1 /*
2 * Copyright 2000-2002 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 /**
6 ** old_item_num
7 ** old_entry_num
8 ** set_entry_sizes
9 ** create_virtual_node
10 ** check_left
11 ** check_right
12 ** directory_part_size
13 ** get_num_ver
14 ** set_parameters
15 ** is_leaf_removable
16 ** are_leaves_removable
17 ** get_empty_nodes
18 ** get_lfree
19 ** get_rfree
20 ** is_left_neighbor_in_cache
21 ** decrement_key
22 ** get_far_parent
23 ** get_parents
24 ** can_node_be_removed
25 ** ip_check_balance
26 ** dc_check_balance_internal
27 ** dc_check_balance_leaf
28 ** dc_check_balance
29 ** check_balance
30 ** get_direct_parent
31 ** get_neighbors
32 ** fix_nodes
33 **
34 **
35 **/
36
37
38 #include <linux/config.h>
39 #include <linux/sched.h>
40 #include <linux/string.h>
41 #include <linux/locks.h>
42 #include <linux/reiserfs_fs.h>
43
44
45 /* To make any changes in the tree we find a node, that contains item
46 to be changed/deleted or position in the node we insert a new item
47 to. We call this node S. To do balancing we need to decide what we
48 will shift to left/right neighbor, or to a new node, where new item
49 will be etc. To make this analysis simpler we build virtual
50 node. Virtual node is an array of items, that will replace items of
51 node S. (For instance if we are going to delete an item, virtual
52 node does not contain it). Virtual node keeps information about
53 item sizes and types, mergeability of first and last items, sizes
54 of all entries in directory item. We use this array of items when
55 calculating what we can shift to neighbors and how many nodes we
56 have to have if we do not any shiftings, if we shift to left/right
57 neighbor or to both. */
58
59
60 /* taking item number in virtual node, returns number of item, that it has in source buffer */
old_item_num(int new_num,int affected_item_num,int mode)61 static inline int old_item_num (int new_num, int affected_item_num, int mode)
62 {
63 if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
64 return new_num;
65
66 if (mode == M_INSERT) {
67
68 RFALSE( new_num == 0,
69 "vs-8005: for INSERT mode and item number of inserted item");
70
71 return new_num - 1;
72 }
73
74 RFALSE( mode != M_DELETE,
75 "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'", mode);
76 /* delete mode */
77 return new_num + 1;
78 }
79
create_virtual_node(struct tree_balance * tb,int h)80 static void create_virtual_node (struct tree_balance * tb, int h)
81 {
82 struct item_head * ih;
83 struct virtual_node * vn = tb->tb_vn;
84 int new_num;
85 struct buffer_head * Sh; /* this comes from tb->S[h] */
86
87 Sh = PATH_H_PBUFFER (tb->tb_path, h);
88
89 /* size of changed node */
90 vn->vn_size = MAX_CHILD_SIZE (Sh) - B_FREE_SPACE (Sh) + tb->insert_size[h];
91
92 /* for internal nodes array if virtual items is not created */
93 if (h) {
94 vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
95 return;
96 }
97
98 /* number of items in virtual node */
99 vn->vn_nr_item = B_NR_ITEMS (Sh) + ((vn->vn_mode == M_INSERT)? 1 : 0) - ((vn->vn_mode == M_DELETE)? 1 : 0);
100
101 /* first virtual item */
102 vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
103 memset (vn->vn_vi, 0, vn->vn_nr_item * sizeof (struct virtual_item));
104 vn->vn_free_ptr += vn->vn_nr_item * sizeof (struct virtual_item);
105
106
107 /* first item in the node */
108 ih = B_N_PITEM_HEAD (Sh, 0);
109
110 /* define the mergeability for 0-th item (if it is not being deleted) */
111 if (op_is_left_mergeable (&(ih->ih_key), Sh->b_size) && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
112 vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
113
114 /* go through all items those remain in the virtual node (except for the new (inserted) one) */
115 for (new_num = 0; new_num < vn->vn_nr_item; new_num ++) {
116 int j;
117 struct virtual_item * vi = vn->vn_vi + new_num;
118 int is_affected = ((new_num != vn->vn_affected_item_num) ? 0 : 1);
119
120
121 if (is_affected && vn->vn_mode == M_INSERT)
122 continue;
123
124 /* get item number in source node */
125 j = old_item_num (new_num, vn->vn_affected_item_num, vn->vn_mode);
126
127 vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
128 vi->vi_ih = ih + j;
129 vi->vi_item = B_I_PITEM (Sh, ih + j);
130 vi->vi_uarea = vn->vn_free_ptr;
131
132 // FIXME: there is no check, that item operation did not
133 // consume too much memory
134 vn->vn_free_ptr += op_create_vi (vn, vi, is_affected, tb->insert_size [0]);
135 if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
136 reiserfs_panic (tb->tb_sb, "vs-8030: create_virtual_node: "
137 "virtual node space consumed");
138
139 if (!is_affected)
140 /* this is not being changed */
141 continue;
142
143 if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
144 vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
145 vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted
146 }
147 }
148
149
150 /* virtual inserted item is not defined yet */
151 if (vn->vn_mode == M_INSERT) {
152 struct virtual_item * vi = vn->vn_vi + vn->vn_affected_item_num;
153
154 RFALSE( vn->vn_ins_ih == 0,
155 "vs-8040: item header of inserted item is not specified");
156 vi->vi_item_len = tb->insert_size[0];
157 vi->vi_ih = vn->vn_ins_ih;
158 vi->vi_item = vn->vn_data;
159 vi->vi_uarea = vn->vn_free_ptr;
160
161 op_create_vi (vn, vi, 0/*not pasted or cut*/, tb->insert_size [0]);
162 }
163
164 /* set right merge flag we take right delimiting key and check whether it is a mergeable item */
165 if (tb->CFR[0]) {
166 struct key * key;
167
168 key = B_N_PDELIM_KEY (tb->CFR[0], tb->rkey[0]);
169 if (op_is_left_mergeable (key, Sh->b_size) && (vn->vn_mode != M_DELETE ||
170 vn->vn_affected_item_num != B_NR_ITEMS (Sh) - 1))
171 vn->vn_vi[vn->vn_nr_item-1].vi_type |= VI_TYPE_RIGHT_MERGEABLE;
172
173 #ifdef CONFIG_REISERFS_CHECK
174 if (op_is_left_mergeable (key, Sh->b_size) &&
175 !(vn->vn_mode != M_DELETE || vn->vn_affected_item_num != B_NR_ITEMS (Sh) - 1) ) {
176 /* we delete last item and it could be merged with right neighbor's first item */
177 if (!(B_NR_ITEMS (Sh) == 1 && is_direntry_le_ih (B_N_PITEM_HEAD (Sh, 0)) &&
178 I_ENTRY_COUNT (B_N_PITEM_HEAD (Sh, 0)) == 1)) {
179 /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
180 print_block (Sh, 0, -1, -1);
181 reiserfs_panic (tb->tb_sb, "vs-8045: create_virtual_node: rdkey %k, affected item==%d (mode==%c) Must be %c",
182 key, vn->vn_affected_item_num, vn->vn_mode, M_DELETE);
183 } else
184 /* we can delete directory item, that has only one directory entry in it */
185 ;
186 }
187 #endif
188
189 }
190 }
191
192
193 /* using virtual node check, how many items can be shifted to left
194 neighbor */
check_left(struct tree_balance * tb,int h,int cur_free)195 static void check_left (struct tree_balance * tb, int h, int cur_free)
196 {
197 int i;
198 struct virtual_node * vn = tb->tb_vn;
199 struct virtual_item * vi;
200 int d_size, ih_size;
201
202 RFALSE( cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
203
204 /* internal level */
205 if (h > 0) {
206 tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
207 return;
208 }
209
210 /* leaf level */
211
212 if (!cur_free || !vn->vn_nr_item) {
213 /* no free space or nothing to move */
214 tb->lnum[h] = 0;
215 tb->lbytes = -1;
216 return;
217 }
218
219 RFALSE( !PATH_H_PPARENT (tb->tb_path, 0),
220 "vs-8055: parent does not exist or invalid");
221
222 vi = vn->vn_vi;
223 if ((unsigned int)cur_free >= (vn->vn_size - ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
224 /* all contents of S[0] fits into L[0] */
225
226 RFALSE( vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
227 "vs-8055: invalid mode or balance condition failed");
228
229 tb->lnum[0] = vn->vn_nr_item;
230 tb->lbytes = -1;
231 return;
232 }
233
234
235 d_size = 0, ih_size = IH_SIZE;
236
237 /* first item may be merge with last item in left neighbor */
238 if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
239 d_size = -((int)IH_SIZE), ih_size = 0;
240
241 tb->lnum[0] = 0;
242 for (i = 0; i < vn->vn_nr_item; i ++, ih_size = IH_SIZE, d_size = 0, vi ++) {
243 d_size += vi->vi_item_len;
244 if (cur_free >= d_size) {
245 /* the item can be shifted entirely */
246 cur_free -= d_size;
247 tb->lnum[0] ++;
248 continue;
249 }
250
251 /* the item cannot be shifted entirely, try to split it */
252 /* check whether L[0] can hold ih and at least one byte of the item body */
253 if (cur_free <= ih_size) {
254 /* cannot shift even a part of the current item */
255 tb->lbytes = -1;
256 return;
257 }
258 cur_free -= ih_size;
259
260 tb->lbytes = op_check_left (vi, cur_free, 0, 0);
261 if (tb->lbytes != -1)
262 /* count partially shifted item */
263 tb->lnum[0] ++;
264
265 break;
266 }
267
268 return;
269 }
270
271
272 /* using virtual node check, how many items can be shifted to right
273 neighbor */
check_right(struct tree_balance * tb,int h,int cur_free)274 static void check_right (struct tree_balance * tb, int h, int cur_free)
275 {
276 int i;
277 struct virtual_node * vn = tb->tb_vn;
278 struct virtual_item * vi;
279 int d_size, ih_size;
280
281 RFALSE( cur_free < 0, "vs-8070: cur_free < 0");
282
283 /* internal level */
284 if (h > 0) {
285 tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
286 return;
287 }
288
289 /* leaf level */
290
291 if (!cur_free || !vn->vn_nr_item) {
292 /* no free space */
293 tb->rnum[h] = 0;
294 tb->rbytes = -1;
295 return;
296 }
297
298 RFALSE( !PATH_H_PPARENT (tb->tb_path, 0),
299 "vs-8075: parent does not exist or invalid");
300
301 vi = vn->vn_vi + vn->vn_nr_item - 1;
302 if ((unsigned int)cur_free >= (vn->vn_size - ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
303 /* all contents of S[0] fits into R[0] */
304
305 RFALSE( vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
306 "vs-8080: invalid mode or balance condition failed");
307
308 tb->rnum[h] = vn->vn_nr_item;
309 tb->rbytes = -1;
310 return;
311 }
312
313 d_size = 0, ih_size = IH_SIZE;
314
315 /* last item may be merge with first item in right neighbor */
316 if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
317 d_size = -(int)IH_SIZE, ih_size = 0;
318
319 tb->rnum[0] = 0;
320 for (i = vn->vn_nr_item - 1; i >= 0; i --, d_size = 0, ih_size = IH_SIZE, vi --) {
321 d_size += vi->vi_item_len;
322 if (cur_free >= d_size) {
323 /* the item can be shifted entirely */
324 cur_free -= d_size;
325 tb->rnum[0] ++;
326 continue;
327 }
328
329 /* check whether R[0] can hold ih and at least one byte of the item body */
330 if ( cur_free <= ih_size ) { /* cannot shift even a part of the current item */
331 tb->rbytes = -1;
332 return;
333 }
334
335 /* R[0] can hold the header of the item and at least one byte of its body */
336 cur_free -= ih_size; /* cur_free is still > 0 */
337
338 tb->rbytes = op_check_right (vi, cur_free);
339 if (tb->rbytes != -1)
340 /* count partially shifted item */
341 tb->rnum[0] ++;
342
343 break;
344 }
345
346 return;
347 }
348
349
350 /*
351 * from - number of items, which are shifted to left neighbor entirely
352 * to - number of item, which are shifted to right neighbor entirely
353 * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
354 * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
get_num_ver(int mode,struct tree_balance * tb,int h,int from,int from_bytes,int to,int to_bytes,short * snum012,int flow)355 static int get_num_ver (int mode, struct tree_balance * tb, int h,
356 int from, int from_bytes,
357 int to, int to_bytes,
358 short * snum012, int flow
359 )
360 {
361 int i;
362 int cur_free;
363 // int bytes;
364 int units;
365 struct virtual_node * vn = tb->tb_vn;
366 // struct virtual_item * vi;
367
368 int total_node_size, max_node_size, current_item_size;
369 int needed_nodes;
370 int start_item, /* position of item we start filling node from */
371 end_item, /* position of item we finish filling node by */
372 start_bytes,/* number of first bytes (entries for directory) of start_item-th item
373 we do not include into node that is being filled */
374 end_bytes; /* number of last bytes (entries for directory) of end_item-th item
375 we do node include into node that is being filled */
376 int split_item_positions[2]; /* these are positions in virtual item of
377 items, that are split between S[0] and
378 S1new and S1new and S2new */
379
380 split_item_positions[0] = -1;
381 split_item_positions[1] = -1;
382
383 /* We only create additional nodes if we are in insert or paste mode
384 or we are in replace mode at the internal level. If h is 0 and
385 the mode is M_REPLACE then in fix_nodes we change the mode to
386 paste or insert before we get here in the code. */
387 RFALSE( tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
388 "vs-8100: insert_size < 0 in overflow");
389
390 max_node_size = MAX_CHILD_SIZE (PATH_H_PBUFFER (tb->tb_path, h));
391
392 /* snum012 [0-2] - number of items, that lay
393 to S[0], first new node and second new node */
394 snum012[3] = -1; /* s1bytes */
395 snum012[4] = -1; /* s2bytes */
396
397 /* internal level */
398 if (h > 0) {
399 i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
400 if (i == max_node_size)
401 return 1;
402 return (i / max_node_size + 1);
403 }
404
405 /* leaf level */
406 needed_nodes = 1;
407 total_node_size = 0;
408 cur_free = max_node_size;
409
410 // start from 'from'-th item
411 start_item = from;
412 // skip its first 'start_bytes' units
413 start_bytes = ((from_bytes != -1) ? from_bytes : 0);
414
415 // last included item is the 'end_item'-th one
416 end_item = vn->vn_nr_item - to - 1;
417 // do not count last 'end_bytes' units of 'end_item'-th item
418 end_bytes = (to_bytes != -1) ? to_bytes : 0;
419
420 /* go through all item beginning from the start_item-th item and ending by
421 the end_item-th item. Do not count first 'start_bytes' units of
422 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
423
424 for (i = start_item; i <= end_item; i ++) {
425 struct virtual_item * vi = vn->vn_vi + i;
426 int skip_from_end = ((i == end_item) ? end_bytes : 0);
427
428 RFALSE( needed_nodes > 3, "vs-8105: too many nodes are needed");
429
430 /* get size of current item */
431 current_item_size = vi->vi_item_len;
432
433 /* do not take in calculation head part (from_bytes) of from-th item */
434 current_item_size -= op_part_size (vi, 0/*from start*/, start_bytes);
435
436 /* do not take in calculation tail part of last item */
437 current_item_size -= op_part_size (vi, 1/*from end*/, skip_from_end);
438
439 /* if item fits into current node entierly */
440 if (total_node_size + current_item_size <= max_node_size) {
441 snum012[needed_nodes - 1] ++;
442 total_node_size += current_item_size;
443 start_bytes = 0;
444 continue;
445 }
446
447 if (current_item_size > max_node_size) {
448 /* virtual item length is longer, than max size of item in
449 a node. It is impossible for direct item */
450 RFALSE( is_direct_le_ih (vi->vi_ih),
451 "vs-8110: "
452 "direct item length is %d. It can not be longer than %d",
453 current_item_size, max_node_size);
454 /* we will try to split it */
455 flow = 1;
456 }
457
458 if (!flow) {
459 /* as we do not split items, take new node and continue */
460 needed_nodes ++; i --; total_node_size = 0;
461 continue;
462 }
463
464 // calculate number of item units which fit into node being
465 // filled
466 {
467 int free_space;
468
469 free_space = max_node_size - total_node_size - IH_SIZE;
470 units = op_check_left (vi, free_space, start_bytes, skip_from_end);
471 if (units == -1) {
472 /* nothing fits into current node, take new node and continue */
473 needed_nodes ++, i--, total_node_size = 0;
474 continue;
475 }
476 }
477
478 /* something fits into the current node */
479 //if (snum012[3] != -1 || needed_nodes != 1)
480 // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
481 //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
482 start_bytes += units;
483 snum012[needed_nodes - 1 + 3] = units;
484
485 if (needed_nodes > 2)
486 reiserfs_warning (tb->tb_sb, "vs-8111: get_num_ver: split_item_position is out of boundary\n");
487 snum012[needed_nodes - 1] ++;
488 split_item_positions[needed_nodes - 1] = i;
489 needed_nodes ++;
490 /* continue from the same item with start_bytes != -1 */
491 start_item = i;
492 i --;
493 total_node_size = 0;
494 }
495
496 // sum012[4] (if it is not -1) contains number of units of which
497 // are to be in S1new, snum012[3] - to be in S0. They are supposed
498 // to be S1bytes and S2bytes correspondingly, so recalculate
499 if (snum012[4] > 0) {
500 int split_item_num;
501 int bytes_to_r, bytes_to_l;
502 int bytes_to_S1new;
503
504 split_item_num = split_item_positions[1];
505 bytes_to_l = ((from == split_item_num && from_bytes != -1) ? from_bytes : 0);
506 bytes_to_r = ((end_item == split_item_num && end_bytes != -1) ? end_bytes : 0);
507 bytes_to_S1new = ((split_item_positions[0] == split_item_positions[1]) ? snum012[3] : 0);
508
509 // s2bytes
510 snum012[4] = op_unit_num (&vn->vn_vi[split_item_num]) - snum012[4] - bytes_to_r - bytes_to_l - bytes_to_S1new;
511
512 if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY)
513 reiserfs_warning (tb->tb_sb, "vs-8115: get_num_ver: not directory item\n");
514 }
515
516 /* now we know S2bytes, calculate S1bytes */
517 if (snum012[3] > 0) {
518 int split_item_num;
519 int bytes_to_r, bytes_to_l;
520 int bytes_to_S2new;
521
522 split_item_num = split_item_positions[0];
523 bytes_to_l = ((from == split_item_num && from_bytes != -1) ? from_bytes : 0);
524 bytes_to_r = ((end_item == split_item_num && end_bytes != -1) ? end_bytes : 0);
525 bytes_to_S2new = ((split_item_positions[0] == split_item_positions[1] && snum012[4] != -1) ? snum012[4] : 0);
526
527 // s1bytes
528 snum012[3] = op_unit_num (&vn->vn_vi[split_item_num]) - snum012[3] - bytes_to_r - bytes_to_l - bytes_to_S2new;
529 }
530
531 return needed_nodes;
532 }
533
534
535 #ifdef CONFIG_REISERFS_CHECK
536 extern struct tree_balance * cur_tb;
537 #endif
538
539
540 /* Set parameters for balancing.
541 * Performs write of results of analysis of balancing into structure tb,
542 * where it will later be used by the functions that actually do the balancing.
543 * Parameters:
544 * tb tree_balance structure;
545 * h current level of the node;
546 * lnum number of items from S[h] that must be shifted to L[h];
547 * rnum number of items from S[h] that must be shifted to R[h];
548 * blk_num number of blocks that S[h] will be splitted into;
549 * s012 number of items that fall into splitted nodes.
550 * lbytes number of bytes which flow to the left neighbor from the item that is not
551 * not shifted entirely
552 * rbytes number of bytes which flow to the right neighbor from the item that is not
553 * not shifted entirely
554 * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array)
555 */
556
set_parameters(struct tree_balance * tb,int h,int lnum,int rnum,int blk_num,short * s012,int lb,int rb)557 static void set_parameters (struct tree_balance * tb, int h, int lnum,
558 int rnum, int blk_num, short * s012, int lb, int rb)
559 {
560
561 tb->lnum[h] = lnum;
562 tb->rnum[h] = rnum;
563 tb->blknum[h] = blk_num;
564
565 if (h == 0)
566 { /* only for leaf level */
567 if (s012 != NULL)
568 {
569 tb->s0num = * s012 ++,
570 tb->s1num = * s012 ++,
571 tb->s2num = * s012 ++;
572 tb->s1bytes = * s012 ++;
573 tb->s2bytes = * s012;
574 }
575 tb->lbytes = lb;
576 tb->rbytes = rb;
577 }
578 PROC_INFO_ADD( tb -> tb_sb, lnum[ h ], lnum );
579 PROC_INFO_ADD( tb -> tb_sb, rnum[ h ], rnum );
580
581 PROC_INFO_ADD( tb -> tb_sb, lbytes[ h ], lb );
582 PROC_INFO_ADD( tb -> tb_sb, rbytes[ h ], rb );
583 }
584
585
586
587 /* check, does node disappear if we shift tb->lnum[0] items to left
588 neighbor and tb->rnum[0] to the right one. */
is_leaf_removable(struct tree_balance * tb)589 static int is_leaf_removable (struct tree_balance * tb)
590 {
591 struct virtual_node * vn = tb->tb_vn;
592 int to_left, to_right;
593 int size;
594 int remain_items;
595
596 /* number of items, that will be shifted to left (right) neighbor
597 entirely */
598 to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
599 to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
600 remain_items = vn->vn_nr_item;
601
602 /* how many items remain in S[0] after shiftings to neighbors */
603 remain_items -= (to_left + to_right);
604
605 if (remain_items < 1) {
606 /* all content of node can be shifted to neighbors */
607 set_parameters (tb, 0, to_left, vn->vn_nr_item - to_left, 0, NULL, -1, -1);
608 return 1;
609 }
610
611 if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
612 /* S[0] is not removable */
613 return 0;
614
615 /* check, whether we can divide 1 remaining item between neighbors */
616
617 /* get size of remaining item (in item units) */
618 size = op_unit_num (&(vn->vn_vi[to_left]));
619
620 if (tb->lbytes + tb->rbytes >= size) {
621 set_parameters (tb, 0, to_left + 1, to_right + 1, 0, NULL, tb->lbytes, -1);
622 return 1;
623 }
624
625 return 0;
626 }
627
628
629 /* check whether L, S, R can be joined in one node */
are_leaves_removable(struct tree_balance * tb,int lfree,int rfree)630 static int are_leaves_removable (struct tree_balance * tb, int lfree, int rfree)
631 {
632 struct virtual_node * vn = tb->tb_vn;
633 int ih_size;
634 struct buffer_head *S0;
635
636 S0 = PATH_H_PBUFFER (tb->tb_path, 0);
637
638 ih_size = 0;
639 if (vn->vn_nr_item) {
640 if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
641 ih_size += IH_SIZE;
642
643 if (vn->vn_vi[vn->vn_nr_item-1].vi_type & VI_TYPE_RIGHT_MERGEABLE)
644 ih_size += IH_SIZE;
645 } else {
646 /* there was only one item and it will be deleted */
647 struct item_head * ih;
648
649 RFALSE( B_NR_ITEMS (S0) != 1,
650 "vs-8125: item number must be 1: it is %d", B_NR_ITEMS(S0));
651
652 ih = B_N_PITEM_HEAD (S0, 0);
653 if (tb->CFR[0] && !comp_short_le_keys (&(ih->ih_key), B_N_PDELIM_KEY (tb->CFR[0], tb->rkey[0])))
654 if (is_direntry_le_ih (ih)) {
655 /* Directory must be in correct state here: that is
656 somewhere at the left side should exist first directory
657 item. But the item being deleted can not be that first
658 one because its right neighbor is item of the same
659 directory. (But first item always gets deleted in last
660 turn). So, neighbors of deleted item can be merged, so
661 we can save ih_size */
662 ih_size = IH_SIZE;
663
664 /* we might check that left neighbor exists and is of the
665 same directory */
666 RFALSE(le_ih_k_offset (ih) == DOT_OFFSET,
667 "vs-8130: first directory item can not be removed until directory is not empty");
668 }
669
670 }
671
672 if (MAX_CHILD_SIZE (S0) + vn->vn_size <= rfree + lfree + ih_size) {
673 set_parameters (tb, 0, -1, -1, -1, NULL, -1, -1);
674 PROC_INFO_INC( tb -> tb_sb, leaves_removable );
675 return 1;
676 }
677 return 0;
678
679 }
680
681
682
683 /* when we do not split item, lnum and rnum are numbers of entire items */
684 #define SET_PAR_SHIFT_LEFT \
685 if (h)\
686 {\
687 int to_l;\
688 \
689 to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
690 (MAX_NR_KEY(Sh) + 1 - lpar);\
691 \
692 set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
693 }\
694 else \
695 {\
696 if (lset==LEFT_SHIFT_FLOW)\
697 set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
698 tb->lbytes, -1);\
699 else\
700 set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
701 -1, -1);\
702 }
703
704
705 #define SET_PAR_SHIFT_RIGHT \
706 if (h)\
707 {\
708 int to_r;\
709 \
710 to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
711 \
712 set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
713 }\
714 else \
715 {\
716 if (rset==RIGHT_SHIFT_FLOW)\
717 set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
718 -1, tb->rbytes);\
719 else\
720 set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
721 -1, -1);\
722 }
723
724
free_buffers_in_tb(struct tree_balance * p_s_tb)725 void free_buffers_in_tb (
726 struct tree_balance * p_s_tb
727 ) {
728 int n_counter;
729
730 decrement_counters_in_path(p_s_tb->tb_path);
731
732 for ( n_counter = 0; n_counter < MAX_HEIGHT; n_counter++ ) {
733 decrement_bcount(p_s_tb->L[n_counter]);
734 p_s_tb->L[n_counter] = NULL;
735 decrement_bcount(p_s_tb->R[n_counter]);
736 p_s_tb->R[n_counter] = NULL;
737 decrement_bcount(p_s_tb->FL[n_counter]);
738 p_s_tb->FL[n_counter] = NULL;
739 decrement_bcount(p_s_tb->FR[n_counter]);
740 p_s_tb->FR[n_counter] = NULL;
741 decrement_bcount(p_s_tb->CFL[n_counter]);
742 p_s_tb->CFL[n_counter] = NULL;
743 decrement_bcount(p_s_tb->CFR[n_counter]);
744 p_s_tb->CFR[n_counter] = NULL;
745 }
746 }
747
748
749 /* Get new buffers for storing new nodes that are created while balancing.
750 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
751 * CARRY_ON - schedule didn't occur while the function worked;
752 * NO_DISK_SPACE - no disk space.
753 */
754 /* The function is NOT SCHEDULE-SAFE! */
get_empty_nodes(struct tree_balance * p_s_tb,int n_h)755 static int get_empty_nodes(
756 struct tree_balance * p_s_tb,
757 int n_h
758 ) {
759 struct buffer_head * p_s_new_bh,
760 * p_s_Sh = PATH_H_PBUFFER (p_s_tb->tb_path, n_h);
761 unsigned long * p_n_blocknr,
762 a_n_blocknrs[MAX_AMOUNT_NEEDED] = {0, };
763 int n_counter,
764 n_number_of_freeblk,
765 n_amount_needed,/* number of needed empty blocks */
766 n_retval = CARRY_ON;
767 struct super_block * p_s_sb = p_s_tb->tb_sb;
768
769
770 /* number_of_freeblk is the number of empty blocks which have been
771 acquired for use by the balancing algorithm minus the number of
772 empty blocks used in the previous levels of the analysis,
773 number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
774 after empty blocks are acquired, and the balancing analysis is
775 then restarted, amount_needed is the number needed by this level
776 (n_h) of the balancing analysis.
777
778 Note that for systems with many processes writing, it would be
779 more layout optimal to calculate the total number needed by all
780 levels and then to run reiserfs_new_blocks to get all of them at once. */
781
782 /* Initiate number_of_freeblk to the amount acquired prior to the restart of
783 the analysis or 0 if not restarted, then subtract the amount needed
784 by all of the levels of the tree below n_h. */
785 /* blknum includes S[n_h], so we subtract 1 in this calculation */
786 for ( n_counter = 0, n_number_of_freeblk = p_s_tb->cur_blknum; n_counter < n_h; n_counter++ )
787 n_number_of_freeblk -= ( p_s_tb->blknum[n_counter] ) ? (p_s_tb->blknum[n_counter] - 1) : 0;
788
789 /* Allocate missing empty blocks. */
790 /* if p_s_Sh == 0 then we are getting a new root */
791 n_amount_needed = ( p_s_Sh ) ? (p_s_tb->blknum[n_h] - 1) : 1;
792 /* Amount_needed = the amount that we need more than the amount that we have. */
793 if ( n_amount_needed > n_number_of_freeblk )
794 n_amount_needed -= n_number_of_freeblk;
795 else /* If we have enough already then there is nothing to do. */
796 return CARRY_ON;
797
798 if ( reiserfs_new_form_blocknrs (p_s_tb, a_n_blocknrs,
799 n_amount_needed) == NO_DISK_SPACE )
800 return NO_DISK_SPACE;
801
802 /* for each blocknumber we just got, get a buffer and stick it on FEB */
803 for ( p_n_blocknr = a_n_blocknrs, n_counter = 0; n_counter < n_amount_needed;
804 p_n_blocknr++, n_counter++ ) {
805
806 RFALSE( ! *p_n_blocknr,
807 "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
808
809 p_s_new_bh = getblk(p_s_sb->s_dev, *p_n_blocknr, p_s_sb->s_blocksize);
810 if (atomic_read (&(p_s_new_bh->b_count)) > 1) {
811 /*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
812 /*
813 reiserfs_warning (p_s_sb, "waiting for buffer %b, iput inode pid = %d, this pid %d, mode %c, %h\n",
814 p_s_new_bh, put_inode_pid, current->pid, p_s_tb->tb_vn->vn_mode, p_s_tb->tb_vn->vn_ins_ih);
815 print_tb (0, 0, 0, p_s_tb, "tb");
816 */
817 /*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
818 if (atomic_read(&(p_s_new_bh->b_count)) > 2 ||
819 !(buffer_journaled(p_s_new_bh) || buffer_journal_dirty(p_s_new_bh))) {
820 n_retval = REPEAT_SEARCH ;
821 free_buffers_in_tb (p_s_tb);
822 wait_buffer_until_released (p_s_new_bh);
823 }
824 }
825 RFALSE( (atomic_read (&(p_s_new_bh->b_count)) != 1 ||
826 buffer_dirty (p_s_new_bh)) &&
827 (atomic_read(&(p_s_new_bh->b_count)) > 2 ||
828 !(buffer_journaled(p_s_new_bh) ||
829 buffer_journal_dirty(p_s_new_bh))),
830 "PAP-8140: not free or dirty buffer %b for the new block",
831 p_s_new_bh);
832
833 /* Put empty buffers into the array. */
834 if (p_s_tb->FEB[p_s_tb->cur_blknum])
835 BUG();
836
837 mark_buffer_journal_new(p_s_new_bh) ;
838 p_s_tb->FEB[p_s_tb->cur_blknum++] = p_s_new_bh;
839 }
840
841 if ( n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB (p_s_tb) )
842 n_retval = REPEAT_SEARCH ;
843
844 return n_retval;
845 }
846
847
848 /* Get free space of the left neighbor, which is stored in the parent
849 * node of the left neighbor. */
get_lfree(struct tree_balance * tb,int h)850 static int get_lfree (struct tree_balance * tb, int h)
851 {
852 struct buffer_head * l, * f;
853 int order;
854
855 if ((f = PATH_H_PPARENT (tb->tb_path, h)) == 0 || (l = tb->FL[h]) == 0)
856 return 0;
857
858 if (f == l)
859 order = PATH_H_B_ITEM_ORDER (tb->tb_path, h) - 1;
860 else {
861 order = B_NR_ITEMS (l);
862 f = l;
863 }
864
865 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f,order)));
866 }
867
868
869 /* Get free space of the right neighbor,
870 * which is stored in the parent node of the right neighbor.
871 */
get_rfree(struct tree_balance * tb,int h)872 static int get_rfree (struct tree_balance * tb, int h)
873 {
874 struct buffer_head * r, * f;
875 int order;
876
877 if ((f = PATH_H_PPARENT (tb->tb_path, h)) == 0 || (r = tb->FR[h]) == 0)
878 return 0;
879
880 if (f == r)
881 order = PATH_H_B_ITEM_ORDER (tb->tb_path, h) + 1;
882 else {
883 order = 0;
884 f = r;
885 }
886
887 return (MAX_CHILD_SIZE(f) - dc_size( B_N_CHILD(f,order)));
888
889 }
890
891
892 /* Check whether left neighbor is in memory. */
is_left_neighbor_in_cache(struct tree_balance * p_s_tb,int n_h)893 static int is_left_neighbor_in_cache(
894 struct tree_balance * p_s_tb,
895 int n_h
896 ) {
897 struct buffer_head * p_s_father, * left;
898 struct super_block * p_s_sb = p_s_tb->tb_sb;
899 unsigned long n_left_neighbor_blocknr;
900 int n_left_neighbor_position;
901
902 if ( ! p_s_tb->FL[n_h] ) /* Father of the left neighbor does not exist. */
903 return 0;
904
905 /* Calculate father of the node to be balanced. */
906 p_s_father = PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1);
907
908 RFALSE( ! p_s_father ||
909 ! B_IS_IN_TREE (p_s_father) ||
910 ! B_IS_IN_TREE (p_s_tb->FL[n_h]) ||
911 ! buffer_uptodate (p_s_father) ||
912 ! buffer_uptodate (p_s_tb->FL[n_h]),
913 "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
914 p_s_father, p_s_tb->FL[n_h]);
915
916
917 /* Get position of the pointer to the left neighbor into the left father. */
918 n_left_neighbor_position = ( p_s_father == p_s_tb->FL[n_h] ) ?
919 p_s_tb->lkey[n_h] : B_NR_ITEMS (p_s_tb->FL[n_h]);
920 /* Get left neighbor block number. */
921 n_left_neighbor_blocknr = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_left_neighbor_position);
922 /* Look for the left neighbor in the cache. */
923 if ( (left = sb_get_hash_table(p_s_sb, n_left_neighbor_blocknr)) ) {
924
925 RFALSE( buffer_uptodate (left) && ! B_IS_IN_TREE(left),
926 "vs-8170: left neighbor (%b %z) is not in the tree", left, left);
927 put_bh(left) ;
928 return 1;
929 }
930
931 return 0;
932 }
933
934
935 #define LEFT_PARENTS 'l'
936 #define RIGHT_PARENTS 'r'
937
938
decrement_key(struct cpu_key * p_s_key)939 static void decrement_key (struct cpu_key * p_s_key)
940 {
941 // call item specific function for this key
942 item_ops[cpu_key_k_type (p_s_key)]->decrement_key (p_s_key);
943 }
944
945
946
947
948 /* Calculate far left/right parent of the left/right neighbor of the current node, that
949 * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
950 * Calculate left/right common parent of the current node and L[h]/R[h].
951 * Calculate left/right delimiting key position.
952 * Returns: PATH_INCORRECT - path in the tree is not correct;
953 SCHEDULE_OCCURRED - schedule occurred while the function worked;
954 * CARRY_ON - schedule didn't occur while the function worked;
955 */
get_far_parent(struct tree_balance * p_s_tb,int n_h,struct buffer_head ** pp_s_father,struct buffer_head ** pp_s_com_father,char c_lr_par)956 static int get_far_parent (struct tree_balance * p_s_tb,
957 int n_h,
958 struct buffer_head ** pp_s_father,
959 struct buffer_head ** pp_s_com_father,
960 char c_lr_par)
961 {
962 struct buffer_head * p_s_parent;
963 INITIALIZE_PATH (s_path_to_neighbor_father);
964 struct path * p_s_path = p_s_tb->tb_path;
965 struct cpu_key s_lr_father_key;
966 int n_counter,
967 n_position = INT_MAX,
968 n_first_last_position = 0,
969 n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h);
970
971 /* Starting from F[n_h] go upwards in the tree, and look for the common
972 ancestor of F[n_h], and its neighbor l/r, that should be obtained. */
973
974 n_counter = n_path_offset;
975
976 RFALSE( n_counter < FIRST_PATH_ELEMENT_OFFSET,
977 "PAP-8180: invalid path length");
978
979
980 for ( ; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter-- ) {
981 /* Check whether parent of the current buffer in the path is really parent in the tree. */
982 if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1)) )
983 return REPEAT_SEARCH;
984 /* Check whether position in the parent is correct. */
985 if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_counter - 1)) > B_NR_ITEMS(p_s_parent) )
986 return REPEAT_SEARCH;
987 /* Check whether parent at the path really points to the child. */
988 if ( B_N_CHILD_NUM(p_s_parent, n_position) !=
989 PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr )
990 return REPEAT_SEARCH;
991 /* Return delimiting key if position in the parent is not equal to first/last one. */
992 if ( c_lr_par == RIGHT_PARENTS )
993 n_first_last_position = B_NR_ITEMS (p_s_parent);
994 if ( n_position != n_first_last_position ) {
995 *pp_s_com_father = p_s_parent;
996 get_bh(*pp_s_com_father) ;
997 /*(*pp_s_com_father = p_s_parent)->b_count++;*/
998 break;
999 }
1000 }
1001
1002 /* if we are in the root of the tree, then there is no common father */
1003 if ( n_counter == FIRST_PATH_ELEMENT_OFFSET ) {
1004 /* Check whether first buffer in the path is the root of the tree. */
1005 if ( PATH_OFFSET_PBUFFER(p_s_tb->tb_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1006 SB_ROOT_BLOCK (p_s_tb->tb_sb) ) {
1007 *pp_s_father = *pp_s_com_father = NULL;
1008 return CARRY_ON;
1009 }
1010 return REPEAT_SEARCH;
1011 }
1012
1013 RFALSE( B_LEVEL (*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL,
1014 "PAP-8185: (%b %z) level too small",
1015 *pp_s_com_father, *pp_s_com_father);
1016
1017 /* Check whether the common parent is locked. */
1018
1019 if ( buffer_locked (*pp_s_com_father) ) {
1020 __wait_on_buffer(*pp_s_com_father);
1021 if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) {
1022 decrement_bcount(*pp_s_com_father);
1023 return REPEAT_SEARCH;
1024 }
1025 }
1026
1027 /* So, we got common parent of the current node and its left/right neighbor.
1028 Now we are geting the parent of the left/right neighbor. */
1029
1030 /* Form key to get parent of the left/right neighbor. */
1031 le_key2cpu_key (&s_lr_father_key, B_N_PDELIM_KEY(*pp_s_com_father, ( c_lr_par == LEFT_PARENTS ) ?
1032 (p_s_tb->lkey[n_h - 1] = n_position - 1) : (p_s_tb->rkey[n_h - 1] = n_position)));
1033
1034
1035 if ( c_lr_par == LEFT_PARENTS )
1036 decrement_key(&s_lr_father_key);
1037
1038 if (search_by_key(p_s_tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father, n_h + 1) == IO_ERROR)
1039 // path is released
1040 return IO_ERROR;
1041
1042 if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) {
1043 decrement_counters_in_path(&s_path_to_neighbor_father);
1044 decrement_bcount(*pp_s_com_father);
1045 return REPEAT_SEARCH;
1046 }
1047
1048 *pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1049
1050 RFALSE( B_LEVEL (*pp_s_father) != n_h + 1,
1051 "PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father);
1052 RFALSE( s_path_to_neighbor_father.path_length < FIRST_PATH_ELEMENT_OFFSET,
1053 "PAP-8192: path length is too small");
1054
1055 s_path_to_neighbor_father.path_length--;
1056 decrement_counters_in_path(&s_path_to_neighbor_father);
1057 return CARRY_ON;
1058 }
1059
1060
1061 /* Get parents of neighbors of node in the path(S[n_path_offset]) and common parents of
1062 * S[n_path_offset] and L[n_path_offset]/R[n_path_offset]: F[n_path_offset], FL[n_path_offset],
1063 * FR[n_path_offset], CFL[n_path_offset], CFR[n_path_offset].
1064 * Calculate numbers of left and right delimiting keys position: lkey[n_path_offset], rkey[n_path_offset].
1065 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1066 * CARRY_ON - schedule didn't occur while the function worked;
1067 */
get_parents(struct tree_balance * p_s_tb,int n_h)1068 static int get_parents (struct tree_balance * p_s_tb, int n_h)
1069 {
1070 struct path * p_s_path = p_s_tb->tb_path;
1071 int n_position,
1072 n_ret_value,
1073 n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h);
1074 struct buffer_head * p_s_curf,
1075 * p_s_curcf;
1076
1077 /* Current node is the root of the tree or will be root of the tree */
1078 if ( n_path_offset <= FIRST_PATH_ELEMENT_OFFSET ) {
1079 /* The root can not have parents.
1080 Release nodes which previously were obtained as parents of the current node neighbors. */
1081 decrement_bcount(p_s_tb->FL[n_h]);
1082 decrement_bcount(p_s_tb->CFL[n_h]);
1083 decrement_bcount(p_s_tb->FR[n_h]);
1084 decrement_bcount(p_s_tb->CFR[n_h]);
1085 p_s_tb->FL[n_h] = p_s_tb->CFL[n_h] = p_s_tb->FR[n_h] = p_s_tb->CFR[n_h] = NULL;
1086 return CARRY_ON;
1087 }
1088
1089 /* Get parent FL[n_path_offset] of L[n_path_offset]. */
1090 if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1)) ) {
1091 /* Current node is not the first child of its parent. */
1092 /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2;*/
1093 p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1);
1094 get_bh(p_s_curf) ;
1095 get_bh(p_s_curf) ;
1096 p_s_tb->lkey[n_h] = n_position - 1;
1097 }
1098 else {
1099 /* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node.
1100 Calculate current common parent of L[n_path_offset] and the current node. Note that
1101 CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset].
1102 Calculate lkey[n_path_offset]. */
1103 if ( (n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf,
1104 &p_s_curcf, LEFT_PARENTS)) != CARRY_ON )
1105 return n_ret_value;
1106 }
1107
1108 decrement_bcount(p_s_tb->FL[n_h]);
1109 p_s_tb->FL[n_h] = p_s_curf; /* New initialization of FL[n_h]. */
1110 decrement_bcount(p_s_tb->CFL[n_h]);
1111 p_s_tb->CFL[n_h] = p_s_curcf; /* New initialization of CFL[n_h]. */
1112
1113 RFALSE( (p_s_curf && !B_IS_IN_TREE (p_s_curf)) ||
1114 (p_s_curcf && !B_IS_IN_TREE (p_s_curcf)),
1115 "PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf);
1116
1117 /* Get parent FR[n_h] of R[n_h]. */
1118
1119 /* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */
1120 if ( n_position == B_NR_ITEMS (PATH_H_PBUFFER(p_s_path, n_h + 1)) ) {
1121 /* Calculate current parent of R[n_h], which is the right neighbor of F[n_h].
1122 Calculate current common parent of R[n_h] and current node. Note that CFR[n_h]
1123 not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */
1124 if ( (n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf, &p_s_curcf, RIGHT_PARENTS)) != CARRY_ON )
1125 return n_ret_value;
1126 }
1127 else {
1128 /* Current node is not the last child of its parent F[n_h]. */
1129 /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2;*/
1130 p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1);
1131 get_bh(p_s_curf) ;
1132 get_bh(p_s_curf) ;
1133 p_s_tb->rkey[n_h] = n_position;
1134 }
1135
1136 decrement_bcount(p_s_tb->FR[n_h]);
1137 p_s_tb->FR[n_h] = p_s_curf; /* New initialization of FR[n_path_offset]. */
1138
1139 decrement_bcount(p_s_tb->CFR[n_h]);
1140 p_s_tb->CFR[n_h] = p_s_curcf; /* New initialization of CFR[n_path_offset]. */
1141
1142 RFALSE( (p_s_curf && !B_IS_IN_TREE (p_s_curf)) ||
1143 (p_s_curcf && !B_IS_IN_TREE (p_s_curcf)),
1144 "PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf);
1145
1146 return CARRY_ON;
1147 }
1148
1149
1150 /* it is possible to remove node as result of shiftings to
1151 neighbors even when we insert or paste item. */
can_node_be_removed(int mode,int lfree,int sfree,int rfree,struct tree_balance * tb,int h)1152 static inline int can_node_be_removed (int mode, int lfree, int sfree, int rfree, struct tree_balance * tb, int h)
1153 {
1154 struct buffer_head * Sh = PATH_H_PBUFFER (tb->tb_path, h);
1155 int levbytes = tb->insert_size[h];
1156 struct item_head * ih;
1157 struct key * r_key = NULL;
1158
1159 ih = B_N_PITEM_HEAD (Sh, 0);
1160 if ( tb->CFR[h] )
1161 r_key = B_N_PDELIM_KEY(tb->CFR[h],tb->rkey[h]);
1162
1163 if (
1164 lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1165 /* shifting may merge items which might save space */
1166 - (( ! h && op_is_left_mergeable (&(ih->ih_key), Sh->b_size) ) ? IH_SIZE : 0)
1167 - (( ! h && r_key && op_is_left_mergeable (r_key, Sh->b_size) ) ? IH_SIZE : 0)
1168 + (( h ) ? KEY_SIZE : 0))
1169 {
1170 /* node can not be removed */
1171 if (sfree >= levbytes ) { /* new item fits into node S[h] without any shifting */
1172 if ( ! h )
1173 tb->s0num = B_NR_ITEMS(Sh) + ((mode == M_INSERT ) ? 1 : 0);
1174 set_parameters (tb, h, 0, 0, 1, NULL, -1, -1);
1175 return NO_BALANCING_NEEDED;
1176 }
1177 }
1178 PROC_INFO_INC( tb -> tb_sb, can_node_be_removed[ h ] );
1179 return !NO_BALANCING_NEEDED;
1180 }
1181
1182
1183
1184 /* Check whether current node S[h] is balanced when increasing its size by
1185 * Inserting or Pasting.
1186 * Calculate parameters for balancing for current level h.
1187 * Parameters:
1188 * tb tree_balance structure;
1189 * h current level of the node;
1190 * inum item number in S[h];
1191 * mode i - insert, p - paste;
1192 * Returns: 1 - schedule occurred;
1193 * 0 - balancing for higher levels needed;
1194 * -1 - no balancing for higher levels needed;
1195 * -2 - no disk space.
1196 */
1197 /* ip means Inserting or Pasting */
ip_check_balance(struct tree_balance * tb,int h)1198 static int ip_check_balance (struct tree_balance * tb, int h)
1199 {
1200 struct virtual_node * vn = tb->tb_vn;
1201 int levbytes, /* Number of bytes that must be inserted into (value
1202 is negative if bytes are deleted) buffer which
1203 contains node being balanced. The mnemonic is
1204 that the attempted change in node space used level
1205 is levbytes bytes. */
1206 n_ret_value;
1207
1208 int lfree, sfree, rfree /* free space in L, S and R */;
1209
1210 /* nver is short for number of vertixes, and lnver is the number if
1211 we shift to the left, rnver is the number if we shift to the
1212 right, and lrnver is the number if we shift in both directions.
1213 The goal is to minimize first the number of vertixes, and second,
1214 the number of vertixes whose contents are changed by shifting,
1215 and third the number of uncached vertixes whose contents are
1216 changed by shifting and must be read from disk. */
1217 int nver, lnver, rnver, lrnver;
1218
1219 /* used at leaf level only, S0 = S[0] is the node being balanced,
1220 sInum [ I = 0,1,2 ] is the number of items that will
1221 remain in node SI after balancing. S1 and S2 are new
1222 nodes that might be created. */
1223
1224 /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters.
1225 where 4th parameter is s1bytes and 5th - s2bytes
1226 */
1227 short snum012[40] = {0,}; /* s0num, s1num, s2num for 8 cases
1228 0,1 - do not shift and do not shift but bottle
1229 2 - shift only whole item to left
1230 3 - shift to left and bottle as much as possible
1231 4,5 - shift to right (whole items and as much as possible
1232 6,7 - shift to both directions (whole items and as much as possible)
1233 */
1234
1235 /* Sh is the node whose balance is currently being checked */
1236 struct buffer_head * Sh;
1237
1238 Sh = PATH_H_PBUFFER (tb->tb_path, h);
1239 levbytes = tb->insert_size[h];
1240
1241 /* Calculate balance parameters for creating new root. */
1242 if ( ! Sh ) {
1243 if ( ! h )
1244 reiserfs_panic (tb->tb_sb, "vs-8210: ip_check_balance: S[0] can not be 0");
1245 switch ( n_ret_value = get_empty_nodes (tb, h) ) {
1246 case CARRY_ON:
1247 set_parameters (tb, h, 0, 0, 1, NULL, -1, -1);
1248 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1249
1250 case NO_DISK_SPACE:
1251 case REPEAT_SEARCH:
1252 return n_ret_value;
1253 default:
1254 reiserfs_panic(tb->tb_sb, "vs-8215: ip_check_balance: incorrect return value of get_empty_nodes");
1255 }
1256 }
1257
1258 if ( (n_ret_value = get_parents (tb, h)) != CARRY_ON ) /* get parents of S[h] neighbors. */
1259 return n_ret_value;
1260
1261 sfree = B_FREE_SPACE (Sh);
1262
1263 /* get free space of neighbors */
1264 rfree = get_rfree (tb, h);
1265 lfree = get_lfree (tb, h);
1266
1267 if (can_node_be_removed (vn->vn_mode, lfree, sfree, rfree, tb, h) == NO_BALANCING_NEEDED)
1268 /* and new item fits into node S[h] without any shifting */
1269 return NO_BALANCING_NEEDED;
1270
1271 create_virtual_node (tb, h);
1272
1273 /*
1274 determine maximal number of items we can shift to the left neighbor (in tb structure)
1275 and the maximal number of bytes that can flow to the left neighbor
1276 from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
1277 */
1278 check_left (tb, h, lfree);
1279
1280 /*
1281 determine maximal number of items we can shift to the right neighbor (in tb structure)
1282 and the maximal number of bytes that can flow to the right neighbor
1283 from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
1284 */
1285 check_right (tb, h, rfree);
1286
1287
1288 /* all contents of internal node S[h] can be moved into its
1289 neighbors, S[h] will be removed after balancing */
1290 if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1291 int to_r;
1292
1293 /* Since we are working on internal nodes, and our internal
1294 nodes have fixed size entries, then we can balance by the
1295 number of items rather than the space they consume. In this
1296 routine we set the left node equal to the right node,
1297 allowing a difference of less than or equal to 1 child
1298 pointer. */
1299 to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 -
1300 (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1301 set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1);
1302 return CARRY_ON;
1303 }
1304
1305 /* this checks balance condition, that any two neighboring nodes can not fit in one node */
1306 RFALSE( h &&
1307 ( tb->lnum[h] >= vn->vn_nr_item + 1 ||
1308 tb->rnum[h] >= vn->vn_nr_item + 1),
1309 "vs-8220: tree is not balanced on internal level");
1310 RFALSE( ! h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1311 (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1)) ),
1312 "vs-8225: tree is not balanced on leaf level");
1313
1314 /* all contents of S[0] can be moved into its neighbors
1315 S[0] will be removed after balancing. */
1316 if (!h && is_leaf_removable (tb))
1317 return CARRY_ON;
1318
1319
1320 /* why do we perform this check here rather than earlier??
1321 Answer: we can win 1 node in some cases above. Moreover we
1322 checked it above, when we checked, that S[0] is not removable
1323 in principle */
1324 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1325 if ( ! h )
1326 tb->s0num = vn->vn_nr_item;
1327 set_parameters (tb, h, 0, 0, 1, NULL, -1, -1);
1328 return NO_BALANCING_NEEDED;
1329 }
1330
1331
1332 {
1333 int lpar, rpar, nset, lset, rset, lrset;
1334 /*
1335 * regular overflowing of the node
1336 */
1337
1338 /* get_num_ver works in 2 modes (FLOW & NO_FLOW)
1339 lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
1340 nset, lset, rset, lrset - shows, whether flowing items give better packing
1341 */
1342 #define FLOW 1
1343 #define NO_FLOW 0 /* do not any splitting */
1344
1345 /* we choose one the following */
1346 #define NOTHING_SHIFT_NO_FLOW 0
1347 #define NOTHING_SHIFT_FLOW 5
1348 #define LEFT_SHIFT_NO_FLOW 10
1349 #define LEFT_SHIFT_FLOW 15
1350 #define RIGHT_SHIFT_NO_FLOW 20
1351 #define RIGHT_SHIFT_FLOW 25
1352 #define LR_SHIFT_NO_FLOW 30
1353 #define LR_SHIFT_FLOW 35
1354
1355
1356 lpar = tb->lnum[h];
1357 rpar = tb->rnum[h];
1358
1359
1360 /* calculate number of blocks S[h] must be split into when
1361 nothing is shifted to the neighbors,
1362 as well as number of items in each part of the split node (s012 numbers),
1363 and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
1364 nset = NOTHING_SHIFT_NO_FLOW;
1365 nver = get_num_ver (vn->vn_mode, tb, h,
1366 0, -1, h?vn->vn_nr_item:0, -1,
1367 snum012, NO_FLOW);
1368
1369 if (!h)
1370 {
1371 int nver1;
1372
1373 /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
1374 nver1 = get_num_ver (vn->vn_mode, tb, h,
1375 0, -1, 0, -1,
1376 snum012 + NOTHING_SHIFT_FLOW, FLOW);
1377 if (nver > nver1)
1378 nset = NOTHING_SHIFT_FLOW, nver = nver1;
1379 }
1380
1381
1382 /* calculate number of blocks S[h] must be split into when
1383 l_shift_num first items and l_shift_bytes of the right most
1384 liquid item to be shifted are shifted to the left neighbor,
1385 as well as number of items in each part of the splitted node (s012 numbers),
1386 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1387 */
1388 lset = LEFT_SHIFT_NO_FLOW;
1389 lnver = get_num_ver (vn->vn_mode, tb, h,
1390 lpar - (( h || tb->lbytes == -1 ) ? 0 : 1), -1, h ? vn->vn_nr_item:0, -1,
1391 snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1392 if (!h)
1393 {
1394 int lnver1;
1395
1396 lnver1 = get_num_ver (vn->vn_mode, tb, h,
1397 lpar - ((tb->lbytes != -1) ? 1 : 0), tb->lbytes, 0, -1,
1398 snum012 + LEFT_SHIFT_FLOW, FLOW);
1399 if (lnver > lnver1)
1400 lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1401 }
1402
1403
1404 /* calculate number of blocks S[h] must be split into when
1405 r_shift_num first items and r_shift_bytes of the left most
1406 liquid item to be shifted are shifted to the right neighbor,
1407 as well as number of items in each part of the splitted node (s012 numbers),
1408 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1409 */
1410 rset = RIGHT_SHIFT_NO_FLOW;
1411 rnver = get_num_ver (vn->vn_mode, tb, h,
1412 0, -1, h ? (vn->vn_nr_item-rpar) : (rpar - (( tb->rbytes != -1 ) ? 1 : 0)), -1,
1413 snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1414 if (!h)
1415 {
1416 int rnver1;
1417
1418 rnver1 = get_num_ver (vn->vn_mode, tb, h,
1419 0, -1, (rpar - ((tb->rbytes != -1) ? 1 : 0)), tb->rbytes,
1420 snum012 + RIGHT_SHIFT_FLOW, FLOW);
1421
1422 if (rnver > rnver1)
1423 rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1424 }
1425
1426
1427 /* calculate number of blocks S[h] must be split into when
1428 items are shifted in both directions,
1429 as well as number of items in each part of the splitted node (s012 numbers),
1430 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1431 */
1432 lrset = LR_SHIFT_NO_FLOW;
1433 lrnver = get_num_ver (vn->vn_mode, tb, h,
1434 lpar - ((h || tb->lbytes == -1) ? 0 : 1), -1, h ? (vn->vn_nr_item-rpar):(rpar - ((tb->rbytes != -1) ? 1 : 0)), -1,
1435 snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1436 if (!h)
1437 {
1438 int lrnver1;
1439
1440 lrnver1 = get_num_ver (vn->vn_mode, tb, h,
1441 lpar - ((tb->lbytes != -1) ? 1 : 0), tb->lbytes, (rpar - ((tb->rbytes != -1) ? 1 : 0)), tb->rbytes,
1442 snum012 + LR_SHIFT_FLOW, FLOW);
1443 if (lrnver > lrnver1)
1444 lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1445 }
1446
1447
1448
1449 /* Our general shifting strategy is:
1450 1) to minimized number of new nodes;
1451 2) to minimized number of neighbors involved in shifting;
1452 3) to minimized number of disk reads; */
1453
1454 /* we can win TWO or ONE nodes by shifting in both directions */
1455 if (lrnver < lnver && lrnver < rnver)
1456 {
1457 RFALSE( h &&
1458 (tb->lnum[h] != 1 ||
1459 tb->rnum[h] != 1 ||
1460 lrnver != 1 || rnver != 2 || lnver != 2 || h != 1),
1461 "vs-8230: bad h");
1462 if (lrset == LR_SHIFT_FLOW)
1463 set_parameters (tb, h, tb->lnum[h], tb->rnum[h], lrnver, snum012 + lrset,
1464 tb->lbytes, tb->rbytes);
1465 else
1466 set_parameters (tb, h, tb->lnum[h] - ((tb->lbytes == -1) ? 0 : 1),
1467 tb->rnum[h] - ((tb->rbytes == -1) ? 0 : 1), lrnver, snum012 + lrset, -1, -1);
1468
1469 return CARRY_ON;
1470 }
1471
1472 /* if shifting doesn't lead to better packing then don't shift */
1473 if (nver == lrnver)
1474 {
1475 set_parameters (tb, h, 0, 0, nver, snum012 + nset, -1, -1);
1476 return CARRY_ON;
1477 }
1478
1479
1480 /* now we know that for better packing shifting in only one
1481 direction either to the left or to the right is required */
1482
1483 /* if shifting to the left is better than shifting to the right */
1484 if (lnver < rnver)
1485 {
1486 SET_PAR_SHIFT_LEFT;
1487 return CARRY_ON;
1488 }
1489
1490 /* if shifting to the right is better than shifting to the left */
1491 if (lnver > rnver)
1492 {
1493 SET_PAR_SHIFT_RIGHT;
1494 return CARRY_ON;
1495 }
1496
1497
1498 /* now shifting in either direction gives the same number
1499 of nodes and we can make use of the cached neighbors */
1500 if (is_left_neighbor_in_cache (tb,h))
1501 {
1502 SET_PAR_SHIFT_LEFT;
1503 return CARRY_ON;
1504 }
1505
1506 /* shift to the right independently on whether the right neighbor in cache or not */
1507 SET_PAR_SHIFT_RIGHT;
1508 return CARRY_ON;
1509 }
1510 }
1511
1512
1513 /* Check whether current node S[h] is balanced when Decreasing its size by
1514 * Deleting or Cutting for INTERNAL node of S+tree.
1515 * Calculate parameters for balancing for current level h.
1516 * Parameters:
1517 * tb tree_balance structure;
1518 * h current level of the node;
1519 * inum item number in S[h];
1520 * mode i - insert, p - paste;
1521 * Returns: 1 - schedule occurred;
1522 * 0 - balancing for higher levels needed;
1523 * -1 - no balancing for higher levels needed;
1524 * -2 - no disk space.
1525 *
1526 * Note: Items of internal nodes have fixed size, so the balance condition for
1527 * the internal part of S+tree is as for the B-trees.
1528 */
dc_check_balance_internal(struct tree_balance * tb,int h)1529 static int dc_check_balance_internal (struct tree_balance * tb, int h)
1530 {
1531 struct virtual_node * vn = tb->tb_vn;
1532
1533 /* Sh is the node whose balance is currently being checked,
1534 and Fh is its father. */
1535 struct buffer_head * Sh, * Fh;
1536 int maxsize,
1537 n_ret_value;
1538 int lfree, rfree /* free space in L and R */;
1539
1540 Sh = PATH_H_PBUFFER (tb->tb_path, h);
1541 Fh = PATH_H_PPARENT (tb->tb_path, h);
1542
1543 maxsize = MAX_CHILD_SIZE(Sh);
1544
1545 /* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
1546 /* new_nr_item = number of items node would have if operation is */
1547 /* performed without balancing (new_nr_item); */
1548 create_virtual_node (tb, h);
1549
1550 if ( ! Fh )
1551 { /* S[h] is the root. */
1552 if ( vn->vn_nr_item > 0 )
1553 {
1554 set_parameters (tb, h, 0, 0, 1, NULL, -1, -1);
1555 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1556 }
1557 /* new_nr_item == 0.
1558 * Current root will be deleted resulting in
1559 * decrementing the tree height. */
1560 set_parameters (tb, h, 0, 0, 0, NULL, -1, -1);
1561 return CARRY_ON;
1562 }
1563
1564 if ( (n_ret_value = get_parents(tb,h)) != CARRY_ON )
1565 return n_ret_value;
1566
1567
1568 /* get free space of neighbors */
1569 rfree = get_rfree (tb, h);
1570 lfree = get_lfree (tb, h);
1571
1572 /* determine maximal number of items we can fit into neighbors */
1573 check_left (tb, h, lfree);
1574 check_right (tb, h, rfree);
1575
1576
1577 if ( vn->vn_nr_item >= MIN_NR_KEY(Sh) )
1578 { /* Balance condition for the internal node is valid.
1579 * In this case we balance only if it leads to better packing. */
1580 if ( vn->vn_nr_item == MIN_NR_KEY(Sh) )
1581 { /* Here we join S[h] with one of its neighbors,
1582 * which is impossible with greater values of new_nr_item. */
1583 if ( tb->lnum[h] >= vn->vn_nr_item + 1 )
1584 {
1585 /* All contents of S[h] can be moved to L[h]. */
1586 int n;
1587 int order_L;
1588
1589 order_L = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1590 n = dc_size(B_N_CHILD(tb->FL[h],order_L)) / (DC_SIZE + KEY_SIZE);
1591 set_parameters (tb, h, -n-1, 0, 0, NULL, -1, -1);
1592 return CARRY_ON;
1593 }
1594
1595 if ( tb->rnum[h] >= vn->vn_nr_item + 1 )
1596 {
1597 /* All contents of S[h] can be moved to R[h]. */
1598 int n;
1599 int order_R;
1600
1601 order_R = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==B_NR_ITEMS(Fh)) ? 0 : n + 1;
1602 n = dc_size(B_N_CHILD(tb->FR[h],order_R)) / (DC_SIZE + KEY_SIZE);
1603 set_parameters (tb, h, 0, -n-1, 0, NULL, -1, -1);
1604 return CARRY_ON;
1605 }
1606 }
1607
1608 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)
1609 {
1610 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1611 int to_r;
1612
1613 to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 -
1614 (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1615 set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1);
1616 return CARRY_ON;
1617 }
1618
1619 /* Balancing does not lead to better packing. */
1620 set_parameters (tb, h, 0, 0, 1, NULL, -1, -1);
1621 return NO_BALANCING_NEEDED;
1622 }
1623
1624 /* Current node contain insufficient number of items. Balancing is required. */
1625 /* Check whether we can merge S[h] with left neighbor. */
1626 if (tb->lnum[h] >= vn->vn_nr_item + 1)
1627 if (is_left_neighbor_in_cache (tb,h) || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h])
1628 {
1629 int n;
1630 int order_L;
1631
1632 order_L = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1633 n = dc_size(B_N_CHILD(tb->FL[h],order_L)) / (DC_SIZE + KEY_SIZE);
1634 set_parameters (tb, h, -n-1, 0, 0, NULL, -1, -1);
1635 return CARRY_ON;
1636 }
1637
1638 /* Check whether we can merge S[h] with right neighbor. */
1639 if (tb->rnum[h] >= vn->vn_nr_item + 1)
1640 {
1641 int n;
1642 int order_R;
1643
1644 order_R = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1645 n = dc_size(B_N_CHILD(tb->FR[h],order_R)) / (DC_SIZE + KEY_SIZE);
1646 set_parameters (tb, h, 0, -n-1, 0, NULL, -1, -1);
1647 return CARRY_ON;
1648 }
1649
1650 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1651 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)
1652 {
1653 int to_r;
1654
1655 to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 -
1656 (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1657 set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1);
1658 return CARRY_ON;
1659 }
1660
1661 /* For internal nodes try to borrow item from a neighbor */
1662 RFALSE( !tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1663
1664 /* Borrow one or two items from caching neighbor */
1665 if (is_left_neighbor_in_cache (tb,h) || !tb->FR[h])
1666 {
1667 int from_l;
1668
1669 from_l = (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item + 1) / 2 - (vn->vn_nr_item + 1);
1670 set_parameters (tb, h, -from_l, 0, 1, NULL, -1, -1);
1671 return CARRY_ON;
1672 }
1673
1674 set_parameters (tb, h, 0, -((MAX_NR_KEY(Sh)+1-tb->rnum[h]+vn->vn_nr_item+1)/2-(vn->vn_nr_item+1)), 1,
1675 NULL, -1, -1);
1676 return CARRY_ON;
1677 }
1678
1679
1680 /* Check whether current node S[h] is balanced when Decreasing its size by
1681 * Deleting or Truncating for LEAF node of S+tree.
1682 * Calculate parameters for balancing for current level h.
1683 * Parameters:
1684 * tb tree_balance structure;
1685 * h current level of the node;
1686 * inum item number in S[h];
1687 * mode i - insert, p - paste;
1688 * Returns: 1 - schedule occurred;
1689 * 0 - balancing for higher levels needed;
1690 * -1 - no balancing for higher levels needed;
1691 * -2 - no disk space.
1692 */
dc_check_balance_leaf(struct tree_balance * tb,int h)1693 static int dc_check_balance_leaf (struct tree_balance * tb, int h)
1694 {
1695 struct virtual_node * vn = tb->tb_vn;
1696
1697 /* Number of bytes that must be deleted from
1698 (value is negative if bytes are deleted) buffer which
1699 contains node being balanced. The mnemonic is that the
1700 attempted change in node space used level is levbytes bytes. */
1701 int levbytes;
1702 /* the maximal item size */
1703 int maxsize,
1704 n_ret_value;
1705 /* S0 is the node whose balance is currently being checked,
1706 and F0 is its father. */
1707 struct buffer_head * S0, * F0;
1708 int lfree, rfree /* free space in L and R */;
1709
1710 S0 = PATH_H_PBUFFER (tb->tb_path, 0);
1711 F0 = PATH_H_PPARENT (tb->tb_path, 0);
1712
1713 levbytes = tb->insert_size[h];
1714
1715 maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */
1716
1717 if ( ! F0 )
1718 { /* S[0] is the root now. */
1719
1720 RFALSE( -levbytes >= maxsize - B_FREE_SPACE (S0),
1721 "vs-8240: attempt to create empty buffer tree");
1722
1723 set_parameters (tb, h, 0, 0, 1, NULL, -1, -1);
1724 return NO_BALANCING_NEEDED;
1725 }
1726
1727 if ( (n_ret_value = get_parents(tb,h)) != CARRY_ON )
1728 return n_ret_value;
1729
1730 /* get free space of neighbors */
1731 rfree = get_rfree (tb, h);
1732 lfree = get_lfree (tb, h);
1733
1734 create_virtual_node (tb, h);
1735
1736 /* if 3 leaves can be merge to one, set parameters and return */
1737 if (are_leaves_removable (tb, lfree, rfree))
1738 return CARRY_ON;
1739
1740 /* determine maximal number of items we can shift to the left/right neighbor
1741 and the maximal number of bytes that can flow to the left/right neighbor
1742 from the left/right most liquid item that cannot be shifted from S[0] entirely
1743 */
1744 check_left (tb, h, lfree);
1745 check_right (tb, h, rfree);
1746
1747 /* check whether we can merge S with left neighbor. */
1748 if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1749 if (is_left_neighbor_in_cache (tb,h) ||
1750 ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */
1751 !tb->FR[h]) {
1752
1753 RFALSE( !tb->FL[h], "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1754
1755 /* set parameter to merge S[0] with its left neighbor */
1756 set_parameters (tb, h, -1, 0, 0, NULL, -1, -1);
1757 return CARRY_ON;
1758 }
1759
1760 /* check whether we can merge S[0] with right neighbor. */
1761 if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
1762 set_parameters (tb, h, 0, -1, 0, NULL, -1, -1);
1763 return CARRY_ON;
1764 }
1765
1766 /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
1767 if (is_leaf_removable (tb))
1768 return CARRY_ON;
1769
1770 /* Balancing is not required. */
1771 tb->s0num = vn->vn_nr_item;
1772 set_parameters (tb, h, 0, 0, 1, NULL, -1, -1);
1773 return NO_BALANCING_NEEDED;
1774 }
1775
1776
1777
1778 /* Check whether current node S[h] is balanced when Decreasing its size by
1779 * Deleting or Cutting.
1780 * Calculate parameters for balancing for current level h.
1781 * Parameters:
1782 * tb tree_balance structure;
1783 * h current level of the node;
1784 * inum item number in S[h];
1785 * mode d - delete, c - cut.
1786 * Returns: 1 - schedule occurred;
1787 * 0 - balancing for higher levels needed;
1788 * -1 - no balancing for higher levels needed;
1789 * -2 - no disk space.
1790 */
dc_check_balance(struct tree_balance * tb,int h)1791 static int dc_check_balance (struct tree_balance * tb, int h)
1792 {
1793 RFALSE( ! (PATH_H_PBUFFER (tb->tb_path, h)), "vs-8250: S is not initialized");
1794
1795 if ( h )
1796 return dc_check_balance_internal (tb, h);
1797 else
1798 return dc_check_balance_leaf (tb, h);
1799 }
1800
1801
1802
1803 /* Check whether current node S[h] is balanced.
1804 * Calculate parameters for balancing for current level h.
1805 * Parameters:
1806 *
1807 * tb tree_balance structure:
1808 *
1809 * tb is a large structure that must be read about in the header file
1810 * at the same time as this procedure if the reader is to successfully
1811 * understand this procedure
1812 *
1813 * h current level of the node;
1814 * inum item number in S[h];
1815 * mode i - insert, p - paste, d - delete, c - cut.
1816 * Returns: 1 - schedule occurred;
1817 * 0 - balancing for higher levels needed;
1818 * -1 - no balancing for higher levels needed;
1819 * -2 - no disk space.
1820 */
check_balance(int mode,struct tree_balance * tb,int h,int inum,int pos_in_item,struct item_head * ins_ih,const void * data)1821 static int check_balance (int mode,
1822 struct tree_balance * tb,
1823 int h,
1824 int inum,
1825 int pos_in_item,
1826 struct item_head * ins_ih,
1827 const void * data
1828 )
1829 {
1830 struct virtual_node * vn;
1831
1832 vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
1833 vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
1834 vn->vn_mode = mode;
1835 vn->vn_affected_item_num = inum;
1836 vn->vn_pos_in_item = pos_in_item;
1837 vn->vn_ins_ih = ins_ih;
1838 vn->vn_data = data;
1839
1840 RFALSE( mode == M_INSERT && !vn->vn_ins_ih,
1841 "vs-8255: ins_ih can not be 0 in insert mode");
1842
1843 if ( tb->insert_size[h] > 0 )
1844 /* Calculate balance parameters when size of node is increasing. */
1845 return ip_check_balance (tb, h);
1846
1847 /* Calculate balance parameters when size of node is decreasing. */
1848 return dc_check_balance (tb, h);
1849 }
1850
1851
1852
1853 /* Check whether parent at the path is the really parent of the current node.*/
get_direct_parent(struct tree_balance * p_s_tb,int n_h)1854 static int get_direct_parent(
1855 struct tree_balance * p_s_tb,
1856 int n_h
1857 ) {
1858 struct buffer_head * p_s_bh;
1859 struct path * p_s_path = p_s_tb->tb_path;
1860 int n_position,
1861 n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h);
1862
1863 /* We are in the root or in the new root. */
1864 if ( n_path_offset <= FIRST_PATH_ELEMENT_OFFSET ) {
1865
1866 RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
1867 "PAP-8260: illegal offset in the path");
1868
1869 if ( PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1870 SB_ROOT_BLOCK (p_s_tb->tb_sb) ) {
1871 /* Root is not changed. */
1872 PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL;
1873 PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0;
1874 return CARRY_ON;
1875 }
1876 return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */
1877 }
1878
1879 if ( ! B_IS_IN_TREE(p_s_bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1)) )
1880 return REPEAT_SEARCH; /* Parent in the path is not in the tree. */
1881
1882 if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1)) > B_NR_ITEMS(p_s_bh) )
1883 return REPEAT_SEARCH;
1884
1885 if ( B_N_CHILD_NUM(p_s_bh, n_position) != PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr )
1886 /* Parent in the path is not parent of the current node in the tree. */
1887 return REPEAT_SEARCH;
1888
1889 if ( buffer_locked(p_s_bh) ) {
1890 __wait_on_buffer(p_s_bh);
1891 if ( FILESYSTEM_CHANGED_TB (p_s_tb) )
1892 return REPEAT_SEARCH;
1893 }
1894
1895 return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */
1896 }
1897
1898
1899 /* Using lnum[n_h] and rnum[n_h] we should determine what neighbors
1900 * of S[n_h] we
1901 * need in order to balance S[n_h], and get them if necessary.
1902 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1903 * CARRY_ON - schedule didn't occur while the function worked;
1904 */
get_neighbors(struct tree_balance * p_s_tb,int n_h)1905 static int get_neighbors(
1906 struct tree_balance * p_s_tb,
1907 int n_h
1908 ) {
1909 int n_child_position,
1910 n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h + 1);
1911 unsigned long n_son_number;
1912 struct super_block * p_s_sb = p_s_tb->tb_sb;
1913 struct buffer_head * p_s_bh;
1914
1915
1916 PROC_INFO_INC( p_s_sb, get_neighbors[ n_h ] );
1917
1918 if ( p_s_tb->lnum[n_h] ) {
1919 /* We need left neighbor to balance S[n_h]. */
1920 PROC_INFO_INC( p_s_sb, need_l_neighbor[ n_h ] );
1921 p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset);
1922
1923 RFALSE( p_s_bh == p_s_tb->FL[n_h] &&
1924 ! PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset),
1925 "PAP-8270: invalid position in the parent");
1926
1927 n_child_position = ( p_s_bh == p_s_tb->FL[n_h] ) ? p_s_tb->lkey[n_h] : B_NR_ITEMS (p_s_tb->FL[n_h]);
1928 n_son_number = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position);
1929 p_s_bh = reiserfs_bread(p_s_sb, n_son_number, p_s_sb->s_blocksize);
1930 if (!p_s_bh)
1931 return IO_ERROR;
1932 if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) {
1933 decrement_bcount(p_s_bh);
1934 PROC_INFO_INC( p_s_sb, get_neighbors_restart[ n_h ] );
1935 return REPEAT_SEARCH;
1936 }
1937
1938 RFALSE( ! B_IS_IN_TREE(p_s_tb->FL[n_h]) ||
1939 n_child_position > B_NR_ITEMS(p_s_tb->FL[n_h]) ||
1940 B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position) !=
1941 p_s_bh->b_blocknr, "PAP-8275: invalid parent");
1942 RFALSE( ! B_IS_IN_TREE(p_s_bh), "PAP-8280: invalid child");
1943 RFALSE( ! n_h &&
1944 B_FREE_SPACE (p_s_bh) != MAX_CHILD_SIZE (p_s_bh) - dc_size(B_N_CHILD (p_s_tb->FL[0],n_child_position)),
1945 "PAP-8290: invalid child size of left neighbor");
1946
1947 decrement_bcount(p_s_tb->L[n_h]);
1948 p_s_tb->L[n_h] = p_s_bh;
1949 }
1950
1951
1952 if ( p_s_tb->rnum[n_h] ) { /* We need right neighbor to balance S[n_path_offset]. */
1953 PROC_INFO_INC( p_s_sb, need_r_neighbor[ n_h ] );
1954 p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset);
1955
1956 RFALSE( p_s_bh == p_s_tb->FR[n_h] &&
1957 PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset) >= B_NR_ITEMS(p_s_bh),
1958 "PAP-8295: invalid position in the parent");
1959
1960 n_child_position = ( p_s_bh == p_s_tb->FR[n_h] ) ? p_s_tb->rkey[n_h] + 1 : 0;
1961 n_son_number = B_N_CHILD_NUM(p_s_tb->FR[n_h], n_child_position);
1962 p_s_bh = reiserfs_bread(p_s_sb, n_son_number, p_s_sb->s_blocksize);
1963 if (!p_s_bh)
1964 return IO_ERROR;
1965 if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) {
1966 decrement_bcount(p_s_bh);
1967 PROC_INFO_INC( p_s_sb, get_neighbors_restart[ n_h ] );
1968 return REPEAT_SEARCH;
1969 }
1970 decrement_bcount(p_s_tb->R[n_h]);
1971 p_s_tb->R[n_h] = p_s_bh;
1972
1973 RFALSE( ! n_h && B_FREE_SPACE (p_s_bh) != MAX_CHILD_SIZE (p_s_bh) - dc_size(B_N_CHILD (p_s_tb->FR[0],n_child_position)),
1974 "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
1975 B_FREE_SPACE (p_s_bh), MAX_CHILD_SIZE (p_s_bh),
1976 dc_size(B_N_CHILD (p_s_tb->FR[0],n_child_position)));
1977
1978 }
1979 return CARRY_ON;
1980 }
1981
1982 #ifdef CONFIG_REISERFS_CHECK
reiserfs_kmalloc(size_t size,int flags,struct super_block * s)1983 void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s)
1984 {
1985 void * vp;
1986 static size_t malloced;
1987
1988
1989 vp = kmalloc (size, flags);
1990 if (vp) {
1991 s->u.reiserfs_sb.s_kmallocs += size;
1992 if (s->u.reiserfs_sb.s_kmallocs > malloced + 200000) {
1993 reiserfs_warning (s, "vs-8301: reiserfs_kmalloc: allocated memory %d\n", s->u.reiserfs_sb.s_kmallocs);
1994 malloced = s->u.reiserfs_sb.s_kmallocs;
1995 }
1996 }
1997 /*printk ("malloc : size %d, allocated %d\n", size, s->u.reiserfs_sb.s_kmallocs);*/
1998 return vp;
1999 }
2000
reiserfs_kfree(const void * vp,size_t size,struct super_block * s)2001 void reiserfs_kfree (const void * vp, size_t size, struct super_block * s)
2002 {
2003 if (!vp)
2004 return;
2005 kfree (vp);
2006
2007 s->u.reiserfs_sb.s_kmallocs -= size;
2008 if (s->u.reiserfs_sb.s_kmallocs < 0)
2009 reiserfs_warning (s, "vs-8302: reiserfs_kfree: allocated memory %d\n", s->u.reiserfs_sb.s_kmallocs);
2010
2011 }
2012 #endif
2013
2014
get_virtual_node_size(struct super_block * sb,struct buffer_head * bh)2015 static int get_virtual_node_size (struct super_block * sb, struct buffer_head * bh)
2016 {
2017 int max_num_of_items;
2018 int max_num_of_entries;
2019 unsigned long blocksize = sb->s_blocksize;
2020
2021 #define MIN_NAME_LEN 1
2022
2023 max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2024 max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2025 (DEH_SIZE + MIN_NAME_LEN);
2026
2027 return sizeof(struct virtual_node) +
2028 max(max_num_of_items * sizeof (struct virtual_item),
2029 sizeof (struct virtual_item) + sizeof(struct direntry_uarea) +
2030 (max_num_of_entries - 1) * sizeof (__u16));
2031 }
2032
2033
2034
2035 /* maybe we should fail balancing we are going to perform when kmalloc
2036 fails several times. But now it will loop until kmalloc gets
2037 required memory */
get_mem_for_virtual_node(struct tree_balance * tb)2038 static int get_mem_for_virtual_node (struct tree_balance * tb)
2039 {
2040 int check_fs = 0;
2041 int size;
2042 char * buf;
2043
2044 size = get_virtual_node_size (tb->tb_sb, PATH_PLAST_BUFFER (tb->tb_path));
2045
2046 if (size > tb->vn_buf_size) {
2047 /* we have to allocate more memory for virtual node */
2048 if (tb->vn_buf) {
2049 /* free memory allocated before */
2050 reiserfs_kfree (tb->vn_buf, tb->vn_buf_size, tb->tb_sb);
2051 /* this is not needed if kfree is atomic */
2052 check_fs = 1;
2053 }
2054
2055 /* virtual node requires now more memory */
2056 tb->vn_buf_size = size;
2057
2058 /* get memory for virtual item */
2059 buf = reiserfs_kmalloc(size, GFP_ATOMIC, tb->tb_sb);
2060 if ( ! buf ) {
2061 /* getting memory with GFP_KERNEL priority may involve
2062 balancing now (due to indirect_to_direct conversion on
2063 dcache shrinking). So, release path and collected
2064 resources here */
2065 free_buffers_in_tb (tb);
2066 buf = reiserfs_kmalloc(size, GFP_NOFS, tb->tb_sb);
2067 if ( !buf ) {
2068 #ifdef CONFIG_REISERFS_CHECK
2069 reiserfs_warning (tb->tb_sb, "vs-8345: get_mem_for_virtual_node: "
2070 "kmalloc failed. reiserfs kmalloced %d bytes\n",
2071 tb->tb_sb->u.reiserfs_sb.s_kmallocs);
2072 #endif
2073 tb->vn_buf_size = 0;
2074 }
2075 tb->vn_buf = buf;
2076 schedule() ;
2077 return REPEAT_SEARCH;
2078 }
2079
2080 tb->vn_buf = buf;
2081 }
2082
2083 if ( check_fs && FILESYSTEM_CHANGED_TB (tb) )
2084 return REPEAT_SEARCH;
2085
2086 return CARRY_ON;
2087 }
2088
2089
2090 #ifdef CONFIG_REISERFS_CHECK
tb_buffer_sanity_check(struct super_block * p_s_sb,struct buffer_head * p_s_bh,const char * descr,int level)2091 static void tb_buffer_sanity_check (struct super_block * p_s_sb,
2092 struct buffer_head * p_s_bh,
2093 const char *descr, int level) {
2094 if (p_s_bh) {
2095 if (atomic_read (&(p_s_bh->b_count)) <= 0) {
2096
2097 reiserfs_panic (p_s_sb, "tb_buffer_sanity_check(): negative or zero reference counter for buffer %s[%d] (%b)\n", descr, level, p_s_bh);
2098 }
2099
2100 if ( ! buffer_uptodate (p_s_bh) ) {
2101 reiserfs_panic (p_s_sb, "tb_buffer_sanity_check(): buffer is not up to date %s[%d] (%b)\n", descr, level, p_s_bh);
2102 }
2103
2104 if ( ! B_IS_IN_TREE (p_s_bh) ) {
2105 reiserfs_panic (p_s_sb, "tb_buffer_sanity_check(): buffer is not in tree %s[%d] (%b)\n", descr, level, p_s_bh);
2106 }
2107
2108 if (p_s_bh->b_dev != p_s_sb->s_dev ||
2109 p_s_bh->b_size != p_s_sb->s_blocksize ||
2110 p_s_bh->b_blocknr > SB_BLOCK_COUNT(p_s_sb)) {
2111 reiserfs_panic (p_s_sb, "tb_buffer_sanity_check(): check failed for buffer %s[%d] (%b)\n", descr, level, p_s_bh);
2112 }
2113 }
2114 }
2115 #else
tb_buffer_sanity_check(struct super_block * p_s_sb,struct buffer_head * p_s_bh,const char * descr,int level)2116 static void tb_buffer_sanity_check (struct super_block * p_s_sb,
2117 struct buffer_head * p_s_bh,
2118 const char *descr, int level)
2119 {;}
2120 #endif
2121
clear_all_dirty_bits(struct super_block * s,struct buffer_head * bh)2122 static void clear_all_dirty_bits(struct super_block *s,
2123 struct buffer_head *bh) {
2124 reiserfs_prepare_for_journal(s, bh, 0) ;
2125 }
2126
wait_tb_buffers_until_unlocked(struct tree_balance * p_s_tb)2127 static int wait_tb_buffers_until_unlocked (struct tree_balance * p_s_tb)
2128 {
2129 struct buffer_head * locked;
2130 #ifdef CONFIG_REISERFS_CHECK
2131 int repeat_counter = 0;
2132 #endif
2133 int i;
2134
2135 do {
2136
2137 locked = NULL;
2138
2139 for ( i = p_s_tb->tb_path->path_length; !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i-- ) {
2140 if ( PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i) ) {
2141 /* if I understand correctly, we can only be sure the last buffer
2142 ** in the path is in the tree --clm
2143 */
2144 #ifdef CONFIG_REISERFS_CHECK
2145 if (PATH_PLAST_BUFFER(p_s_tb->tb_path) ==
2146 PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) {
2147 tb_buffer_sanity_check (p_s_tb->tb_sb,
2148 PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i),
2149 "S",
2150 p_s_tb->tb_path->path_length - i);
2151 }
2152 #endif
2153 clear_all_dirty_bits(p_s_tb->tb_sb,
2154 PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i)) ;
2155
2156 if ( buffer_locked (PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i)) )
2157 locked = PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i);
2158 }
2159 }
2160
2161 for ( i = 0; !locked && i < MAX_HEIGHT && p_s_tb->insert_size[i]; i++ ) {
2162
2163 if (p_s_tb->lnum[i] ) {
2164
2165 if ( p_s_tb->L[i] ) {
2166 tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->L[i], "L", i);
2167 clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->L[i]) ;
2168 if ( buffer_locked (p_s_tb->L[i]) )
2169 locked = p_s_tb->L[i];
2170 }
2171
2172 if ( !locked && p_s_tb->FL[i] ) {
2173 tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->FL[i], "FL", i);
2174 clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FL[i]) ;
2175 if ( buffer_locked (p_s_tb->FL[i]) )
2176 locked = p_s_tb->FL[i];
2177 }
2178
2179 if ( !locked && p_s_tb->CFL[i] ) {
2180 tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->CFL[i], "CFL", i);
2181 clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->CFL[i]) ;
2182 if ( buffer_locked (p_s_tb->CFL[i]) )
2183 locked = p_s_tb->CFL[i];
2184 }
2185
2186 }
2187
2188 if ( !locked && (p_s_tb->rnum[i]) ) {
2189
2190 if ( p_s_tb->R[i] ) {
2191 tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->R[i], "R", i);
2192 clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->R[i]) ;
2193 if ( buffer_locked (p_s_tb->R[i]) )
2194 locked = p_s_tb->R[i];
2195 }
2196
2197
2198 if ( !locked && p_s_tb->FR[i] ) {
2199 tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->FR[i], "FR", i);
2200 clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FR[i]) ;
2201 if ( buffer_locked (p_s_tb->FR[i]) )
2202 locked = p_s_tb->FR[i];
2203 }
2204
2205 if ( !locked && p_s_tb->CFR[i] ) {
2206 tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->CFR[i], "CFR", i);
2207 clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->CFR[i]) ;
2208 if ( buffer_locked (p_s_tb->CFR[i]) )
2209 locked = p_s_tb->CFR[i];
2210 }
2211 }
2212 }
2213 /* as far as I can tell, this is not required. The FEB list seems
2214 ** to be full of newly allocated nodes, which will never be locked,
2215 ** dirty, or anything else.
2216 ** To be safe, I'm putting in the checks and waits in. For the moment,
2217 ** they are needed to keep the code in journal.c from complaining
2218 ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well.
2219 ** --clm
2220 */
2221 for ( i = 0; !locked && i < MAX_FEB_SIZE; i++ ) {
2222 if ( p_s_tb->FEB[i] ) {
2223 clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FEB[i]) ;
2224 if (buffer_locked(p_s_tb->FEB[i])) {
2225 locked = p_s_tb->FEB[i] ;
2226 }
2227 }
2228 }
2229
2230 if (locked) {
2231 #ifdef CONFIG_REISERFS_CHECK
2232 repeat_counter++;
2233 if ( (repeat_counter % 10000) == 0) {
2234 reiserfs_warning (p_s_tb->tb_sb, "wait_tb_buffers_until_released(): too many iterations waiting for buffer to unlock (%b)\n", locked);
2235
2236 /* Don't loop forever. Try to recover from possible error. */
2237
2238 return ( FILESYSTEM_CHANGED_TB (p_s_tb) ) ? REPEAT_SEARCH : CARRY_ON;
2239 }
2240 #endif
2241 __wait_on_buffer (locked);
2242 if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) {
2243 return REPEAT_SEARCH;
2244 }
2245 }
2246
2247 } while (locked);
2248
2249 return CARRY_ON;
2250 }
2251
2252
2253 /* Prepare for balancing, that is
2254 * get all necessary parents, and neighbors;
2255 * analyze what and where should be moved;
2256 * get sufficient number of new nodes;
2257 * Balancing will start only after all resources will be collected at a time.
2258 *
2259 * When ported to SMP kernels, only at the last moment after all needed nodes
2260 * are collected in cache, will the resources be locked using the usual
2261 * textbook ordered lock acquisition algorithms. Note that ensuring that
2262 * this code neither write locks what it does not need to write lock nor locks out of order
2263 * will be a pain in the butt that could have been avoided. Grumble grumble. -Hans
2264 *
2265 * fix is meant in the sense of render unchanging
2266 *
2267 * Latency might be improved by first gathering a list of what buffers are needed
2268 * and then getting as many of them in parallel as possible? -Hans
2269 *
2270 * Parameters:
2271 * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
2272 * tb tree_balance structure;
2273 * inum item number in S[h];
2274 * pos_in_item - comment this if you can
2275 * ins_ih & ins_sd are used when inserting
2276 * Returns: 1 - schedule occurred while the function worked;
2277 * 0 - schedule didn't occur while the function worked;
2278 * -1 - if no_disk_space
2279 */
2280
2281
fix_nodes(int n_op_mode,struct tree_balance * p_s_tb,struct item_head * p_s_ins_ih,const void * data)2282 int fix_nodes (int n_op_mode,
2283 struct tree_balance * p_s_tb,
2284 struct item_head * p_s_ins_ih, // item head of item being inserted
2285 const void * data // inserted item or data to be pasted
2286 ) {
2287 int n_ret_value,
2288 n_h,
2289 n_item_num = PATH_LAST_POSITION(p_s_tb->tb_path);
2290 int n_pos_in_item;
2291
2292 /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
2293 ** during wait_tb_buffers_run
2294 */
2295 int wait_tb_buffers_run = 0 ;
2296 int windex ;
2297 struct buffer_head * p_s_tbS0 = PATH_PLAST_BUFFER(p_s_tb->tb_path);
2298
2299 ++ p_s_tb -> tb_sb -> u.reiserfs_sb.s_fix_nodes;
2300
2301 n_pos_in_item = p_s_tb->tb_path->pos_in_item;
2302
2303
2304 p_s_tb->fs_gen = get_generation (p_s_tb->tb_sb);
2305
2306 /* we prepare and log the super here so it will already be in the
2307 ** transaction when do_balance needs to change it.
2308 ** This way do_balance won't have to schedule when trying to prepare
2309 ** the super for logging
2310 */
2311 reiserfs_prepare_for_journal(p_s_tb->tb_sb,
2312 SB_BUFFER_WITH_SB(p_s_tb->tb_sb), 1) ;
2313 journal_mark_dirty(p_s_tb->transaction_handle, p_s_tb->tb_sb,
2314 SB_BUFFER_WITH_SB(p_s_tb->tb_sb)) ;
2315 if ( FILESYSTEM_CHANGED_TB (p_s_tb) )
2316 return REPEAT_SEARCH;
2317
2318 /* if it possible in indirect_to_direct conversion */
2319 if (buffer_locked (p_s_tbS0)) {
2320 __wait_on_buffer (p_s_tbS0);
2321 if ( FILESYSTEM_CHANGED_TB (p_s_tb) )
2322 return REPEAT_SEARCH;
2323 }
2324
2325 #ifdef CONFIG_REISERFS_CHECK
2326 if ( cur_tb ) {
2327 print_cur_tb ("fix_nodes");
2328 reiserfs_panic(p_s_tb->tb_sb,"PAP-8305: fix_nodes: there is pending do_balance");
2329 }
2330
2331 if (!buffer_uptodate (p_s_tbS0) || !B_IS_IN_TREE (p_s_tbS0)) {
2332 reiserfs_panic (p_s_tb->tb_sb, "PAP-8320: fix_nodes: S[0] (%b %z) is not uptodate "
2333 "at the beginning of fix_nodes or not in tree (mode %c)", p_s_tbS0, p_s_tbS0, n_op_mode);
2334 }
2335
2336 /* Check parameters. */
2337 switch (n_op_mode) {
2338 case M_INSERT:
2339 if ( n_item_num <= 0 || n_item_num > B_NR_ITEMS(p_s_tbS0) )
2340 reiserfs_panic(p_s_tb->tb_sb,"PAP-8330: fix_nodes: Incorrect item number %d (in S0 - %d) in case of insert",
2341 n_item_num, B_NR_ITEMS(p_s_tbS0));
2342 break;
2343 case M_PASTE:
2344 case M_DELETE:
2345 case M_CUT:
2346 if ( n_item_num < 0 || n_item_num >= B_NR_ITEMS(p_s_tbS0) ) {
2347 print_block (p_s_tbS0, 0, -1, -1);
2348 printk("mode = %c insert_size = %d\n", n_op_mode, p_s_tb->insert_size[0]);
2349 reiserfs_panic(p_s_tb->tb_sb,"PAP-8335: fix_nodes: Incorrect item number(%d)", n_item_num);
2350 }
2351 break;
2352 default:
2353 reiserfs_panic(p_s_tb->tb_sb,"PAP-8340: fix_nodes: Incorrect mode of operation");
2354 }
2355 #endif
2356
2357 if (get_mem_for_virtual_node (p_s_tb) == REPEAT_SEARCH)
2358 // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
2359 return REPEAT_SEARCH;
2360
2361
2362 /* Starting from the leaf level; for all levels n_h of the tree. */
2363 for ( n_h = 0; n_h < MAX_HEIGHT && p_s_tb->insert_size[n_h]; n_h++ ) {
2364 if ( (n_ret_value = get_direct_parent(p_s_tb, n_h)) != CARRY_ON ) {
2365 goto repeat;
2366 }
2367
2368 if ( (n_ret_value = check_balance (n_op_mode, p_s_tb, n_h, n_item_num,
2369 n_pos_in_item, p_s_ins_ih, data)) != CARRY_ON ) {
2370 if ( n_ret_value == NO_BALANCING_NEEDED ) {
2371 /* No balancing for higher levels needed. */
2372 if ( (n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON ) {
2373 goto repeat;
2374 }
2375 if ( n_h != MAX_HEIGHT - 1 )
2376 p_s_tb->insert_size[n_h + 1] = 0;
2377 /* ok, analysis and resource gathering are complete */
2378 break;
2379 }
2380 goto repeat;
2381 }
2382
2383 if ( (n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON ) {
2384 goto repeat;
2385 }
2386
2387 if ( (n_ret_value = get_empty_nodes(p_s_tb, n_h)) != CARRY_ON ) {
2388 goto repeat; /* No disk space, or schedule occurred and
2389 analysis may be invalid and needs to be redone. */
2390 }
2391
2392 if ( ! PATH_H_PBUFFER(p_s_tb->tb_path, n_h) ) {
2393 /* We have a positive insert size but no nodes exist on this
2394 level, this means that we are creating a new root. */
2395
2396 RFALSE( p_s_tb->blknum[n_h] != 1,
2397 "PAP-8350: creating new empty root");
2398
2399 if ( n_h < MAX_HEIGHT - 1 )
2400 p_s_tb->insert_size[n_h + 1] = 0;
2401 }
2402 else
2403 if ( ! PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1) ) {
2404 if ( p_s_tb->blknum[n_h] > 1 ) {
2405 /* The tree needs to be grown, so this node S[n_h]
2406 which is the root node is split into two nodes,
2407 and a new node (S[n_h+1]) will be created to
2408 become the root node. */
2409
2410 RFALSE( n_h == MAX_HEIGHT - 1,
2411 "PAP-8355: attempt to create too high of a tree");
2412
2413 p_s_tb->insert_size[n_h + 1] = (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1) + DC_SIZE;
2414 }
2415 else
2416 if ( n_h < MAX_HEIGHT - 1 )
2417 p_s_tb->insert_size[n_h + 1] = 0;
2418 }
2419 else
2420 p_s_tb->insert_size[n_h + 1] = (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1);
2421 }
2422
2423
2424 windex = push_journal_writer("fix_nodes") ;
2425 if ((n_ret_value = wait_tb_buffers_until_unlocked (p_s_tb)) == CARRY_ON) {
2426 pop_journal_writer(windex) ;
2427 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2428 wait_tb_buffers_run = 1 ;
2429 n_ret_value = REPEAT_SEARCH ;
2430 goto repeat;
2431 } else {
2432 return CARRY_ON;
2433 }
2434 } else {
2435 wait_tb_buffers_run = 1 ;
2436 pop_journal_writer(windex) ;
2437 goto repeat;
2438 }
2439
2440 repeat:
2441 // fix_nodes was unable to perform its calculation due to
2442 // filesystem got changed under us, lack of free disk space or i/o
2443 // failure. If the first is the case - the search will be
2444 // repeated. For now - free all resources acquired so far except
2445 // for the new allocated nodes
2446 {
2447 int i;
2448
2449 /* Release path buffers. */
2450 if (wait_tb_buffers_run) {
2451 pathrelse_and_restore(p_s_tb->tb_sb, p_s_tb->tb_path) ;
2452 } else {
2453 pathrelse (p_s_tb->tb_path);
2454 }
2455 /* brelse all resources collected for balancing */
2456 for ( i = 0; i < MAX_HEIGHT; i++ ) {
2457 if (wait_tb_buffers_run) {
2458 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->L[i]);
2459 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->R[i]);
2460 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->FL[i]);
2461 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->FR[i]);
2462 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->CFL[i]);
2463 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->CFR[i]);
2464 }
2465
2466 brelse (p_s_tb->L[i]);p_s_tb->L[i] = 0;
2467 brelse (p_s_tb->R[i]);p_s_tb->R[i] = 0;
2468 brelse (p_s_tb->FL[i]);p_s_tb->FL[i] = 0;
2469 brelse (p_s_tb->FR[i]);p_s_tb->FR[i] = 0;
2470 brelse (p_s_tb->CFL[i]);p_s_tb->CFL[i] = 0;
2471 brelse (p_s_tb->CFR[i]);p_s_tb->CFR[i] = 0;
2472 }
2473
2474 if (wait_tb_buffers_run) {
2475 for ( i = 0; i < MAX_FEB_SIZE; i++ ) {
2476 if ( p_s_tb->FEB[i] ) {
2477 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2478 p_s_tb->FEB[i]) ;
2479 }
2480 }
2481 }
2482 return n_ret_value;
2483 }
2484
2485 }
2486
2487
2488 /* Anatoly will probably forgive me renaming p_s_tb to tb. I just
2489 wanted to make lines shorter */
unfix_nodes(struct tree_balance * tb)2490 void unfix_nodes (struct tree_balance * tb)
2491 {
2492 int i;
2493
2494 /* Release path buffers. */
2495 pathrelse_and_restore (tb->tb_sb, tb->tb_path);
2496
2497 /* brelse all resources collected for balancing */
2498 for ( i = 0; i < MAX_HEIGHT; i++ ) {
2499 reiserfs_restore_prepared_buffer (tb->tb_sb, tb->L[i]);
2500 reiserfs_restore_prepared_buffer (tb->tb_sb, tb->R[i]);
2501 reiserfs_restore_prepared_buffer (tb->tb_sb, tb->FL[i]);
2502 reiserfs_restore_prepared_buffer (tb->tb_sb, tb->FR[i]);
2503 reiserfs_restore_prepared_buffer (tb->tb_sb, tb->CFL[i]);
2504 reiserfs_restore_prepared_buffer (tb->tb_sb, tb->CFR[i]);
2505
2506 brelse (tb->L[i]);
2507 brelse (tb->R[i]);
2508 brelse (tb->FL[i]);
2509 brelse (tb->FR[i]);
2510 brelse (tb->CFL[i]);
2511 brelse (tb->CFR[i]);
2512 }
2513
2514 /* deal with list of allocated (used and unused) nodes */
2515 for ( i = 0; i < MAX_FEB_SIZE; i++ ) {
2516 if ( tb->FEB[i] ) {
2517 unsigned long blocknr = tb->FEB[i]->b_blocknr ;
2518 /* de-allocated block which was not used by balancing and
2519 bforget about buffer for it */
2520 brelse (tb->FEB[i]);
2521 reiserfs_free_block (tb->transaction_handle, blocknr);
2522 }
2523 if (tb->used[i]) {
2524 /* release used as new nodes including a new root */
2525 brelse (tb->used[i]);
2526 }
2527 }
2528
2529 if (tb->vn_buf)
2530 reiserfs_kfree (tb->vn_buf, tb->vn_buf_size, tb->tb_sb);
2531
2532 }
2533
2534
2535
2536