENT;
267 				xfs_iocore_inode_reinit(ip);
268 			}
269 
270 			if (lock_flags != 0)
271 				xfs_ilock(ip, lock_flags);
272 
273 			ip->i_flags &= ~XFS_ISTALE;
274 
275 			vn_trace_exit(vp, "xfs_iget.found",
276 						(inst_t *)__return_address);
277 			goto return_ip;
278 		}
279 	}
280 
281 	/*
282 	 * Inode cache miss: save the hash chain version stamp and unlock
283 	 * the chain, so we don't deadlock in vn_alloc.
284 	 */
285 	XFS_STATS_INC(xs_ig_missed);
286 
287 	version = ih->ih_version;
288 
289 	read_unlock(&ih->ih_lock);
290 
291 	/*
292 	 * Read the disk inode attributes into a new inode structure and get
293 	 * a new vnode for it. This should also initialize i_ino and i_mount.
294 	 */
295 	error = xfs_iread(mp, tp, ino, &ip, bno);
296 	if (error) {
297 		return error;
298 	}
299 
300 	vn_trace_exit(vp, "xfs_iget.alloc", (inst_t *)__return_address);
301 
302 	xfs_inode_lock_init(ip, vp);
303 	xfs_iocore_inode_init(ip);
304 
305 	if (lock_flags != 0) {
306 		xfs_ilock(ip, lock_flags);
307 	}
308 
309 	if ((ip->i_d.di_mode == 0) && !(flags & IGET_CREATE)) {
310 		xfs_idestroy(ip);
311 		return ENOENT;
312 	}
313 
314 	/*
315 	 * Put ip on its hash chain, unless someone else hashed a duplicate
316 	 * after we released the hash lock.
317 	 */
318 	write_lock(&ih->ih_lock);
319 
320 	if (ih->ih_version != version) {
321 		for (iq = ih->ih_next; iq != NULL; iq = iq->i_next) {
322 			if (iq->i_ino == ino) {
323 				write_unlock(&ih->ih_lock);
324 				xfs_idestroy(ip);
325 
326 				XFS_STATS_INC(xs_ig_dup);
327 				goto again;
328 			}
329 		}
330 	}
331 
332 	/*
333 	 * These values _must_ be set before releasing ihlock!
334 	 */
335 	ip->i_hash = ih;
336 	if ((iq = ih->ih_next)) {
337 		iq->i_prevp = &ip->i_next;
338 	}
339 	ip->i_next = iq;
340 	ip->i_prevp = &ih->ih_next;
341 	ih->ih_next = ip;
342 	ip->i_udquot = ip->i_gdquot = NULL;
343 	ih->ih_version++;
344 	ip->i_flags |= XFS_INEW;
345 
346 	write_unlock(&ih->ih_lock);
347 
348 	/*
349 	 * put ip on its cluster's hash chain
350 	 */
351 	ASSERT(ip->i_chash == NULL && ip->i_cprev == NULL &&
352 	       ip->i_cnext == NULL);
353 
354 	chlnew = NULL;
355 	ch = XFS_CHASH(mp, ip->i_blkno);
356  chlredo:
357 	s = mutex_spinlock(&ch->ch_lock);
358 	for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) {
359 		if (chl->chl_blkno == ip->i_blkno) {
360 
361 			/* insert this inode into the doubly-linked list
362 			 * where chl points */
363 			if ((iq = chl->chl_ip)) {
364 				ip->i_cprev = iq->i_cprev;
365 				iq->i_cprev->i_cnext = ip;
366 				iq->i_cprev = ip;
367 				ip->i_cnext = iq;
368 			} else {
369 				ip->i_cnext = ip;
370 				ip->i_cprev = ip;
371 			}
372 			chl->chl_ip = ip;
373 			ip->i_chash = chl;
374 			break;
375 		}
376 	}
377 
378 	/* no hash list found for this block; add a new hash list */
379 	if (chl == NULL)  {
380 		if (chlnew == NULL) {
381 			mutex_spinunlock(&ch->ch_lock, s);
382 			ASSERT(xfs_chashlist_zone != NULL);
383 			chlnew = (xfs_chashlist_t *)
384 					kmem_zone_alloc(xfs_chashlist_zone,
385 						KM_SLEEP);
386 			ASSERT(chlnew != NULL);
387 			goto chlredo;
388 		} else {
389 			ip->i_cnext = ip;
390 			ip->i_cprev = ip;
391 			ip->i_chash = chlnew;
392 			chlnew->chl_ip = ip;
393 			chlnew->chl_blkno = ip->i_blkno;
394 			chlnew->chl_next = ch->ch_list;
395 			ch->ch_list = chlnew;
396 			chlnew = NULL;
397 		}
398 	} else {
399 		if (chlnew != NULL) {
400 			kmem_zone_free(xfs_chashlist_zone, chlnew);
401 		}
402 	}
403 
404 	mutex_spinunlock(&ch->ch_lock, s);
405 
406 
407 	/*
408 	 * Link ip to its mount and thread it on the mount's inode list.
409 	 */
410 	XFS_MOUNT_ILOCK(mp);
411 	if ((iq = mp->m_inodes)) {
412 		ASSERT(iq->i_mprev->i_mnext == iq);
413 		ip->i_mprev = iq->i_mprev;
414 		iq->i_mprev->i_mnext = ip;
415 		iq->i_mprev = ip;
416 		ip->i_mnext = iq;
417 	} else {
418 		ip->i_mnext = ip;
419 		ip->i_mprev = ip;
420 	}
421 	mp->m_inodes = ip;
422 
423 	XFS_MOUNT_IUNLOCK(mp);
424 
425  return_ip:
426 	ASSERT(ip->i_df.if_ext_max ==
427 	       XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
428 
429 	ASSERT(((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) != 0) ==
430 	       ((ip->i_iocore.io_flags & XFS_IOCORE_RT) != 0));
431 
432 	*ipp = ip;
433 
434 	/*
435 	 * If we have a real type for an on-disk inode, we can set ops(&unlock)
436 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
437 	 */
438 	VFS_INIT_VNODE(XFS_MTOVFS(mp), vp, XFS_ITOBHV(ip), 1);
439 
440 	return 0;
441 }
442 
443 
444 /*
445  * The 'normal' internal xfs_iget, if needed it will
446  * 'allocate', or 'get', the vnode.
447  */
448 int
xfs_iget(xfs_mount_t * mp,xfs_trans_t * tp,xfs_ino_t ino,uint flags,uint lock_flags,xfs_inode_t ** ipp,xfs_daddr_t bno)449 xfs_iget(
450 	xfs_mount_t	*mp,
451 	xfs_trans_t	*tp,
452 	xfs_ino_t	ino,
453 	uint		flags,
454 	uint		lock_flags,
455 	xfs_inode_t	**ipp,
456 	xfs_daddr_t	bno)
457 {
458 	struct inode	*inode;
459 	vnode_t		*vp = NULL;
460 	int		error;
461 
462 retry:
463 	XFS_STATS_INC(xs_ig_attempts);
464 
465 	if ((inode = VFS_GET_INODE(XFS_MTOVFS(mp), ino, 0))) {
466 		bhv_desc_t	*bdp;
467 		xfs_inode_t	*ip;
468 		int		newnode;
469 
470 		vp = LINVFS_GET_VP(inode);
471 		if (inode->i_state & I_NEW) {
472 inode_allocate:
473 			vn_initialize(inode);
474 			error = xfs_iget_core(vp, mp, tp, ino, flags,
475 					lock_flags, ipp, bno);
476 			if (error) {
477 				vn_mark_bad(vp);
478 				if (inode->i_state & I_NEW)
479 					unlock_new_inode(inode);
480 				iput(inode);
481 			}
482 		} else {
483 			/* These are true if the inode is in inactive or
484 			 * reclaim. The linux inode is about to go away,
485 			 * wait for that path to finish, and try again.
486 			 */
487 			if (vp->v_flag & (VINACT | VRECLM)) {
488 				vn_wait(vp);
489 				iput(inode);
490 				goto retry;
491 			}
492 
493 			if (is_bad_inode(inode)) {
494 				iput(inode);
495 				return EIO;
496 			}
497 
498 			bdp = vn_bhv_lookup(VN_BHV_HEAD(vp), &xfs_vnodeops);
499 			if (bdp == NULL) {
500 				XFS_STATS_INC(xs_ig_dup);
501 				goto inode_allocate;
502 			}
503 			ip = XFS_BHVTOI(bdp);
504 			if (lock_flags != 0)
505 				xfs_ilock(ip, lock_flags);
506 			newnode = (ip->i_d.di_mode == 0);
507 			if (newnode)
508 				xfs_iocore_inode_reinit(ip);
509 			XFS_STATS_INC(xs_ig_found);
510 			*ipp = ip;
511 			error = 0;
512 		}
513 	} else
514 		error = ENOMEM;	/* If we got no inode we are out of memory */
515 
516 	return error;
517 }
518 
519 /*
520  * Do the setup for the various locks within the incore inode.
521  */
522 void
xfs_inode_lock_init(xfs_inode_t * ip,vnode_t * vp)523 xfs_inode_lock_init(
524 	xfs_inode_t	*ip,
525 	vnode_t		*vp)
526 {
527 	mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
528 		     "xfsino", (long)vp->v_number);
529 	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", vp->v_number);
530 	init_waitqueue_head(&ip->i_ipin_wait);
531 	atomic_set(&ip->i_pincount, 0);
532 	init_sema(&ip->i_flock, 1, "xfsfino", vp->v_number);
533 }
534 
535 /*
536  * Look for the inode corresponding to the given ino in the hash table.
537  * If it is there and its i_transp pointer matches tp, return it.
538  * Otherwise, return NULL.
539  */
540 xfs_inode_t *
xfs_inode_incore(xfs_mount_t * mp,xfs_ino_t ino,xfs_trans_t * tp)541 xfs_inode_incore(xfs_mount_t	*mp,
542 		 xfs_ino_t	ino,
543 		 xfs_trans_t	*tp)
544 {
545 	xfs_ihash_t	*ih;
546 	xfs_inode_t	*ip;
547 
548 	ih = XFS_IHASH(mp, ino);
549 	read_lock(&ih->ih_lock);
550 	for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
551 		if (ip->i_ino == ino) {
552 			/*
553 			 * If we find it and tp matches, return it.
554 			 * Otherwise break from the loop and return
555 			 * NULL.
556 			 */
557 			if (ip->i_transp == tp) {
558 				read_unlock(&ih->ih_lock);
559 				return (ip);
560 			}
561 			break;
562 		}
563 	}
564 	read_unlock(&ih->ih_lock);
565 	return (NULL);
566 }
567 
568 /*
569  * Decrement reference count of an inode structure and unlock it.
570  *
571  * ip -- the inode being released
572  * lock_flags -- this parameter indicates the inode's locks to be
573  *       to be released.  See the comment on xfs_iunlock() for a list
574  *	 of valid values.
575  */
576 void
xfs_iput(xfs_inode_t * ip,uint lock_flags)577 xfs_iput(xfs_inode_t	*ip,
578 	 uint		lock_flags)
579 {
580 	vnode_t	*vp = XFS_ITOV(ip);
581 
582 	vn_trace_entry(vp, "xfs_iput", (inst_t *)__return_address);
583 
584 	xfs_iunlock(ip, lock_flags);
585 
586 	VN_RELE(vp);
587 }
588 
589 /*
590  * Special iput for brand-new inodes that are still locked
591  */
592 void
xfs_iput_new(xfs_inode_t * ip,uint lock_flags)593 xfs_iput_new(xfs_inode_t	*ip,
594 	     uint		lock_flags)
595 {
596 	vnode_t		*vp = XFS_ITOV(ip);
597 	struct inode	*inode = LINVFS_GET_IP(vp);
598 
599 	vn_trace_entry(vp, "xfs_iput_new", (inst_t *)__return_address);
600 
601 	if ((ip->i_d.di_mode == 0)) {
602 		ASSERT(!(ip->i_flags & XFS_IRECLAIMABLE));
603 		vn_mark_bad(vp);
604 	}
605 	if (inode->i_state & I_NEW)
606 		unlock_new_inode(inode);
607 	if (lock_flags)
608 		xfs_iunlock(ip, lock_flags);
609 	VN_RELE(vp);
610 }
611 
612 
613 /*
614  * This routine embodies the part of the reclaim code that pulls
615  * the inode from the inode hash table and the mount structure's
616  * inode list.
617  * This should only be called from xfs_reclaim().
618  */
619 void
xfs_ireclaim(xfs_inode_t * ip)620 xfs_ireclaim(xfs_inode_t *ip)
621 {
622 	vnode_t		*vp;
623 
624 	/*
625 	 * Remove from old hash list and mount list.
626 	 */
627 	XFS_STATS_INC(xs_ig_reclaims);
628 
629 	xfs_iextract(ip);
630 
631 	/*
632 	 * Here we do a spurious inode lock in order to coordinate with
633 	 * xfs_sync().  This is because xfs_sync() references the inodes
634 	 * in the mount list without taking references on the corresponding
635 	 * vnodes.  We make that OK here by ensuring that we wait until
636 	 * the inode is unlocked in xfs_sync() before we go ahead and
637 	 * free it.  We get both the regular lock and the io lock because
638 	 * the xfs_sync() code may need to drop the regular one but will
639 	 * still hold the io lock.
640 	 */
641 	xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
642 
643 	/*
644 	 * Release dquots (and their references) if any. An inode may escape
645 	 * xfs_inactive and get here via vn_alloc->vn_reclaim path.
646 	 */
647 	XFS_QM_DQDETACH(ip->i_mount, ip);
648 
649 	/*
650 	 * Pull our behavior descriptor from the vnode chain.
651 	 */
652 	vp = XFS_ITOV_NULL(ip);
653 	if (vp) {
654 		vn_bhv_remove(VN_BHV_HEAD(vp), XFS_ITOBHV(ip));
655 	}
656 
657 	/*
658 	 * Free all memory associated with the inode.
659 	 */
660 	xfs_idestroy(ip);
661 }
662 
663 /*
664  * This routine removes an about-to-be-destroyed inode from
665  * all of the lists in which it is located with the exception
666  * of the behavior chain.
667  */
668 void
xfs_iextract(xfs_inode_t * ip)669 xfs_iextract(
670 	xfs_inode_t	*ip)
671 {
672 	xfs_ihash_t	*ih;
673 	xfs_inode_t	*iq;
674 	xfs_mount_t	*mp;
675 	xfs_chash_t	*ch;
676 	xfs_chashlist_t *chl, *chm;
677 	SPLDECL(s);
678 
679 	ih = ip->i_hash;
680 	write_lock(&ih->ih_lock);
681 	if ((iq = ip->i_next)) {
682 		iq->i_prevp = ip->i_prevp;
683 	}
684 	*ip->i_prevp = iq;
685 	write_unlock(&ih->ih_lock);
686 
687 	/*
688 	 * Remove from cluster hash list
689 	 *   1) delete the chashlist if this is the last inode on the chashlist
690 	 *   2) unchain from list of inodes
691 	 *   3) point chashlist->chl_ip to 'chl_next' if to this inode.
692 	 */
693 	mp = ip->i_mount;
694 	ch = XFS_CHASH(mp, ip->i_blkno);
695 	s = mutex_spinlock(&ch->ch_lock);
696 
697 	if (ip->i_cnext == ip) {
698 		/* Last inode on chashlist */
699 		ASSERT(ip->i_cnext == ip && ip->i_cprev == ip);
700 		ASSERT(ip->i_chash != NULL);
701 		chm=NULL;
702 		for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) {
703 			if (chl->chl_blkno == ip->i_blkno) {
704 				if (chm == NULL) {
705 					/* first item on the list */
706 					ch->ch_list = chl->chl_next;
707 				} else {
708 					chm->chl_next = chl->chl_next;
709 				}
710 				kmem_zone_free(xfs_chashlist_zone, chl);
711 				break;
712 			} else {
713 				ASSERT(chl->chl_ip != ip);
714 				chm = chl;
715 			}
716 		}
717 		ASSERT_ALWAYS(chl != NULL);
718        } else {
719 		/* delete one inode from a non-empty list */
720 		iq = ip->i_cnext;
721 		iq->i_cprev = ip->i_cprev;
722 		ip->i_cprev->i_cnext = iq;
723 		if (ip->i_chash->chl_ip == ip) {
724 			ip->i_chash->chl_ip = iq;
725 		}
726 		ip->i_chash = __return_address;
727 		ip->i_cprev = __return_address;
728 		ip->i_cnext = __return_address;
729 	}
730 	mutex_spinunlock(&ch->ch_lock, s);
731 
732 	/*
733 	 * Remove from mount's inode list.
734 	 */
735 	XFS_MOUNT_ILOCK(mp);
736 	ASSERT((ip->i_mnext != NULL) && (ip->i_mprev != NULL));
737 	iq = ip->i_mnext;
738 	iq->i_mprev = ip->i_mprev;
739 	ip->i_mprev->i_mnext = iq;
740 
741 	/*
742 	 * Fix up the head pointer if it points to the inode being deleted.
743 	 */
744 	if (mp->m_inodes == ip) {
745 		if (ip == iq) {
746 			mp->m_inodes = NULL;
747 		} else {
748 			mp->m_inodes = iq;
749 		}
750 	}
751 
752 	/* Deal with the deleted inodes list */
753 	list_del_init(&ip->i_reclaim);
754 
755 	mp->m_ireclaims++;
756 	XFS_MOUNT_IUNLOCK(mp);
757 }
758 
759 /*
760  * This is a wrapper routine around the xfs_ilock() routine
761  * used to centralize some grungy code.  It is used in places
762  * that wish to lock the inode solely for reading the extents.
763  * The reason these places can't just call xfs_ilock(SHARED)
764  * is that the inode lock also guards to bringing in of the
765  * extents from disk for a file in b-tree format.  If the inode
766  * is in b-tree format, then we need to lock the inode exclusively
767  * until the extents are read in.  Locking it exclusively all
768  * the time would limit our parallelism unnecessarily, though.
769  * What we do instead is check to see if the extents have been
770  * read in yet, and only lock the inode exclusively if they
771  * have not.
772  *
773  * The function returns a value which should be given to the
774  * corresponding xfs_iunlock_map_shared().  This value is
775  * the mode in which the lock was actually taken.
776  */
777 uint
xfs_ilock_map_shared(xfs_inode_t * ip)778 xfs_ilock_map_shared(
779 	xfs_inode_t	*ip)
780 {
781 	uint	lock_mode;
782 
783 	if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
784 	    ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
785 		lock_mode = XFS_ILOCK_EXCL;
786 	} else {
787 		lock_mode = XFS_ILOCK_SHARED;
788 	}
789 
790 	xfs_ilock(ip, lock_mode);
791 
792 	return lock_mode;
793 }
794 
795 /*
796  * This is simply the unlock routine to go with xfs_ilock_map_shared().
797  * All it does is call xfs_iunlock() with the given lock_mode.
798  */
799 void
xfs_iunlock_map_shared(xfs_inode_t * ip,unsigned int lock_mode)800 xfs_iunlock_map_shared(
801 	xfs_inode_t	*ip,
802 	unsigned int	lock_mode)
803 {
804 	xfs_iunlock(ip, lock_mode);
805 }
806 
807 /*
808  * The xfs inode contains 2 locks: a multi-reader lock called the
809  * i_iolock and a multi-reader lock called the i_lock.  This routine
810  * allows either or both of the locks to be obtained.
811  *
812  * The 2 locks should always be ordered so that the IO lock is
813  * obtained first in order to prevent deadlock.
814  *
815  * ip -- the inode being locked
816  * lock_flags -- this parameter indicates the inode's locks
817  *       to be locked.  It can be:
818  *		XFS_IOLOCK_SHARED,
819  *		XFS_IOLOCK_EXCL,
820  *		XFS_ILOCK_SHARED,
821  *		XFS_ILOCK_EXCL,
822  *		XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
823  *		XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
824  *		XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
825  *		XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
826  */
827 void
xfs_ilock(xfs_inode_t * ip,uint lock_flags)828 xfs_ilock(xfs_inode_t	*ip,
829 	  uint		lock_flags)
830 {
831 	/*
832 	 * You can't set both SHARED and EXCL for the same lock,
833 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
834 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
835 	 */
836 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
837 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
838 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
839 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
840 	ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0);
841 
842 	if (lock_flags & XFS_IOLOCK_EXCL) {
843 		mrupdate(&ip->i_iolock);
844 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
845 		mraccess(&ip->i_iolock);
846 	}
847 	if (lock_flags & XFS_ILOCK_EXCL) {
848 		mrupdate(&ip->i_lock);
849 	} else if (lock_flags & XFS_ILOCK_SHARED) {
850 		mraccess(&ip->i_lock);
851 	}
852 	xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
853 }
854 
855 /*
856  * This is just like xfs_ilock(), except that the caller
857  * is guaranteed not to sleep.  It returns 1 if it gets
858  * the requested locks and 0 otherwise.  If the IO lock is
859  * obtained but the inode lock cannot be, then the IO lock
860  * is dropped before returning.
861  *
862  * ip -- the inode being locked
863  * lock_flags -- this parameter indicates the inode's locks to be
864  *       to be locked.  See the comment for xfs_ilock() for a list
865  *	 of valid values.
866  *
867  */
868 int
xfs_ilock_nowait(xfs_inode_t * ip,uint lock_flags)869 xfs_ilock_nowait(xfs_inode_t	*ip,
870 		 uint		lock_flags)
871 {
872 	int	iolocked;
873 	int	ilocked;
874 
875 	/*
876 	 * You can't set both SHARED and EXCL for the same lock,
877 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
878 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
879 	 */
880 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
881 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
882 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
883 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
884 	ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0);
885 
886 	iolocked = 0;
887 	if (lock_flags & XFS_IOLOCK_EXCL) {
888 		iolocked = mrtryupdate(&ip->i_iolock);
889 		if (!iolocked) {
890 			return 0;
891 		}
892 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
893 		iolocked = mrtryaccess(&ip->i_iolock);
894 		if (!iolocked) {
895 			return 0;
896 		}
897 	}
898 	if (lock_flags & XFS_ILOCK_EXCL) {
899 		ilocked = mrtryupdate(&ip->i_lock);
900 		if (!ilocked) {
901 			if (iolocked) {
902 				mrunlock(&ip->i_iolock);
903 			}
904 			return 0;
905 		}
906 	} else if (lock_flags & XFS_ILOCK_SHARED) {
907 		ilocked = mrtryaccess(&ip->i_lock);
908 		if (!ilocked) {
909 			if (iolocked) {
910 				mrunlock(&ip->i_iolock);
911 			}
912 			return 0;
913 		}
914 	}
915 	xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
916 	return 1;
917 }
918 
919 /*
920  * xfs_iunlock() is used to drop the inode locks acquired with
921  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
922  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
923  * that we know which locks to drop.
924  *
925  * ip -- the inode being unlocked
926  * lock_flags -- this parameter indicates the inode's locks to be
927  *       to be unlocked.  See the comment for xfs_ilock() for a list
928  *	 of valid values for this parameter.
929  *
930  */
931 void
xfs_iunlock(xfs_inode_t * ip,uint lock_flags)932 xfs_iunlock(xfs_inode_t	*ip,
933 	    uint	lock_flags)
934 {
935 	/*
936 	 * You can't set both SHARED and EXCL for the same lock,
937 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
938 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
939 	 */
940 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
941 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
942 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
943 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
944 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY)) == 0);
945 	ASSERT(lock_flags != 0);
946 
947 	if (lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) {
948 		ASSERT(!(lock_flags & XFS_IOLOCK_SHARED) ||
949 		       (ismrlocked(&ip->i_iolock, MR_ACCESS)));
950 		ASSERT(!(lock_flags & XFS_IOLOCK_EXCL) ||
951 		       (ismrlocked(&ip->i_iolock, MR_UPDATE)));
952 		mrunlock(&ip->i_iolock);
953 	}
954 
955 	if (lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) {
956 		ASSERT(!(lock_flags & XFS_ILOCK_SHARED) ||
957 		       (ismrlocked(&ip->i_lock, MR_ACCESS)));
958 		ASSERT(!(lock_flags & XFS_ILOCK_EXCL) ||
959 		       (ismrlocked(&ip->i_lock, MR_UPDATE)));
960 		mrunlock(&ip->i_lock);
961 
962 		/*
963 		 * Let the AIL know that this item has been unlocked in case
964 		 * it is in the AIL and anyone is waiting on it.  Don't do
965 		 * this if the caller has asked us not to.
966 		 */
967 		if (!(lock_flags & XFS_IUNLOCK_NONOTIFY) &&
968 		     ip->i_itemp != NULL) {
969 			xfs_trans_unlocked_item(ip->i_mount,
970 						(xfs_log_item_t*)(ip->i_itemp));
971 		}
972 	}
973 	xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
974 }
975 
976 /*
977  * give up write locks.  the i/o lock cannot be held nested
978  * if it is being demoted.
979  */
980 void
xfs_ilock_demote(xfs_inode_t * ip,uint lock_flags)981 xfs_ilock_demote(xfs_inode_t	*ip,
982 		 uint		lock_flags)
983 {
984 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
985 	ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
986 
987 	if (lock_flags & XFS_ILOCK_EXCL) {
988 		ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
989 		mrdemote(&ip->i_lock);
990 	}
991 	if (lock_flags & XFS_IOLOCK_EXCL) {
992 		ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE));
993 		mrdemote(&ip->i_iolock);
994 	}
995 }
996 
997 /*
998  * The following three routines simply manage the i_flock
999  * semaphore embedded in the inode.  This semaphore synchronizes
1000  * processes attempting to flush the in-core inode back to disk.
1001  */
1002 void
xfs_iflock(xfs_inode_t * ip)1003 xfs_iflock(xfs_inode_t *ip)
1004 {
1005 	psema(&(ip->i_flock), PINOD|PLTWAIT);
1006 }
1007 
1008 int
xfs_iflock_nowait(xfs_inode_t * ip)1009 xfs_iflock_nowait(xfs_inode_t *ip)
1010 {
1011 	return (cpsema(&(ip->i_flock)));
1012 }
1013 
1014 void
xfs_ifunlock(xfs_inode_t * ip)1015 xfs_ifunlock(xfs_inode_t *ip)
1016 {
1017 	ASSERT(valusema(&(ip->i_flock)) <= 0);
1018 	vsema(&(ip->i_flock));
1019 }
1020