1 /*
2 * linux/fs/ext2/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/fs.h>
26 #include <linux/ext2_fs.h>
27 #include <linux/locks.h>
28 #include <linux/smp_lock.h>
29 #include <linux/sched.h>
30 #include <linux/highuid.h>
31 #include <linux/quotaops.h>
32 #include <linux/module.h>
33
34 MODULE_AUTHOR("Remy Card and others");
35 MODULE_DESCRIPTION("Second Extended Filesystem");
36 MODULE_LICENSE("GPL");
37
38 /*
39 * Test whether an inode is a fast symlink.
40 */
ext2_inode_is_fast_symlink(struct inode * inode)41 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
42 {
43 int ea_blocks = inode->u.ext2_i.i_file_acl ?
44 (inode->i_sb->s_blocksize >> 9) : 0;
45
46 return (S_ISLNK(inode->i_mode) &&
47 inode->i_blocks - ea_blocks == 0);
48 }
49
50 static int ext2_update_inode(struct inode * inode, int do_sync);
51
52 /*
53 * Called at each iput()
54 */
ext2_put_inode(struct inode * inode)55 void ext2_put_inode (struct inode * inode)
56 {
57 ext2_discard_prealloc (inode);
58 }
59
60 /*
61 * Called at the last iput() if i_nlink is zero.
62 */
ext2_delete_inode(struct inode * inode)63 void ext2_delete_inode (struct inode * inode)
64 {
65 lock_kernel();
66
67 if (is_bad_inode(inode) ||
68 inode->i_ino == EXT2_ACL_IDX_INO ||
69 inode->i_ino == EXT2_ACL_DATA_INO)
70 goto no_delete;
71 inode->u.ext2_i.i_dtime = CURRENT_TIME;
72 mark_inode_dirty(inode);
73 ext2_update_inode(inode, IS_SYNC(inode));
74 inode->i_size = 0;
75 if (inode->i_blocks)
76 ext2_truncate (inode);
77 ext2_free_inode (inode);
78
79 unlock_kernel();
80 return;
81 no_delete:
82 unlock_kernel();
83 clear_inode(inode); /* We must guarantee clearing of inode... */
84 }
85
ext2_discard_prealloc(struct inode * inode)86 void ext2_discard_prealloc (struct inode * inode)
87 {
88 #ifdef EXT2_PREALLOCATE
89 lock_kernel();
90 /* Writer: ->i_prealloc* */
91 if (inode->u.ext2_i.i_prealloc_count) {
92 unsigned short total = inode->u.ext2_i.i_prealloc_count;
93 unsigned long block = inode->u.ext2_i.i_prealloc_block;
94 inode->u.ext2_i.i_prealloc_count = 0;
95 inode->u.ext2_i.i_prealloc_block = 0;
96 /* Writer: end */
97 ext2_free_blocks (inode, block, total);
98 }
99 unlock_kernel();
100 #endif
101 }
102
ext2_alloc_block(struct inode * inode,unsigned long goal,int * err)103 static int ext2_alloc_block (struct inode * inode, unsigned long goal, int *err)
104 {
105 #ifdef EXT2FS_DEBUG
106 static unsigned long alloc_hits = 0, alloc_attempts = 0;
107 #endif
108 unsigned long result;
109
110
111 #ifdef EXT2_PREALLOCATE
112 /* Writer: ->i_prealloc* */
113 if (inode->u.ext2_i.i_prealloc_count &&
114 (goal == inode->u.ext2_i.i_prealloc_block ||
115 goal + 1 == inode->u.ext2_i.i_prealloc_block))
116 {
117 result = inode->u.ext2_i.i_prealloc_block++;
118 inode->u.ext2_i.i_prealloc_count--;
119 /* Writer: end */
120 ext2_debug ("preallocation hit (%lu/%lu).\n",
121 ++alloc_hits, ++alloc_attempts);
122 } else {
123 ext2_discard_prealloc (inode);
124 ext2_debug ("preallocation miss (%lu/%lu).\n",
125 alloc_hits, ++alloc_attempts);
126 if (S_ISREG(inode->i_mode))
127 result = ext2_new_block (inode, goal,
128 &inode->u.ext2_i.i_prealloc_count,
129 &inode->u.ext2_i.i_prealloc_block, err);
130 else
131 result = ext2_new_block (inode, goal, 0, 0, err);
132 }
133 #else
134 result = ext2_new_block (inode, goal, 0, 0, err);
135 #endif
136 return result;
137 }
138
139 typedef struct {
140 u32 *p;
141 u32 key;
142 struct buffer_head *bh;
143 } Indirect;
144
add_chain(Indirect * p,struct buffer_head * bh,u32 * v)145 static inline void add_chain(Indirect *p, struct buffer_head *bh, u32 *v)
146 {
147 p->key = *(p->p = v);
148 p->bh = bh;
149 }
150
verify_chain(Indirect * from,Indirect * to)151 static inline int verify_chain(Indirect *from, Indirect *to)
152 {
153 while (from <= to && from->key == *from->p)
154 from++;
155 return (from > to);
156 }
157
158 /**
159 * ext2_block_to_path - parse the block number into array of offsets
160 * @inode: inode in question (we are only interested in its superblock)
161 * @i_block: block number to be parsed
162 * @offsets: array to store the offsets in
163 *
164 * To store the locations of file's data ext2 uses a data structure common
165 * for UNIX filesystems - tree of pointers anchored in the inode, with
166 * data blocks at leaves and indirect blocks in intermediate nodes.
167 * This function translates the block number into path in that tree -
168 * return value is the path length and @offsets[n] is the offset of
169 * pointer to (n+1)th node in the nth one. If @block is out of range
170 * (negative or too large) warning is printed and zero returned.
171 *
172 * Note: function doesn't find node addresses, so no IO is needed. All
173 * we need to know is the capacity of indirect blocks (taken from the
174 * inode->i_sb).
175 */
176
177 /*
178 * Portability note: the last comparison (check that we fit into triple
179 * indirect block) is spelled differently, because otherwise on an
180 * architecture with 32-bit longs and 8Kb pages we might get into trouble
181 * if our filesystem had 8Kb blocks. We might use long long, but that would
182 * kill us on x86. Oh, well, at least the sign propagation does not matter -
183 * i_block would have to be negative in the very beginning, so we would not
184 * get there at all.
185 */
186
ext2_block_to_path(struct inode * inode,long i_block,int offsets[4])187 static int ext2_block_to_path(struct inode *inode, long i_block, int offsets[4])
188 {
189 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
190 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
191 const long direct_blocks = EXT2_NDIR_BLOCKS,
192 indirect_blocks = ptrs,
193 double_blocks = (1 << (ptrs_bits * 2));
194 int n = 0;
195
196 if (i_block < 0) {
197 ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0");
198 } else if (i_block < direct_blocks) {
199 offsets[n++] = i_block;
200 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
201 offsets[n++] = EXT2_IND_BLOCK;
202 offsets[n++] = i_block;
203 } else if ((i_block -= indirect_blocks) < double_blocks) {
204 offsets[n++] = EXT2_DIND_BLOCK;
205 offsets[n++] = i_block >> ptrs_bits;
206 offsets[n++] = i_block & (ptrs - 1);
207 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
208 offsets[n++] = EXT2_TIND_BLOCK;
209 offsets[n++] = i_block >> (ptrs_bits * 2);
210 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
211 offsets[n++] = i_block & (ptrs - 1);
212 } else {
213 ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big");
214 }
215 return n;
216 }
217
218 /**
219 * ext2_get_branch - read the chain of indirect blocks leading to data
220 * @inode: inode in question
221 * @depth: depth of the chain (1 - direct pointer, etc.)
222 * @offsets: offsets of pointers in inode/indirect blocks
223 * @chain: place to store the result
224 * @err: here we store the error value
225 *
226 * Function fills the array of triples <key, p, bh> and returns %NULL
227 * if everything went OK or the pointer to the last filled triple
228 * (incomplete one) otherwise. Upon the return chain[i].key contains
229 * the number of (i+1)-th block in the chain (as it is stored in memory,
230 * i.e. little-endian 32-bit), chain[i].p contains the address of that
231 * number (it points into struct inode for i==0 and into the bh->b_data
232 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
233 * block for i>0 and NULL for i==0. In other words, it holds the block
234 * numbers of the chain, addresses they were taken from (and where we can
235 * verify that chain did not change) and buffer_heads hosting these
236 * numbers.
237 *
238 * Function stops when it stumbles upon zero pointer (absent block)
239 * (pointer to last triple returned, *@err == 0)
240 * or when it gets an IO error reading an indirect block
241 * (ditto, *@err == -EIO)
242 * or when it notices that chain had been changed while it was reading
243 * (ditto, *@err == -EAGAIN)
244 * or when it reads all @depth-1 indirect blocks successfully and finds
245 * the whole chain, all way to the data (returns %NULL, *err == 0).
246 */
ext2_get_branch(struct inode * inode,int depth,int * offsets,Indirect chain[4],int * err)247 static Indirect *ext2_get_branch(struct inode *inode,
248 int depth,
249 int *offsets,
250 Indirect chain[4],
251 int *err)
252 {
253 struct super_block *sb = inode->i_sb;
254 Indirect *p = chain;
255 struct buffer_head *bh;
256
257 *err = 0;
258 /* i_data is not going away, no lock needed */
259 add_chain (chain, NULL, inode->u.ext2_i.i_data + *offsets);
260 if (!p->key)
261 goto no_block;
262 while (--depth) {
263 bh = sb_bread(sb, le32_to_cpu(p->key));
264 if (!bh)
265 goto failure;
266 /* Reader: pointers */
267 if (!verify_chain(chain, p))
268 goto changed;
269 add_chain(++p, bh, (u32*)bh->b_data + *++offsets);
270 /* Reader: end */
271 if (!p->key)
272 goto no_block;
273 }
274 return NULL;
275
276 changed:
277 *err = -EAGAIN;
278 goto no_block;
279 failure:
280 *err = -EIO;
281 no_block:
282 return p;
283 }
284
285 /**
286 * ext2_find_near - find a place for allocation with sufficient locality
287 * @inode: owner
288 * @ind: descriptor of indirect block.
289 *
290 * This function returns the prefered place for block allocation.
291 * It is used when heuristic for sequential allocation fails.
292 * Rules are:
293 * + if there is a block to the left of our position - allocate near it.
294 * + if pointer will live in indirect block - allocate near that block.
295 * + if pointer will live in inode - allocate in the same cylinder group.
296 * Caller must make sure that @ind is valid and will stay that way.
297 */
298
ext2_find_near(struct inode * inode,Indirect * ind)299 static inline unsigned long ext2_find_near(struct inode *inode, Indirect *ind)
300 {
301 u32 *start = ind->bh ? (u32*) ind->bh->b_data : inode->u.ext2_i.i_data;
302 u32 *p;
303
304 /* Try to find previous block */
305 for (p = ind->p - 1; p >= start; p--)
306 if (*p)
307 return le32_to_cpu(*p);
308
309 /* No such thing, so let's try location of indirect block */
310 if (ind->bh)
311 return ind->bh->b_blocknr;
312
313 /*
314 * It is going to be refered from inode itself? OK, just put it into
315 * the same cylinder group then.
316 */
317 return (inode->u.ext2_i.i_block_group *
318 EXT2_BLOCKS_PER_GROUP(inode->i_sb)) +
319 le32_to_cpu(inode->i_sb->u.ext2_sb.s_es->s_first_data_block);
320 }
321
322 /**
323 * ext2_find_goal - find a prefered place for allocation.
324 * @inode: owner
325 * @block: block we want
326 * @chain: chain of indirect blocks
327 * @partial: pointer to the last triple within a chain
328 * @goal: place to store the result.
329 *
330 * Normally this function find the prefered place for block allocation,
331 * stores it in *@goal and returns zero. If the branch had been changed
332 * under us we return -EAGAIN.
333 */
334
ext2_find_goal(struct inode * inode,long block,Indirect chain[4],Indirect * partial,unsigned long * goal)335 static inline int ext2_find_goal(struct inode *inode,
336 long block,
337 Indirect chain[4],
338 Indirect *partial,
339 unsigned long *goal)
340 {
341 /* Writer: ->i_next_alloc* */
342 if (block == inode->u.ext2_i.i_next_alloc_block + 1) {
343 inode->u.ext2_i.i_next_alloc_block++;
344 inode->u.ext2_i.i_next_alloc_goal++;
345 }
346 /* Writer: end */
347 /* Reader: pointers, ->i_next_alloc* */
348 if (verify_chain(chain, partial)) {
349 /*
350 * try the heuristic for sequential allocation,
351 * failing that at least try to get decent locality.
352 */
353 if (block == inode->u.ext2_i.i_next_alloc_block)
354 *goal = inode->u.ext2_i.i_next_alloc_goal;
355 if (!*goal)
356 *goal = ext2_find_near(inode, partial);
357 return 0;
358 }
359 /* Reader: end */
360 return -EAGAIN;
361 }
362
363 /**
364 * ext2_alloc_branch - allocate and set up a chain of blocks.
365 * @inode: owner
366 * @num: depth of the chain (number of blocks to allocate)
367 * @offsets: offsets (in the blocks) to store the pointers to next.
368 * @branch: place to store the chain in.
369 *
370 * This function allocates @num blocks, zeroes out all but the last one,
371 * links them into chain and (if we are synchronous) writes them to disk.
372 * In other words, it prepares a branch that can be spliced onto the
373 * inode. It stores the information about that chain in the branch[], in
374 * the same format as ext2_get_branch() would do. We are calling it after
375 * we had read the existing part of chain and partial points to the last
376 * triple of that (one with zero ->key). Upon the exit we have the same
377 * picture as after the successful ext2_get_block(), excpet that in one
378 * place chain is disconnected - *branch->p is still zero (we did not
379 * set the last link), but branch->key contains the number that should
380 * be placed into *branch->p to fill that gap.
381 *
382 * If allocation fails we free all blocks we've allocated (and forget
383 * their buffer_heads) and return the error value the from failed
384 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
385 * as described above and return 0.
386 */
387
ext2_alloc_branch(struct inode * inode,int num,unsigned long goal,int * offsets,Indirect * branch)388 static int ext2_alloc_branch(struct inode *inode,
389 int num,
390 unsigned long goal,
391 int *offsets,
392 Indirect *branch)
393 {
394 int blocksize = inode->i_sb->s_blocksize;
395 int n = 0;
396 int err;
397 int i;
398 int parent = ext2_alloc_block(inode, goal, &err);
399
400 branch[0].key = cpu_to_le32(parent);
401 if (parent) for (n = 1; n < num; n++) {
402 struct buffer_head *bh;
403 /* Allocate the next block */
404 int nr = ext2_alloc_block(inode, parent, &err);
405 if (!nr)
406 break;
407 branch[n].key = cpu_to_le32(nr);
408 /*
409 * Get buffer_head for parent block, zero it out and set
410 * the pointer to new one, then send parent to disk.
411 */
412 bh = sb_getblk(inode->i_sb, parent);
413 lock_buffer(bh);
414 memset(bh->b_data, 0, blocksize);
415 branch[n].bh = bh;
416 branch[n].p = (u32*) bh->b_data + offsets[n];
417 *branch[n].p = branch[n].key;
418 mark_buffer_uptodate(bh, 1);
419 unlock_buffer(bh);
420 mark_buffer_dirty_inode(bh, inode);
421 /* We used to sync bh here if IS_SYNC(inode).
422 * But for S_ISREG files we now rely upon generic_osync_inode()
423 * and b_inode_buffers
424 */
425 if (S_ISDIR(inode->i_mode) && IS_SYNC(inode)) {
426 ll_rw_block (WRITE, 1, &bh);
427 wait_on_buffer (bh);
428 }
429 parent = nr;
430 }
431 if (n == num)
432 return 0;
433
434 /* Allocation failed, free what we already allocated */
435 for (i = 1; i < n; i++)
436 bforget(branch[i].bh);
437 for (i = 0; i < n; i++)
438 ext2_free_blocks(inode, le32_to_cpu(branch[i].key), 1);
439 return err;
440 }
441
442 /**
443 * ext2_splice_branch - splice the allocated branch onto inode.
444 * @inode: owner
445 * @block: (logical) number of block we are adding
446 * @chain: chain of indirect blocks (with a missing link - see
447 * ext2_alloc_branch)
448 * @where: location of missing link
449 * @num: number of blocks we are adding
450 *
451 * This function verifies that chain (up to the missing link) had not
452 * changed, fills the missing link and does all housekeeping needed in
453 * inode (->i_blocks, etc.). In case of success we end up with the full
454 * chain to new block and return 0. Otherwise (== chain had been changed)
455 * we free the new blocks (forgetting their buffer_heads, indeed) and
456 * return -EAGAIN.
457 */
458
ext2_splice_branch(struct inode * inode,long block,Indirect chain[4],Indirect * where,int num)459 static inline int ext2_splice_branch(struct inode *inode,
460 long block,
461 Indirect chain[4],
462 Indirect *where,
463 int num)
464 {
465 int i;
466
467 /* Verify that place we are splicing to is still there and vacant */
468
469 /* Writer: pointers, ->i_next_alloc* */
470 if (!verify_chain(chain, where-1) || *where->p)
471 /* Writer: end */
472 goto changed;
473
474 /* That's it */
475
476 *where->p = where->key;
477 inode->u.ext2_i.i_next_alloc_block = block;
478 inode->u.ext2_i.i_next_alloc_goal = le32_to_cpu(where[num-1].key);
479
480 /* Writer: end */
481
482 /* We are done with atomic stuff, now do the rest of housekeeping */
483
484 inode->i_ctime = CURRENT_TIME;
485
486 /* had we spliced it onto indirect block? */
487 if (where->bh) {
488 mark_buffer_dirty_inode(where->bh, inode);
489 if (S_ISDIR(inode->i_mode) && IS_SYNC(inode)) {
490 ll_rw_block(WRITE, 1, &where->bh);
491 wait_on_buffer(where->bh);
492 }
493 }
494
495 mark_inode_dirty(inode);
496 return 0;
497
498 changed:
499 for (i = 1; i < num; i++)
500 bforget(where[i].bh);
501 for (i = 0; i < num; i++)
502 ext2_free_blocks(inode, le32_to_cpu(where[i].key), 1);
503 return -EAGAIN;
504 }
505
506 /*
507 * Allocation strategy is simple: if we have to allocate something, we will
508 * have to go the whole way to leaf. So let's do it before attaching anything
509 * to tree, set linkage between the newborn blocks, write them if sync is
510 * required, recheck the path, free and repeat if check fails, otherwise
511 * set the last missing link (that will protect us from any truncate-generated
512 * removals - all blocks on the path are immune now) and possibly force the
513 * write on the parent block.
514 * That has a nice additional property: no special recovery from the failed
515 * allocations is needed - we simply release blocks and do not touch anything
516 * reachable from inode.
517 */
518
ext2_get_block(struct inode * inode,long iblock,struct buffer_head * bh_result,int create)519 static int ext2_get_block(struct inode *inode, long iblock, struct buffer_head *bh_result, int create)
520 {
521 int err = -EIO;
522 int offsets[4];
523 Indirect chain[4];
524 Indirect *partial;
525 unsigned long goal;
526 int left;
527 int depth = ext2_block_to_path(inode, iblock, offsets);
528
529 if (depth == 0)
530 goto out;
531
532 lock_kernel();
533 reread:
534 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
535
536 /* Simplest case - block found, no allocation needed */
537 if (!partial) {
538 got_it:
539 bh_result->b_dev = inode->i_dev;
540 bh_result->b_blocknr = le32_to_cpu(chain[depth-1].key);
541 bh_result->b_state |= (1UL << BH_Mapped);
542 /* Clean up and exit */
543 partial = chain+depth-1; /* the whole chain */
544 goto cleanup;
545 }
546
547 /* Next simple case - plain lookup or failed read of indirect block */
548 if (!create || err == -EIO) {
549 cleanup:
550 while (partial > chain) {
551 brelse(partial->bh);
552 partial--;
553 }
554 unlock_kernel();
555 out:
556 return err;
557 }
558
559 /*
560 * Indirect block might be removed by truncate while we were
561 * reading it. Handling of that case (forget what we've got and
562 * reread) is taken out of the main path.
563 */
564 if (err == -EAGAIN)
565 goto changed;
566
567 goal = 0;
568 if (ext2_find_goal(inode, iblock, chain, partial, &goal) < 0)
569 goto changed;
570
571 left = (chain + depth) - partial;
572 err = ext2_alloc_branch(inode, left, goal,
573 offsets+(partial-chain), partial);
574 if (err)
575 goto cleanup;
576
577 if (ext2_splice_branch(inode, iblock, chain, partial, left) < 0)
578 goto changed;
579
580 bh_result->b_state |= (1UL << BH_New);
581 goto got_it;
582
583 changed:
584 while (partial > chain) {
585 brelse(partial->bh);
586 partial--;
587 }
588 goto reread;
589 }
590
ext2_writepage(struct page * page)591 static int ext2_writepage(struct page *page)
592 {
593 return block_write_full_page(page,ext2_get_block);
594 }
ext2_readpage(struct file * file,struct page * page)595 static int ext2_readpage(struct file *file, struct page *page)
596 {
597 return block_read_full_page(page,ext2_get_block);
598 }
ext2_prepare_write(struct file * file,struct page * page,unsigned from,unsigned to)599 static int ext2_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to)
600 {
601 return block_prepare_write(page,from,to,ext2_get_block);
602 }
ext2_bmap(struct address_space * mapping,long block)603 static int ext2_bmap(struct address_space *mapping, long block)
604 {
605 return generic_block_bmap(mapping,block,ext2_get_block);
606 }
ext2_direct_IO(int rw,struct inode * inode,struct kiobuf * iobuf,unsigned long blocknr,int blocksize)607 static int ext2_direct_IO(int rw, struct inode * inode, struct kiobuf * iobuf, unsigned long blocknr, int blocksize)
608 {
609 return generic_direct_IO(rw, inode, iobuf, blocknr, blocksize, ext2_get_block);
610 }
611 struct address_space_operations ext2_aops = {
612 readpage: ext2_readpage,
613 writepage: ext2_writepage,
614 sync_page: block_sync_page,
615 prepare_write: ext2_prepare_write,
616 commit_write: generic_commit_write,
617 bmap: ext2_bmap,
618 direct_IO: ext2_direct_IO,
619 };
620
621 /*
622 * Probably it should be a library function... search for first non-zero word
623 * or memcmp with zero_page, whatever is better for particular architecture.
624 * Linus?
625 */
all_zeroes(u32 * p,u32 * q)626 static inline int all_zeroes(u32 *p, u32 *q)
627 {
628 while (p < q)
629 if (*p++)
630 return 0;
631 return 1;
632 }
633
634 /**
635 * ext2_find_shared - find the indirect blocks for partial truncation.
636 * @inode: inode in question
637 * @depth: depth of the affected branch
638 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
639 * @chain: place to store the pointers to partial indirect blocks
640 * @top: place to the (detached) top of branch
641 *
642 * This is a helper function used by ext2_truncate().
643 *
644 * When we do truncate() we may have to clean the ends of several indirect
645 * blocks but leave the blocks themselves alive. Block is partially
646 * truncated if some data below the new i_size is refered from it (and
647 * it is on the path to the first completely truncated data block, indeed).
648 * We have to free the top of that path along with everything to the right
649 * of the path. Since no allocation past the truncation point is possible
650 * until ext2_truncate() finishes, we may safely do the latter, but top
651 * of branch may require special attention - pageout below the truncation
652 * point might try to populate it.
653 *
654 * We atomically detach the top of branch from the tree, store the block
655 * number of its root in *@top, pointers to buffer_heads of partially
656 * truncated blocks - in @chain[].bh and pointers to their last elements
657 * that should not be removed - in @chain[].p. Return value is the pointer
658 * to last filled element of @chain.
659 *
660 * The work left to caller to do the actual freeing of subtrees:
661 * a) free the subtree starting from *@top
662 * b) free the subtrees whose roots are stored in
663 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
664 * c) free the subtrees growing from the inode past the @chain[0].p
665 * (no partially truncated stuff there).
666 */
667
ext2_find_shared(struct inode * inode,int depth,int offsets[4],Indirect chain[4],u32 * top)668 static Indirect *ext2_find_shared(struct inode *inode,
669 int depth,
670 int offsets[4],
671 Indirect chain[4],
672 u32 *top)
673 {
674 Indirect *partial, *p;
675 int k, err;
676
677 *top = 0;
678 for (k = depth; k > 1 && !offsets[k-1]; k--)
679 ;
680 partial = ext2_get_branch(inode, k, offsets, chain, &err);
681 /* Writer: pointers */
682 if (!partial)
683 partial = chain + k-1;
684 /*
685 * If the branch acquired continuation since we've looked at it -
686 * fine, it should all survive and (new) top doesn't belong to us.
687 */
688 if (!partial->key && *partial->p)
689 /* Writer: end */
690 goto no_top;
691 for (p=partial; p>chain && all_zeroes((u32*)p->bh->b_data,p->p); p--)
692 ;
693 /*
694 * OK, we've found the last block that must survive. The rest of our
695 * branch should be detached before unlocking. However, if that rest
696 * of branch is all ours and does not grow immediately from the inode
697 * it's easier to cheat and just decrement partial->p.
698 */
699 if (p == chain + k - 1 && p > chain) {
700 p->p--;
701 } else {
702 *top = *p->p;
703 *p->p = 0;
704 }
705 /* Writer: end */
706
707 while(partial > p)
708 {
709 brelse(partial->bh);
710 partial--;
711 }
712 no_top:
713 return partial;
714 }
715
716 /**
717 * ext2_free_data - free a list of data blocks
718 * @inode: inode we are dealing with
719 * @p: array of block numbers
720 * @q: points immediately past the end of array
721 *
722 * We are freeing all blocks refered from that array (numbers are
723 * stored as little-endian 32-bit) and updating @inode->i_blocks
724 * appropriately.
725 */
ext2_free_data(struct inode * inode,u32 * p,u32 * q)726 static inline void ext2_free_data(struct inode *inode, u32 *p, u32 *q)
727 {
728 unsigned long block_to_free = 0, count = 0;
729 unsigned long nr;
730
731 for ( ; p < q ; p++) {
732 nr = le32_to_cpu(*p);
733 if (nr) {
734 *p = 0;
735 /* accumulate blocks to free if they're contiguous */
736 if (count == 0)
737 goto free_this;
738 else if (block_to_free == nr - count)
739 count++;
740 else {
741 mark_inode_dirty(inode);
742 ext2_free_blocks (inode, block_to_free, count);
743 free_this:
744 block_to_free = nr;
745 count = 1;
746 }
747 }
748 }
749 if (count > 0) {
750 mark_inode_dirty(inode);
751 ext2_free_blocks (inode, block_to_free, count);
752 }
753 }
754
755 /**
756 * ext2_free_branches - free an array of branches
757 * @inode: inode we are dealing with
758 * @p: array of block numbers
759 * @q: pointer immediately past the end of array
760 * @depth: depth of the branches to free
761 *
762 * We are freeing all blocks refered from these branches (numbers are
763 * stored as little-endian 32-bit) and updating @inode->i_blocks
764 * appropriately.
765 */
ext2_free_branches(struct inode * inode,u32 * p,u32 * q,int depth)766 static void ext2_free_branches(struct inode *inode, u32 *p, u32 *q, int depth)
767 {
768 struct buffer_head * bh;
769 unsigned long nr;
770
771 if (depth--) {
772 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
773 for ( ; p < q ; p++) {
774 nr = le32_to_cpu(*p);
775 if (!nr)
776 continue;
777 *p = 0;
778 bh = sb_bread(inode->i_sb, nr);
779 /*
780 * A read failure? Report error and clear slot
781 * (should be rare).
782 */
783 if (!bh) {
784 ext2_error(inode->i_sb, "ext2_free_branches",
785 "Read failure, inode=%ld, block=%ld",
786 inode->i_ino, nr);
787 continue;
788 }
789 ext2_free_branches(inode,
790 (u32*)bh->b_data,
791 (u32*)bh->b_data + addr_per_block,
792 depth);
793 bforget(bh);
794 ext2_free_blocks(inode, nr, 1);
795 mark_inode_dirty(inode);
796 }
797 } else
798 ext2_free_data(inode, p, q);
799 }
800
ext2_truncate(struct inode * inode)801 void ext2_truncate (struct inode * inode)
802 {
803 u32 *i_data = inode->u.ext2_i.i_data;
804 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
805 int offsets[4];
806 Indirect chain[4];
807 Indirect *partial;
808 int nr = 0;
809 int n;
810 long iblock;
811 unsigned blocksize;
812
813 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
814 S_ISLNK(inode->i_mode)))
815 return;
816 if (ext2_inode_is_fast_symlink(inode))
817 return;
818 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
819 return;
820
821 ext2_discard_prealloc(inode);
822
823 blocksize = inode->i_sb->s_blocksize;
824 iblock = (inode->i_size + blocksize-1)
825 >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
826
827 block_truncate_page(inode->i_mapping, inode->i_size, ext2_get_block);
828
829 n = ext2_block_to_path(inode, iblock, offsets);
830 if (n == 0)
831 return;
832
833 if (n == 1) {
834 ext2_free_data(inode, i_data+offsets[0],
835 i_data + EXT2_NDIR_BLOCKS);
836 goto do_indirects;
837 }
838
839 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
840 /* Kill the top of shared branch (already detached) */
841 if (nr) {
842 if (partial == chain)
843 mark_inode_dirty(inode);
844 else
845 mark_buffer_dirty_inode(partial->bh, inode);
846 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
847 }
848 /* Clear the ends of indirect blocks on the shared branch */
849 while (partial > chain) {
850 ext2_free_branches(inode,
851 partial->p + 1,
852 (u32*)partial->bh->b_data + addr_per_block,
853 (chain+n-1) - partial);
854 mark_buffer_dirty_inode(partial->bh, inode);
855 brelse (partial->bh);
856 partial--;
857 }
858 do_indirects:
859 /* Kill the remaining (whole) subtrees */
860 switch (offsets[0]) {
861 default:
862 nr = i_data[EXT2_IND_BLOCK];
863 if (nr) {
864 i_data[EXT2_IND_BLOCK] = 0;
865 mark_inode_dirty(inode);
866 ext2_free_branches(inode, &nr, &nr+1, 1);
867 }
868 case EXT2_IND_BLOCK:
869 nr = i_data[EXT2_DIND_BLOCK];
870 if (nr) {
871 i_data[EXT2_DIND_BLOCK] = 0;
872 mark_inode_dirty(inode);
873 ext2_free_branches(inode, &nr, &nr+1, 2);
874 }
875 case EXT2_DIND_BLOCK:
876 nr = i_data[EXT2_TIND_BLOCK];
877 if (nr) {
878 i_data[EXT2_TIND_BLOCK] = 0;
879 mark_inode_dirty(inode);
880 ext2_free_branches(inode, &nr, &nr+1, 3);
881 }
882 case EXT2_TIND_BLOCK:
883 ;
884 }
885 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
886 if (IS_SYNC(inode)) {
887 fsync_inode_buffers(inode);
888 ext2_sync_inode (inode);
889 } else {
890 mark_inode_dirty(inode);
891 }
892 }
893
ext2_set_inode_flags(struct inode * inode)894 void ext2_set_inode_flags(struct inode *inode)
895 {
896 unsigned int flags = inode->u.ext2_i.i_flags;
897
898 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME);
899 if (flags & EXT2_SYNC_FL)
900 inode->i_flags |= S_SYNC;
901 if (flags & EXT2_APPEND_FL)
902 inode->i_flags |= S_APPEND;
903 if (flags & EXT2_IMMUTABLE_FL)
904 inode->i_flags |= S_IMMUTABLE;
905 if (flags & EXT2_NOATIME_FL)
906 inode->i_flags |= S_NOATIME;
907 }
908
ext2_read_inode(struct inode * inode)909 void ext2_read_inode (struct inode * inode)
910 {
911 struct buffer_head * bh;
912 struct ext2_inode * raw_inode;
913 unsigned long block_group;
914 unsigned long group_desc;
915 unsigned long desc;
916 unsigned long block;
917 unsigned long offset;
918 struct ext2_group_desc * gdp;
919
920 if ((inode->i_ino != EXT2_ROOT_INO && inode->i_ino != EXT2_ACL_IDX_INO &&
921 inode->i_ino != EXT2_ACL_DATA_INO &&
922 inode->i_ino < EXT2_FIRST_INO(inode->i_sb)) ||
923 inode->i_ino > le32_to_cpu(inode->i_sb->u.ext2_sb.s_es->s_inodes_count)) {
924 ext2_error (inode->i_sb, "ext2_read_inode",
925 "bad inode number: %lu", inode->i_ino);
926 goto bad_inode;
927 }
928 block_group = (inode->i_ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
929 if (block_group >= inode->i_sb->u.ext2_sb.s_groups_count) {
930 ext2_error (inode->i_sb, "ext2_read_inode",
931 "group >= groups count");
932 goto bad_inode;
933 }
934 group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(inode->i_sb);
935 desc = block_group & (EXT2_DESC_PER_BLOCK(inode->i_sb) - 1);
936 bh = inode->i_sb->u.ext2_sb.s_group_desc[group_desc];
937 if (!bh) {
938 ext2_error (inode->i_sb, "ext2_read_inode",
939 "Descriptor not loaded");
940 goto bad_inode;
941 }
942
943 gdp = (struct ext2_group_desc *) bh->b_data;
944 /*
945 * Figure out the offset within the block group inode table
946 */
947 offset = ((inode->i_ino - 1) % EXT2_INODES_PER_GROUP(inode->i_sb)) *
948 EXT2_INODE_SIZE(inode->i_sb);
949 block = le32_to_cpu(gdp[desc].bg_inode_table) +
950 (offset >> EXT2_BLOCK_SIZE_BITS(inode->i_sb));
951 if (!(bh = sb_bread(inode->i_sb, block))) {
952 ext2_error (inode->i_sb, "ext2_read_inode",
953 "unable to read inode block - "
954 "inode=%lu, block=%lu", inode->i_ino, block);
955 goto bad_inode;
956 }
957 offset &= (EXT2_BLOCK_SIZE(inode->i_sb) - 1);
958 raw_inode = (struct ext2_inode *) (bh->b_data + offset);
959
960 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
961 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
962 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
963 if(!(test_opt (inode->i_sb, NO_UID32))) {
964 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
965 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
966 }
967 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
968 inode->i_size = le32_to_cpu(raw_inode->i_size);
969 inode->i_atime = le32_to_cpu(raw_inode->i_atime);
970 inode->i_ctime = le32_to_cpu(raw_inode->i_ctime);
971 inode->i_mtime = le32_to_cpu(raw_inode->i_mtime);
972 inode->u.ext2_i.i_dtime = le32_to_cpu(raw_inode->i_dtime);
973 /* We now have enough fields to check if the inode was active or not.
974 * This is needed because nfsd might try to access dead inodes
975 * the test is that same one that e2fsck uses
976 * NeilBrown 1999oct15
977 */
978 if (inode->i_nlink == 0 && (inode->i_mode == 0 || inode->u.ext2_i.i_dtime)) {
979 /* this inode is deleted */
980 brelse (bh);
981 goto bad_inode;
982 }
983 inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size (for stat), not the fs block size */
984 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
985 inode->i_version = ++event;
986 inode->u.ext2_i.i_flags = le32_to_cpu(raw_inode->i_flags);
987 inode->u.ext2_i.i_faddr = le32_to_cpu(raw_inode->i_faddr);
988 inode->u.ext2_i.i_frag_no = raw_inode->i_frag;
989 inode->u.ext2_i.i_frag_size = raw_inode->i_fsize;
990 inode->u.ext2_i.i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
991 if (S_ISREG(inode->i_mode))
992 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
993 else
994 inode->u.ext2_i.i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
995 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
996 inode->u.ext2_i.i_state = 0;
997 inode->u.ext2_i.i_prealloc_count = 0;
998 inode->u.ext2_i.i_block_group = block_group;
999
1000 /*
1001 * NOTE! The in-memory inode i_data array is in little-endian order
1002 * even on big-endian machines: we do NOT byteswap the block numbers!
1003 */
1004 for (block = 0; block < EXT2_N_BLOCKS; block++)
1005 inode->u.ext2_i.i_data[block] = raw_inode->i_block[block];
1006
1007 if (inode->i_ino == EXT2_ACL_IDX_INO ||
1008 inode->i_ino == EXT2_ACL_DATA_INO)
1009 /* Nothing to do */ ;
1010 else if (S_ISREG(inode->i_mode)) {
1011 inode->i_op = &ext2_file_inode_operations;
1012 inode->i_fop = &ext2_file_operations;
1013 inode->i_mapping->a_ops = &ext2_aops;
1014 } else if (S_ISDIR(inode->i_mode)) {
1015 inode->i_op = &ext2_dir_inode_operations;
1016 inode->i_fop = &ext2_dir_operations;
1017 inode->i_mapping->a_ops = &ext2_aops;
1018 } else if (S_ISLNK(inode->i_mode)) {
1019 if (ext2_inode_is_fast_symlink(inode))
1020 inode->i_op = &ext2_fast_symlink_inode_operations;
1021 else {
1022 inode->i_op = &page_symlink_inode_operations;
1023 inode->i_mapping->a_ops = &ext2_aops;
1024 }
1025 } else
1026 init_special_inode(inode, inode->i_mode,
1027 le32_to_cpu(raw_inode->i_block[0]));
1028 brelse (bh);
1029 inode->i_attr_flags = 0;
1030 ext2_set_inode_flags(inode);
1031 return;
1032
1033 bad_inode:
1034 make_bad_inode(inode);
1035 return;
1036 }
1037
ext2_update_inode(struct inode * inode,int do_sync)1038 static int ext2_update_inode(struct inode * inode, int do_sync)
1039 {
1040 struct buffer_head * bh;
1041 struct ext2_inode * raw_inode;
1042 unsigned long block_group;
1043 unsigned long group_desc;
1044 unsigned long desc;
1045 unsigned long block;
1046 unsigned long offset;
1047 int err = 0;
1048 struct ext2_group_desc * gdp;
1049
1050 if ((inode->i_ino != EXT2_ROOT_INO &&
1051 inode->i_ino < EXT2_FIRST_INO(inode->i_sb)) ||
1052 inode->i_ino > le32_to_cpu(inode->i_sb->u.ext2_sb.s_es->s_inodes_count)) {
1053 ext2_error (inode->i_sb, "ext2_write_inode",
1054 "bad inode number: %lu", inode->i_ino);
1055 return -EIO;
1056 }
1057 block_group = (inode->i_ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1058 if (block_group >= inode->i_sb->u.ext2_sb.s_groups_count) {
1059 ext2_error (inode->i_sb, "ext2_write_inode",
1060 "group >= groups count");
1061 return -EIO;
1062 }
1063 group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(inode->i_sb);
1064 desc = block_group & (EXT2_DESC_PER_BLOCK(inode->i_sb) - 1);
1065 bh = inode->i_sb->u.ext2_sb.s_group_desc[group_desc];
1066 if (!bh) {
1067 ext2_error (inode->i_sb, "ext2_write_inode",
1068 "Descriptor not loaded");
1069 return -EIO;
1070 }
1071 gdp = (struct ext2_group_desc *) bh->b_data;
1072 /*
1073 * Figure out the offset within the block group inode table
1074 */
1075 offset = ((inode->i_ino - 1) % EXT2_INODES_PER_GROUP(inode->i_sb)) *
1076 EXT2_INODE_SIZE(inode->i_sb);
1077 block = le32_to_cpu(gdp[desc].bg_inode_table) +
1078 (offset >> EXT2_BLOCK_SIZE_BITS(inode->i_sb));
1079 if (!(bh = sb_bread(inode->i_sb, block))) {
1080 ext2_error (inode->i_sb, "ext2_write_inode",
1081 "unable to read inode block - "
1082 "inode=%lu, block=%lu", inode->i_ino, block);
1083 return -EIO;
1084 }
1085 offset &= EXT2_BLOCK_SIZE(inode->i_sb) - 1;
1086 raw_inode = (struct ext2_inode *) (bh->b_data + offset);
1087
1088 /* For fields not tracked in the in-memory inode,
1089 * initialise them to zero for new inodes. */
1090 if (inode->u.ext2_i.i_state & EXT2_STATE_NEW)
1091 memset(raw_inode, 0, EXT2_SB(inode->i_sb)->s_inode_size);
1092
1093 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1094 if(!(test_opt(inode->i_sb, NO_UID32))) {
1095 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
1096 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
1097 /*
1098 * Fix up interoperability with old kernels. Otherwise, old inodes get
1099 * re-used with the upper 16 bits of the uid/gid intact
1100 */
1101 if(!inode->u.ext2_i.i_dtime) {
1102 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(inode->i_uid));
1103 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(inode->i_gid));
1104 } else {
1105 raw_inode->i_uid_high = 0;
1106 raw_inode->i_gid_high = 0;
1107 }
1108 } else {
1109 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(inode->i_uid));
1110 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(inode->i_gid));
1111 raw_inode->i_uid_high = 0;
1112 raw_inode->i_gid_high = 0;
1113 }
1114 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1115 raw_inode->i_size = cpu_to_le32(inode->i_size);
1116 raw_inode->i_atime = cpu_to_le32(inode->i_atime);
1117 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime);
1118 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime);
1119 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1120 raw_inode->i_dtime = cpu_to_le32(inode->u.ext2_i.i_dtime);
1121 raw_inode->i_flags = cpu_to_le32(inode->u.ext2_i.i_flags);
1122 raw_inode->i_faddr = cpu_to_le32(inode->u.ext2_i.i_faddr);
1123 raw_inode->i_frag = inode->u.ext2_i.i_frag_no;
1124 raw_inode->i_fsize = inode->u.ext2_i.i_frag_size;
1125 raw_inode->i_file_acl = cpu_to_le32(inode->u.ext2_i.i_file_acl);
1126 if (!S_ISREG(inode->i_mode))
1127 raw_inode->i_dir_acl = cpu_to_le32(inode->u.ext2_i.i_dir_acl);
1128 else {
1129 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1130 if (inode->i_size > 0x7fffffffULL) {
1131 struct super_block *sb = inode->i_sb;
1132 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1133 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1134 EXT2_SB(sb)->s_es->s_rev_level ==
1135 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1136 /* If this is the first large file
1137 * created, add a flag to the superblock.
1138 */
1139 lock_kernel();
1140 ext2_update_dynamic_rev(sb);
1141 EXT2_SET_RO_COMPAT_FEATURE(sb,
1142 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1143 unlock_kernel();
1144 ext2_write_super(sb);
1145 }
1146 }
1147 }
1148
1149 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1150 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1151 raw_inode->i_block[0] = cpu_to_le32(kdev_t_to_nr(inode->i_rdev));
1152 else for (block = 0; block < EXT2_N_BLOCKS; block++)
1153 raw_inode->i_block[block] = inode->u.ext2_i.i_data[block];
1154 mark_buffer_dirty(bh);
1155 if (do_sync) {
1156 ll_rw_block (WRITE, 1, &bh);
1157 wait_on_buffer (bh);
1158 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1159 printk ("IO error syncing ext2 inode ["
1160 "%s:%08lx]\n",
1161 bdevname(inode->i_dev), inode->i_ino);
1162 err = -EIO;
1163 }
1164 }
1165 inode->u.ext2_i.i_state &= ~EXT2_STATE_NEW;
1166 brelse (bh);
1167 return err;
1168 }
1169
ext2_write_inode(struct inode * inode,int wait)1170 void ext2_write_inode (struct inode * inode, int wait)
1171 {
1172 lock_kernel();
1173 ext2_update_inode (inode, wait);
1174 unlock_kernel();
1175 }
1176
ext2_sync_inode(struct inode * inode)1177 int ext2_sync_inode (struct inode *inode)
1178 {
1179 return ext2_update_inode (inode, 1);
1180 }
1181