1 /*
2 * Copyright 2000-2002 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 #include <linux/config.h>
6 #include <asm/uaccess.h>
7 #include <linux/string.h>
8 #include <linux/sched.h>
9 #include <linux/reiserfs_fs.h>
10
11 /* this is one and only function that is used outside (do_balance.c) */
12 int balance_internal (
13 struct tree_balance * ,
14 int,
15 int,
16 struct item_head * ,
17 struct buffer_head **
18 );
19
20 /* modes of internal_shift_left, internal_shift_right and internal_insert_childs */
21 #define INTERNAL_SHIFT_FROM_S_TO_L 0
22 #define INTERNAL_SHIFT_FROM_R_TO_S 1
23 #define INTERNAL_SHIFT_FROM_L_TO_S 2
24 #define INTERNAL_SHIFT_FROM_S_TO_R 3
25 #define INTERNAL_INSERT_TO_S 4
26 #define INTERNAL_INSERT_TO_L 5
27 #define INTERNAL_INSERT_TO_R 6
28
internal_define_dest_src_infos(int shift_mode,struct tree_balance * tb,int h,struct buffer_info * dest_bi,struct buffer_info * src_bi,int * d_key,struct buffer_head ** cf)29 static void internal_define_dest_src_infos (
30 int shift_mode,
31 struct tree_balance * tb,
32 int h,
33 struct buffer_info * dest_bi,
34 struct buffer_info * src_bi,
35 int * d_key,
36 struct buffer_head ** cf
37 )
38 {
39 memset (dest_bi, 0, sizeof (struct buffer_info));
40 memset (src_bi, 0, sizeof (struct buffer_info));
41 /* define dest, src, dest parent, dest position */
42 switch (shift_mode) {
43 case INTERNAL_SHIFT_FROM_S_TO_L: /* used in internal_shift_left */
44 src_bi->tb = tb;
45 src_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
46 src_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
47 src_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
48 dest_bi->tb = tb;
49 dest_bi->bi_bh = tb->L[h];
50 dest_bi->bi_parent = tb->FL[h];
51 dest_bi->bi_position = get_left_neighbor_position (tb, h);
52 *d_key = tb->lkey[h];
53 *cf = tb->CFL[h];
54 break;
55 case INTERNAL_SHIFT_FROM_L_TO_S:
56 src_bi->tb = tb;
57 src_bi->bi_bh = tb->L[h];
58 src_bi->bi_parent = tb->FL[h];
59 src_bi->bi_position = get_left_neighbor_position (tb, h);
60 dest_bi->tb = tb;
61 dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
62 dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
63 dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1); /* dest position is analog of dest->b_item_order */
64 *d_key = tb->lkey[h];
65 *cf = tb->CFL[h];
66 break;
67
68 case INTERNAL_SHIFT_FROM_R_TO_S: /* used in internal_shift_left */
69 src_bi->tb = tb;
70 src_bi->bi_bh = tb->R[h];
71 src_bi->bi_parent = tb->FR[h];
72 src_bi->bi_position = get_right_neighbor_position (tb, h);
73 dest_bi->tb = tb;
74 dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
75 dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
76 dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
77 *d_key = tb->rkey[h];
78 *cf = tb->CFR[h];
79 break;
80
81 case INTERNAL_SHIFT_FROM_S_TO_R:
82 src_bi->tb = tb;
83 src_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
84 src_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
85 src_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
86 dest_bi->tb = tb;
87 dest_bi->bi_bh = tb->R[h];
88 dest_bi->bi_parent = tb->FR[h];
89 dest_bi->bi_position = get_right_neighbor_position (tb, h);
90 *d_key = tb->rkey[h];
91 *cf = tb->CFR[h];
92 break;
93
94 case INTERNAL_INSERT_TO_L:
95 dest_bi->tb = tb;
96 dest_bi->bi_bh = tb->L[h];
97 dest_bi->bi_parent = tb->FL[h];
98 dest_bi->bi_position = get_left_neighbor_position (tb, h);
99 break;
100
101 case INTERNAL_INSERT_TO_S:
102 dest_bi->tb = tb;
103 dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
104 dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
105 dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
106 break;
107
108 case INTERNAL_INSERT_TO_R:
109 dest_bi->tb = tb;
110 dest_bi->bi_bh = tb->R[h];
111 dest_bi->bi_parent = tb->FR[h];
112 dest_bi->bi_position = get_right_neighbor_position (tb, h);
113 break;
114
115 default:
116 reiserfs_panic (tb->tb_sb, "internal_define_dest_src_infos: shift type is unknown (%d)", shift_mode);
117 }
118 }
119
120
121
122 /* Insert count node pointers into buffer cur before position to + 1.
123 * Insert count items into buffer cur before position to.
124 * Items and node pointers are specified by inserted and bh respectively.
125 */
internal_insert_childs(struct buffer_info * cur_bi,int to,int count,struct item_head * inserted,struct buffer_head ** bh)126 static void internal_insert_childs (struct buffer_info * cur_bi,
127 int to, int count,
128 struct item_head * inserted,
129 struct buffer_head ** bh
130 )
131 {
132 struct buffer_head * cur = cur_bi->bi_bh;
133 struct block_head * blkh;
134 int nr;
135 struct key * ih;
136 struct disk_child new_dc[2];
137 struct disk_child * dc;
138 int i;
139
140 if (count <= 0)
141 return;
142
143 blkh = B_BLK_HEAD(cur);
144 nr = blkh_nr_item(blkh);
145
146 RFALSE( count > 2,
147 "too many children (%d) are to be inserted", count);
148 RFALSE( B_FREE_SPACE (cur) < count * (KEY_SIZE + DC_SIZE),
149 "no enough free space (%d), needed %d bytes",
150 B_FREE_SPACE (cur), count * (KEY_SIZE + DC_SIZE));
151
152 /* prepare space for count disk_child */
153 dc = B_N_CHILD(cur,to+1);
154
155 memmove (dc + count, dc, (nr+1-(to+1)) * DC_SIZE);
156
157 /* copy to_be_insert disk children */
158 for (i = 0; i < count; i ++) {
159 put_dc_size( &(new_dc[i]), MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i]));
160 put_dc_block_number( &(new_dc[i]), bh[i]->b_blocknr );
161 }
162 memcpy (dc, new_dc, DC_SIZE * count);
163
164
165 /* prepare space for count items */
166 ih = B_N_PDELIM_KEY (cur, ((to == -1) ? 0 : to));
167
168 memmove (ih + count, ih, (nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE);
169
170 /* copy item headers (keys) */
171 memcpy (ih, inserted, KEY_SIZE);
172 if ( count > 1 )
173 memcpy (ih + 1, inserted + 1, KEY_SIZE);
174
175 /* sizes, item number */
176 set_blkh_nr_item( blkh, blkh_nr_item(blkh) + count );
177 set_blkh_free_space( blkh,
178 blkh_free_space(blkh) - count * (DC_SIZE + KEY_SIZE ) );
179
180 do_balance_mark_internal_dirty (cur_bi->tb, cur,0);
181
182 /*&&&&&&&&&&&&&&&&&&&&&&&&*/
183 check_internal (cur);
184 /*&&&&&&&&&&&&&&&&&&&&&&&&*/
185
186 if (cur_bi->bi_parent) {
187 struct disk_child *t_dc = B_N_CHILD (cur_bi->bi_parent,cur_bi->bi_position);
188 put_dc_size( t_dc, dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE)));
189 do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent, 0);
190
191 /*&&&&&&&&&&&&&&&&&&&&&&&&*/
192 check_internal (cur_bi->bi_parent);
193 /*&&&&&&&&&&&&&&&&&&&&&&&&*/
194 }
195
196 }
197
198
199 /* Delete del_num items and node pointers from buffer cur starting from *
200 * the first_i'th item and first_p'th pointers respectively. */
internal_delete_pointers_items(struct buffer_info * cur_bi,int first_p,int first_i,int del_num)201 static void internal_delete_pointers_items (
202 struct buffer_info * cur_bi,
203 int first_p,
204 int first_i,
205 int del_num
206 )
207 {
208 struct buffer_head * cur = cur_bi->bi_bh;
209 int nr;
210 struct block_head * blkh;
211 struct key * key;
212 struct disk_child * dc;
213
214 RFALSE( cur == NULL, "buffer is 0");
215 RFALSE( del_num < 0,
216 "negative number of items (%d) can not be deleted", del_num);
217 RFALSE( first_p < 0 || first_p + del_num > B_NR_ITEMS (cur) + 1 || first_i < 0,
218 "first pointer order (%d) < 0 or "
219 "no so many pointers (%d), only (%d) or "
220 "first key order %d < 0", first_p,
221 first_p + del_num, B_NR_ITEMS (cur) + 1, first_i);
222 if ( del_num == 0 )
223 return;
224
225 blkh = B_BLK_HEAD(cur);
226 nr = blkh_nr_item(blkh);
227
228 if ( first_p == 0 && del_num == nr + 1 ) {
229 RFALSE( first_i != 0, "1st deleted key must have order 0, not %d", first_i);
230 make_empty_node (cur_bi);
231 return;
232 }
233
234 RFALSE( first_i + del_num > B_NR_ITEMS (cur),
235 "first_i = %d del_num = %d "
236 "no so many keys (%d) in the node (%b)(%z)",
237 first_i, del_num, first_i + del_num, cur, cur);
238
239
240 /* deleting */
241 dc = B_N_CHILD (cur, first_p);
242
243 memmove (dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE);
244 key = B_N_PDELIM_KEY (cur, first_i);
245 memmove (key, key + del_num, (nr - first_i - del_num) * KEY_SIZE + (nr + 1 - del_num) * DC_SIZE);
246
247
248 /* sizes, item number */
249 set_blkh_nr_item( blkh, blkh_nr_item(blkh) - del_num );
250 set_blkh_free_space( blkh,
251 blkh_free_space(blkh) + (del_num * (KEY_SIZE + DC_SIZE) ) );
252
253 do_balance_mark_internal_dirty (cur_bi->tb, cur, 0);
254 /*&&&&&&&&&&&&&&&&&&&&&&&*/
255 check_internal (cur);
256 /*&&&&&&&&&&&&&&&&&&&&&&&*/
257
258 if (cur_bi->bi_parent) {
259 struct disk_child *t_dc;
260 t_dc = B_N_CHILD (cur_bi->bi_parent, cur_bi->bi_position);
261 put_dc_size( t_dc, dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE) ) );
262
263 do_balance_mark_internal_dirty (cur_bi->tb, cur_bi->bi_parent,0);
264 /*&&&&&&&&&&&&&&&&&&&&&&&&*/
265 check_internal (cur_bi->bi_parent);
266 /*&&&&&&&&&&&&&&&&&&&&&&&&*/
267 }
268 }
269
270
271 /* delete n node pointers and items starting from given position */
internal_delete_childs(struct buffer_info * cur_bi,int from,int n)272 static void internal_delete_childs (struct buffer_info * cur_bi,
273 int from, int n)
274 {
275 int i_from;
276
277 i_from = (from == 0) ? from : from - 1;
278
279 /* delete n pointers starting from `from' position in CUR;
280 delete n keys starting from 'i_from' position in CUR;
281 */
282 internal_delete_pointers_items (cur_bi, from, i_from, n);
283 }
284
285
286 /* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest
287 * last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest
288 * last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest
289 */
internal_copy_pointers_items(struct buffer_info * dest_bi,struct buffer_head * src,int last_first,int cpy_num)290 static void internal_copy_pointers_items (
291 struct buffer_info * dest_bi,
292 struct buffer_head * src,
293 int last_first, int cpy_num
294 )
295 {
296 /* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST *
297 * as delimiting key have already inserted to buffer dest.*/
298 struct buffer_head * dest = dest_bi->bi_bh;
299 int nr_dest, nr_src;
300 int dest_order, src_order;
301 struct block_head * blkh;
302 struct key * key;
303 struct disk_child * dc;
304
305 nr_src = B_NR_ITEMS (src);
306
307 RFALSE( dest == NULL || src == NULL,
308 "src (%p) or dest (%p) buffer is 0", src, dest);
309 RFALSE( last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST,
310 "invalid last_first parameter (%d)", last_first);
311 RFALSE( nr_src < cpy_num - 1,
312 "no so many items (%d) in src (%d)", cpy_num, nr_src);
313 RFALSE( cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num);
314 RFALSE( cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest),
315 "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
316 cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest));
317
318 if ( cpy_num == 0 )
319 return;
320
321 /* coping */
322 blkh = B_BLK_HEAD(dest);
323 nr_dest = blkh_nr_item(blkh);
324
325 /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest;*/
326 /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0;*/
327 (last_first == LAST_TO_FIRST) ? (dest_order = 0, src_order = nr_src - cpy_num + 1) :
328 (dest_order = nr_dest, src_order = 0);
329
330 /* prepare space for cpy_num pointers */
331 dc = B_N_CHILD (dest, dest_order);
332
333 memmove (dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE);
334
335 /* insert pointers */
336 memcpy (dc, B_N_CHILD (src, src_order), DC_SIZE * cpy_num);
337
338
339 /* prepare space for cpy_num - 1 item headers */
340 key = B_N_PDELIM_KEY(dest, dest_order);
341 memmove (key + cpy_num - 1, key,
342 KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest + cpy_num));
343
344
345 /* insert headers */
346 memcpy (key, B_N_PDELIM_KEY (src, src_order), KEY_SIZE * (cpy_num - 1));
347
348 /* sizes, item number */
349 set_blkh_nr_item( blkh, blkh_nr_item(blkh) + (cpy_num - 1 ) );
350 set_blkh_free_space( blkh,
351 blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num ) );
352
353 do_balance_mark_internal_dirty (dest_bi->tb, dest, 0);
354
355 /*&&&&&&&&&&&&&&&&&&&&&&&&*/
356 check_internal (dest);
357 /*&&&&&&&&&&&&&&&&&&&&&&&&*/
358
359 if (dest_bi->bi_parent) {
360 struct disk_child *t_dc;
361 t_dc = B_N_CHILD(dest_bi->bi_parent,dest_bi->bi_position);
362 put_dc_size( t_dc, dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num) );
363
364 do_balance_mark_internal_dirty (dest_bi->tb, dest_bi->bi_parent,0);
365 /*&&&&&&&&&&&&&&&&&&&&&&&&*/
366 check_internal (dest_bi->bi_parent);
367 /*&&&&&&&&&&&&&&&&&&&&&&&&*/
368 }
369
370 }
371
372
373 /* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest.
374 * Delete cpy_num - del_par items and node pointers from buffer src.
375 * last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
376 * last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
377 */
internal_move_pointers_items(struct buffer_info * dest_bi,struct buffer_info * src_bi,int last_first,int cpy_num,int del_par)378 static void internal_move_pointers_items (struct buffer_info * dest_bi,
379 struct buffer_info * src_bi,
380 int last_first, int cpy_num, int del_par)
381 {
382 int first_pointer;
383 int first_item;
384
385 internal_copy_pointers_items (dest_bi, src_bi->bi_bh, last_first, cpy_num);
386
387 if (last_first == FIRST_TO_LAST) { /* shift_left occurs */
388 first_pointer = 0;
389 first_item = 0;
390 /* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer,
391 for key - with first_item */
392 internal_delete_pointers_items (src_bi, first_pointer, first_item, cpy_num - del_par);
393 } else { /* shift_right occurs */
394 int i, j;
395
396 i = ( cpy_num - del_par == ( j = B_NR_ITEMS(src_bi->bi_bh)) + 1 ) ? 0 : j - cpy_num + del_par;
397
398 internal_delete_pointers_items (src_bi, j + 1 - cpy_num + del_par, i, cpy_num - del_par);
399 }
400 }
401
402 /* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
internal_insert_key(struct buffer_info * dest_bi,int dest_position_before,struct buffer_head * src,int src_position)403 static void internal_insert_key (struct buffer_info * dest_bi,
404 int dest_position_before, /* insert key before key with n_dest number */
405 struct buffer_head * src,
406 int src_position)
407 {
408 struct buffer_head * dest = dest_bi->bi_bh;
409 int nr;
410 struct block_head * blkh;
411 struct key * key;
412
413 RFALSE( dest == NULL || src == NULL,
414 "source(%p) or dest(%p) buffer is 0", src, dest);
415 RFALSE( dest_position_before < 0 || src_position < 0,
416 "source(%d) or dest(%d) key number less than 0",
417 src_position, dest_position_before);
418 RFALSE( dest_position_before > B_NR_ITEMS (dest) ||
419 src_position >= B_NR_ITEMS(src),
420 "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
421 dest_position_before, B_NR_ITEMS (dest),
422 src_position, B_NR_ITEMS(src));
423 RFALSE( B_FREE_SPACE (dest) < KEY_SIZE,
424 "no enough free space (%d) in dest buffer", B_FREE_SPACE (dest));
425
426 blkh = B_BLK_HEAD(dest);
427 nr = blkh_nr_item(blkh);
428
429 /* prepare space for inserting key */
430 key = B_N_PDELIM_KEY (dest, dest_position_before);
431 memmove (key + 1, key, (nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE);
432
433 /* insert key */
434 memcpy (key, B_N_PDELIM_KEY(src, src_position), KEY_SIZE);
435
436 /* Change dirt, free space, item number fields. */
437
438 set_blkh_nr_item( blkh, blkh_nr_item(blkh) + 1 );
439 set_blkh_free_space( blkh, blkh_free_space(blkh) - KEY_SIZE );
440
441 do_balance_mark_internal_dirty (dest_bi->tb, dest, 0);
442
443 if (dest_bi->bi_parent) {
444 struct disk_child *t_dc;
445 t_dc = B_N_CHILD(dest_bi->bi_parent,dest_bi->bi_position);
446 put_dc_size( t_dc, dc_size(t_dc) + KEY_SIZE );
447
448 do_balance_mark_internal_dirty (dest_bi->tb, dest_bi->bi_parent,0);
449 }
450 }
451
452
453
454 /* Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
455 * Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest.
456 * Replace d_key'th key in buffer cfl.
457 * Delete pointer_amount items and node pointers from buffer src.
458 */
459 /* this can be invoked both to shift from S to L and from R to S */
internal_shift_left(int mode,struct tree_balance * tb,int h,int pointer_amount)460 static void internal_shift_left (
461 int mode, /* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */
462 struct tree_balance * tb,
463 int h,
464 int pointer_amount
465 )
466 {
467 struct buffer_info dest_bi, src_bi;
468 struct buffer_head * cf;
469 int d_key_position;
470
471 internal_define_dest_src_infos (mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
472
473 /*printk("pointer_amount = %d\n",pointer_amount);*/
474
475 if (pointer_amount) {
476 /* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */
477 internal_insert_key (&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position);
478
479 if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) {
480 if (src_bi.bi_position/*src->b_item_order*/ == 0)
481 replace_key (tb, cf, d_key_position, src_bi.bi_parent/*src->b_parent*/, 0);
482 } else
483 replace_key (tb, cf, d_key_position, src_bi.bi_bh, pointer_amount - 1);
484 }
485 /* last parameter is del_parameter */
486 internal_move_pointers_items (&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 0);
487
488 }
489
490 /* Insert delimiting key to L[h].
491 * Copy n node pointers and n - 1 items from buffer S[h] to L[h].
492 * Delete n - 1 items and node pointers from buffer S[h].
493 */
494 /* it always shifts from S[h] to L[h] */
internal_shift1_left(struct tree_balance * tb,int h,int pointer_amount)495 static void internal_shift1_left (
496 struct tree_balance * tb,
497 int h,
498 int pointer_amount
499 )
500 {
501 struct buffer_info dest_bi, src_bi;
502 struct buffer_head * cf;
503 int d_key_position;
504
505 internal_define_dest_src_infos (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
506
507 if ( pointer_amount > 0 ) /* insert lkey[h]-th key from CFL[h] to left neighbor L[h] */
508 internal_insert_key (&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position);
509 /* internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]);*/
510
511 /* last parameter is del_parameter */
512 internal_move_pointers_items (&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 1);
513 /* internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1);*/
514 }
515
516
517 /* Insert d_key'th (delimiting) key from buffer cfr to head of dest.
518 * Copy n node pointers and n - 1 items from buffer src to buffer dest.
519 * Replace d_key'th key in buffer cfr.
520 * Delete n items and node pointers from buffer src.
521 */
internal_shift_right(int mode,struct tree_balance * tb,int h,int pointer_amount)522 static void internal_shift_right (
523 int mode, /* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */
524 struct tree_balance * tb,
525 int h,
526 int pointer_amount
527 )
528 {
529 struct buffer_info dest_bi, src_bi;
530 struct buffer_head * cf;
531 int d_key_position;
532 int nr;
533
534
535 internal_define_dest_src_infos (mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
536
537 nr = B_NR_ITEMS (src_bi.bi_bh);
538
539 if (pointer_amount > 0) {
540 /* insert delimiting key from common father of dest and src to dest node into position 0 */
541 internal_insert_key (&dest_bi, 0, cf, d_key_position);
542 if (nr == pointer_amount - 1) {
543 RFALSE( src_bi.bi_bh != PATH_H_PBUFFER (tb->tb_path, h)/*tb->S[h]*/ ||
544 dest_bi.bi_bh != tb->R[h],
545 "src (%p) must be == tb->S[h](%p) when it disappears",
546 src_bi.bi_bh, PATH_H_PBUFFER (tb->tb_path, h));
547 /* when S[h] disappers replace left delemiting key as well */
548 if (tb->CFL[h])
549 replace_key (tb, cf, d_key_position, tb->CFL[h], tb->lkey[h]);
550 } else
551 replace_key (tb, cf, d_key_position, src_bi.bi_bh, nr - pointer_amount);
552 }
553
554 /* last parameter is del_parameter */
555 internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 0);
556 }
557
558 /* Insert delimiting key to R[h].
559 * Copy n node pointers and n - 1 items from buffer S[h] to R[h].
560 * Delete n - 1 items and node pointers from buffer S[h].
561 */
562 /* it always shift from S[h] to R[h] */
internal_shift1_right(struct tree_balance * tb,int h,int pointer_amount)563 static void internal_shift1_right (
564 struct tree_balance * tb,
565 int h,
566 int pointer_amount
567 )
568 {
569 struct buffer_info dest_bi, src_bi;
570 struct buffer_head * cf;
571 int d_key_position;
572
573 internal_define_dest_src_infos (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
574
575 if (pointer_amount > 0) /* insert rkey from CFR[h] to right neighbor R[h] */
576 internal_insert_key (&dest_bi, 0, cf, d_key_position);
577 /* internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]);*/
578
579 /* last parameter is del_parameter */
580 internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 1);
581 /* internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1);*/
582 }
583
584
585 /* Delete insert_num node pointers together with their left items
586 * and balance current node.*/
balance_internal_when_delete(struct tree_balance * tb,int h,int child_pos)587 static void balance_internal_when_delete (struct tree_balance * tb,
588 int h, int child_pos)
589 {
590 int insert_num;
591 int n;
592 struct buffer_head * tbSh = PATH_H_PBUFFER (tb->tb_path, h);
593 struct buffer_info bi;
594
595 insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE));
596
597 /* delete child-node-pointer(s) together with their left item(s) */
598 bi.tb = tb;
599 bi.bi_bh = tbSh;
600 bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
601 bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
602
603 internal_delete_childs (&bi, child_pos, -insert_num);
604
605 RFALSE( tb->blknum[h] > 1,
606 "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]);
607
608 n = B_NR_ITEMS(tbSh);
609
610 if ( tb->lnum[h] == 0 && tb->rnum[h] == 0 ) {
611 if ( tb->blknum[h] == 0 ) {
612 /* node S[h] (root of the tree) is empty now */
613 struct buffer_head *new_root;
614
615 RFALSE( n || B_FREE_SPACE (tbSh) != MAX_CHILD_SIZE(tbSh) - DC_SIZE,
616 "buffer must have only 0 keys (%d)", n);
617 RFALSE( bi.bi_parent, "root has parent (%p)", bi.bi_parent);
618
619 /* choose a new root */
620 if ( ! tb->L[h-1] || ! B_NR_ITEMS(tb->L[h-1]) )
621 new_root = tb->R[h-1];
622 else
623 new_root = tb->L[h-1];
624 /* switch super block's tree root block number to the new value */
625 PUT_SB_ROOT_BLOCK( tb->tb_sb, new_root->b_blocknr );
626 //tb->tb_sb->u.reiserfs_sb.s_rs->s_tree_height --;
627 PUT_SB_TREE_HEIGHT( tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) - 1 );
628
629 do_balance_mark_sb_dirty (tb, tb->tb_sb->u.reiserfs_sb.s_sbh, 1);
630 /*&&&&&&&&&&&&&&&&&&&&&&*/
631 if (h > 1)
632 /* use check_internal if new root is an internal node */
633 check_internal (new_root);
634 /*&&&&&&&&&&&&&&&&&&&&&&*/
635 tb->tb_sb->s_dirt = 1;
636
637 /* do what is needed for buffer thrown from tree */
638 reiserfs_invalidate_buffer(tb, tbSh);
639 return;
640 }
641 return;
642 }
643
644 if ( tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1 ) { /* join S[h] with L[h] */
645
646 RFALSE( tb->rnum[h] != 0,
647 "invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
648 h, tb->rnum[h]);
649
650 internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1);
651 reiserfs_invalidate_buffer(tb, tbSh);
652
653 return;
654 }
655
656 if ( tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1 ) { /* join S[h] with R[h] */
657 RFALSE( tb->lnum[h] != 0,
658 "invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
659 h, tb->lnum[h]);
660
661 internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1);
662
663 reiserfs_invalidate_buffer(tb,tbSh);
664 return;
665 }
666
667 if ( tb->lnum[h] < 0 ) { /* borrow from left neighbor L[h] */
668 RFALSE( tb->rnum[h] != 0,
669 "wrong tb->rnum[%d]==%d when borrow from L[h]", h, tb->rnum[h]);
670 /*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]);*/
671 internal_shift_right (INTERNAL_SHIFT_FROM_L_TO_S, tb, h, -tb->lnum[h]);
672 return;
673 }
674
675 if ( tb->rnum[h] < 0 ) { /* borrow from right neighbor R[h] */
676 RFALSE( tb->lnum[h] != 0,
677 "invalid tb->lnum[%d]==%d when borrow from R[h]",
678 h, tb->lnum[h]);
679 internal_shift_left (INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]);/*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]);*/
680 return;
681 }
682
683 if ( tb->lnum[h] > 0 ) { /* split S[h] into two parts and put them into neighbors */
684 RFALSE( tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1,
685 "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
686 h, tb->lnum[h], h, tb->rnum[h], n);
687
688 internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);/*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]);*/
689 internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]);
690
691 reiserfs_invalidate_buffer (tb, tbSh);
692
693 return;
694 }
695 reiserfs_panic (tb->tb_sb, "balance_internal_when_delete: unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
696 h, tb->lnum[h], h, tb->rnum[h]);
697 }
698
699
700 /* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
replace_lkey(struct tree_balance * tb,int h,struct item_head * key)701 void replace_lkey (
702 struct tree_balance * tb,
703 int h,
704 struct item_head * key
705 )
706 {
707 RFALSE( tb->L[h] == NULL || tb->CFL[h] == NULL,
708 "L[h](%p) and CFL[h](%p) must exist in replace_lkey",
709 tb->L[h], tb->CFL[h]);
710
711 if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0)
712 return;
713
714 memcpy (B_N_PDELIM_KEY(tb->CFL[h],tb->lkey[h]), key, KEY_SIZE);
715
716 do_balance_mark_internal_dirty (tb, tb->CFL[h],0);
717 }
718
719
720 /* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
replace_rkey(struct tree_balance * tb,int h,struct item_head * key)721 void replace_rkey (
722 struct tree_balance * tb,
723 int h,
724 struct item_head * key
725 )
726 {
727 RFALSE( tb->R[h] == NULL || tb->CFR[h] == NULL,
728 "R[h](%p) and CFR[h](%p) must exist in replace_rkey",
729 tb->R[h], tb->CFR[h]);
730 RFALSE( B_NR_ITEMS(tb->R[h]) == 0,
731 "R[h] can not be empty if it exists (item number=%d)",
732 B_NR_ITEMS(tb->R[h]));
733
734 memcpy (B_N_PDELIM_KEY(tb->CFR[h],tb->rkey[h]), key, KEY_SIZE);
735
736 do_balance_mark_internal_dirty (tb, tb->CFR[h], 0);
737 }
738
739
balance_internal(struct tree_balance * tb,int h,int child_pos,struct item_head * insert_key,struct buffer_head ** insert_ptr)740 int balance_internal (struct tree_balance * tb, /* tree_balance structure */
741 int h, /* level of the tree */
742 int child_pos,
743 struct item_head * insert_key, /* key for insertion on higher level */
744 struct buffer_head ** insert_ptr /* node for insertion on higher level*/
745 )
746 /* if inserting/pasting
747 {
748 child_pos is the position of the node-pointer in S[h] that *
749 pointed to S[h-1] before balancing of the h-1 level; *
750 this means that new pointers and items must be inserted AFTER *
751 child_pos
752 }
753 else
754 {
755 it is the position of the leftmost pointer that must be deleted (together with
756 its corresponding key to the left of the pointer)
757 as a result of the previous level's balancing.
758 }
759 */
760 {
761 struct buffer_head * tbSh = PATH_H_PBUFFER (tb->tb_path, h);
762 struct buffer_info bi;
763 int order; /* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */
764 int insert_num, n, k;
765 struct buffer_head * S_new;
766 struct item_head new_insert_key;
767 struct buffer_head * new_insert_ptr = NULL;
768 struct item_head * new_insert_key_addr = insert_key;
769
770 RFALSE( h < 1, "h (%d) can not be < 1 on internal level", h);
771
772 PROC_INFO_INC( tb -> tb_sb, balance_at[ h ] );
773
774 order = ( tbSh ) ? PATH_H_POSITION (tb->tb_path, h + 1)/*tb->S[h]->b_item_order*/ : 0;
775
776 /* Using insert_size[h] calculate the number insert_num of items
777 that must be inserted to or deleted from S[h]. */
778 insert_num = tb->insert_size[h]/((int)(KEY_SIZE + DC_SIZE));
779
780 /* Check whether insert_num is proper **/
781 RFALSE( insert_num < -2 || insert_num > 2,
782 "incorrect number of items inserted to the internal node (%d)",
783 insert_num);
784 RFALSE( h > 1 && (insert_num > 1 || insert_num < -1),
785 "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level",
786 insert_num, h);
787
788 /* Make balance in case insert_num < 0 */
789 if ( insert_num < 0 ) {
790 balance_internal_when_delete (tb, h, child_pos);
791 return order;
792 }
793
794 k = 0;
795 if ( tb->lnum[h] > 0 ) {
796 /* shift lnum[h] items from S[h] to the left neighbor L[h].
797 check how many of new items fall into L[h] or CFL[h] after
798 shifting */
799 n = B_NR_ITEMS (tb->L[h]); /* number of items in L[h] */
800 if ( tb->lnum[h] <= child_pos ) {
801 /* new items don't fall into L[h] or CFL[h] */
802 internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);
803 /*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]);*/
804 child_pos -= tb->lnum[h];
805 } else if ( tb->lnum[h] > child_pos + insert_num ) {
806 /* all new items fall into L[h] */
807 internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h] - insert_num);
808 /* internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,
809 tb->lnum[h]-insert_num);
810 */
811 /* insert insert_num keys and node-pointers into L[h] */
812 bi.tb = tb;
813 bi.bi_bh = tb->L[h];
814 bi.bi_parent = tb->FL[h];
815 bi.bi_position = get_left_neighbor_position (tb, h);
816 internal_insert_childs (&bi,/*tb->L[h], tb->S[h-1]->b_next*/ n + child_pos + 1,
817 insert_num,insert_key,insert_ptr);
818
819 insert_num = 0;
820 } else {
821 struct disk_child * dc;
822
823 /* some items fall into L[h] or CFL[h], but some don't fall */
824 internal_shift1_left(tb,h,child_pos+1);
825 /* calculate number of new items that fall into L[h] */
826 k = tb->lnum[h] - child_pos - 1;
827 bi.tb = tb;
828 bi.bi_bh = tb->L[h];
829 bi.bi_parent = tb->FL[h];
830 bi.bi_position = get_left_neighbor_position (tb, h);
831 internal_insert_childs (&bi,/*tb->L[h], tb->S[h-1]->b_next,*/ n + child_pos + 1,k,
832 insert_key,insert_ptr);
833
834 replace_lkey(tb,h,insert_key + k);
835
836 /* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */
837 dc = B_N_CHILD(tbSh, 0);
838 put_dc_size( dc, MAX_CHILD_SIZE(insert_ptr[k]) - B_FREE_SPACE (insert_ptr[k]));
839 put_dc_block_number( dc, insert_ptr[k]->b_blocknr );
840
841 do_balance_mark_internal_dirty (tb, tbSh, 0);
842
843 k++;
844 insert_key += k;
845 insert_ptr += k;
846 insert_num -= k;
847 child_pos = 0;
848 }
849 } /* tb->lnum[h] > 0 */
850
851 if ( tb->rnum[h] > 0 ) {
852 /*shift rnum[h] items from S[h] to the right neighbor R[h]*/
853 /* check how many of new items fall into R or CFR after shifting */
854 n = B_NR_ITEMS (tbSh); /* number of items in S[h] */
855 if ( n - tb->rnum[h] >= child_pos )
856 /* new items fall into S[h] */
857 /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]);*/
858 internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]);
859 else
860 if ( n + insert_num - tb->rnum[h] < child_pos )
861 {
862 /* all new items fall into R[h] */
863 /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],
864 tb->rnum[h] - insert_num);*/
865 internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h] - insert_num);
866
867 /* insert insert_num keys and node-pointers into R[h] */
868 bi.tb = tb;
869 bi.bi_bh = tb->R[h];
870 bi.bi_parent = tb->FR[h];
871 bi.bi_position = get_right_neighbor_position (tb, h);
872 internal_insert_childs (&bi, /*tb->R[h],tb->S[h-1]->b_next*/ child_pos - n - insert_num + tb->rnum[h] - 1,
873 insert_num,insert_key,insert_ptr);
874 insert_num = 0;
875 }
876 else
877 {
878 struct disk_child * dc;
879
880 /* one of the items falls into CFR[h] */
881 internal_shift1_right(tb,h,n - child_pos + 1);
882 /* calculate number of new items that fall into R[h] */
883 k = tb->rnum[h] - n + child_pos - 1;
884 bi.tb = tb;
885 bi.bi_bh = tb->R[h];
886 bi.bi_parent = tb->FR[h];
887 bi.bi_position = get_right_neighbor_position (tb, h);
888 internal_insert_childs (&bi, /*tb->R[h], tb->R[h]->b_child,*/ 0, k, insert_key + 1, insert_ptr + 1);
889
890 replace_rkey(tb,h,insert_key + insert_num - k - 1);
891
892 /* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1]*/
893 dc = B_N_CHILD(tb->R[h], 0);
894 put_dc_size( dc, MAX_CHILD_SIZE(insert_ptr[insert_num-k-1]) -
895 B_FREE_SPACE (insert_ptr[insert_num-k-1]));
896 put_dc_block_number( dc, insert_ptr[insert_num-k-1]->b_blocknr );
897
898 do_balance_mark_internal_dirty (tb, tb->R[h],0);
899
900 insert_num -= (k + 1);
901 }
902 }
903
904 /** Fill new node that appears instead of S[h] **/
905 RFALSE( tb->blknum[h] > 2, "blknum can not be > 2 for internal level");
906 RFALSE( tb->blknum[h] < 0, "blknum can not be < 0");
907
908 if ( ! tb->blknum[h] )
909 { /* node S[h] is empty now */
910 RFALSE( ! tbSh, "S[h] is equal NULL");
911
912 /* do what is needed for buffer thrown from tree */
913 reiserfs_invalidate_buffer(tb,tbSh);
914 return order;
915 }
916
917 if ( ! tbSh ) {
918 /* create new root */
919 struct disk_child * dc;
920 struct buffer_head * tbSh_1 = PATH_H_PBUFFER (tb->tb_path, h - 1);
921 struct block_head * blkh;
922
923
924 if ( tb->blknum[h] != 1 )
925 reiserfs_panic(0, "balance_internal: One new node required for creating the new root");
926 /* S[h] = empty buffer from the list FEB. */
927 tbSh = get_FEB (tb);
928 blkh = B_BLK_HEAD(tbSh);
929 set_blkh_level( blkh, h + 1 );
930
931 /* Put the unique node-pointer to S[h] that points to S[h-1]. */
932
933 dc = B_N_CHILD(tbSh, 0);
934 put_dc_block_number( dc, tbSh_1->b_blocknr );
935 put_dc_size( dc, (MAX_CHILD_SIZE (tbSh_1) - B_FREE_SPACE (tbSh_1)));
936
937 tb->insert_size[h] -= DC_SIZE;
938 set_blkh_free_space( blkh, blkh_free_space(blkh) - DC_SIZE );
939
940 do_balance_mark_internal_dirty (tb, tbSh, 0);
941
942 /*&&&&&&&&&&&&&&&&&&&&&&&&*/
943 check_internal (tbSh);
944 /*&&&&&&&&&&&&&&&&&&&&&&&&*/
945
946 /* put new root into path structure */
947 PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) = tbSh;
948
949 /* Change root in structure super block. */
950 PUT_SB_ROOT_BLOCK( tb->tb_sb, tbSh->b_blocknr );
951 PUT_SB_TREE_HEIGHT( tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1 );
952 do_balance_mark_sb_dirty (tb, tb->tb_sb->u.reiserfs_sb.s_sbh, 1);
953 tb->tb_sb->s_dirt = 1;
954 }
955
956 if ( tb->blknum[h] == 2 ) {
957 int snum;
958 struct buffer_info dest_bi, src_bi;
959
960
961 /* S_new = free buffer from list FEB */
962 S_new = get_FEB(tb);
963
964 set_blkh_level( B_BLK_HEAD(S_new), h + 1 );
965
966 dest_bi.tb = tb;
967 dest_bi.bi_bh = S_new;
968 dest_bi.bi_parent = 0;
969 dest_bi.bi_position = 0;
970 src_bi.tb = tb;
971 src_bi.bi_bh = tbSh;
972 src_bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
973 src_bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
974
975 n = B_NR_ITEMS (tbSh); /* number of items in S[h] */
976 snum = (insert_num + n + 1)/2;
977 if ( n - snum >= child_pos ) {
978 /* new items don't fall into S_new */
979 /* store the delimiting key for the next level */
980 /* new_insert_key = (n - snum)'th key in S[h] */
981 memcpy (&new_insert_key,B_N_PDELIM_KEY(tbSh,n - snum),
982 KEY_SIZE);
983 /* last parameter is del_par */
984 internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, snum, 0);
985 /* internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0);*/
986 } else if ( n + insert_num - snum < child_pos ) {
987 /* all new items fall into S_new */
988 /* store the delimiting key for the next level */
989 /* new_insert_key = (n + insert_item - snum)'th key in S[h] */
990 memcpy(&new_insert_key,B_N_PDELIM_KEY(tbSh,n + insert_num - snum),
991 KEY_SIZE);
992 /* last parameter is del_par */
993 internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, snum - insert_num, 0);
994 /* internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0);*/
995
996 /* insert insert_num keys and node-pointers into S_new */
997 internal_insert_childs (&dest_bi, /*S_new,tb->S[h-1]->b_next,*/child_pos - n - insert_num + snum - 1,
998 insert_num,insert_key,insert_ptr);
999
1000 insert_num = 0;
1001 } else {
1002 struct disk_child * dc;
1003
1004 /* some items fall into S_new, but some don't fall */
1005 /* last parameter is del_par */
1006 internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, n - child_pos + 1, 1);
1007 /* internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1);*/
1008 /* calculate number of new items that fall into S_new */
1009 k = snum - n + child_pos - 1;
1010
1011 internal_insert_childs (&dest_bi, /*S_new,*/ 0, k, insert_key + 1, insert_ptr+1);
1012
1013 /* new_insert_key = insert_key[insert_num - k - 1] */
1014 memcpy(&new_insert_key,insert_key + insert_num - k - 1,
1015 KEY_SIZE);
1016 /* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */
1017
1018 dc = B_N_CHILD(S_new,0);
1019 put_dc_size( dc, (MAX_CHILD_SIZE(insert_ptr[insert_num-k-1]) -
1020 B_FREE_SPACE(insert_ptr[insert_num-k-1])) );
1021 put_dc_block_number( dc, insert_ptr[insert_num-k-1]->b_blocknr );
1022
1023 do_balance_mark_internal_dirty (tb, S_new,0);
1024
1025 insert_num -= (k + 1);
1026 }
1027 /* new_insert_ptr = node_pointer to S_new */
1028 new_insert_ptr = S_new;
1029
1030 RFALSE(( buffer_locked(S_new) || atomic_read (&(S_new->b_count)) != 1) &&
1031 (buffer_locked(S_new) || atomic_read(&(S_new->b_count)) > 2 ||
1032 !(buffer_journaled(S_new) || buffer_journal_dirty(S_new))),
1033 "cm-00001: bad S_new (%b)", S_new);
1034
1035 // S_new is released in unfix_nodes
1036 }
1037
1038 n = B_NR_ITEMS (tbSh); /*number of items in S[h] */
1039
1040 if ( 0 <= child_pos && child_pos <= n && insert_num > 0 ) {
1041 bi.tb = tb;
1042 bi.bi_bh = tbSh;
1043 bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
1044 bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
1045 internal_insert_childs (
1046 &bi,/*tbSh,*/
1047 /* ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next : tb->S[h]->b_child->b_next,*/
1048 child_pos,insert_num,insert_key,insert_ptr
1049 );
1050 }
1051
1052
1053 memcpy (new_insert_key_addr,&new_insert_key,KEY_SIZE);
1054 insert_ptr[0] = new_insert_ptr;
1055
1056 return order;
1057 }
1058
1059
1060
1061