1 /*
2  *  linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  * 	(sct@dcs.ed.ac.uk), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  * 	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/fs.h>
26 #include <linux/ext2_fs.h>
27 #include <linux/locks.h>
28 #include <linux/smp_lock.h>
29 #include <linux/sched.h>
30 #include <linux/highuid.h>
31 #include <linux/quotaops.h>
32 #include <linux/module.h>
33 
34 MODULE_AUTHOR("Remy Card and others");
35 MODULE_DESCRIPTION("Second Extended Filesystem");
36 MODULE_LICENSE("GPL");
37 
38 /*
39  * Test whether an inode is a fast symlink.
40  */
ext2_inode_is_fast_symlink(struct inode * inode)41 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
42 {
43 	int ea_blocks = inode->u.ext2_i.i_file_acl ?
44 		(inode->i_sb->s_blocksize >> 9) : 0;
45 
46 	return (S_ISLNK(inode->i_mode) &&
47 		inode->i_blocks - ea_blocks == 0);
48 }
49 
50 static int ext2_update_inode(struct inode * inode, int do_sync);
51 
52 /*
53  * Called at each iput()
54  */
ext2_put_inode(struct inode * inode)55 void ext2_put_inode (struct inode * inode)
56 {
57 	ext2_discard_prealloc (inode);
58 }
59 
60 /*
61  * Called at the last iput() if i_nlink is zero.
62  */
ext2_delete_inode(struct inode * inode)63 void ext2_delete_inode (struct inode * inode)
64 {
65 	lock_kernel();
66 
67 	if (is_bad_inode(inode) ||
68 	    inode->i_ino == EXT2_ACL_IDX_INO ||
69 	    inode->i_ino == EXT2_ACL_DATA_INO)
70 		goto no_delete;
71 	inode->u.ext2_i.i_dtime	= CURRENT_TIME;
72 	mark_inode_dirty(inode);
73 	ext2_update_inode(inode, IS_SYNC(inode));
74 	inode->i_size = 0;
75 	if (inode->i_blocks)
76 		ext2_truncate (inode);
77 	ext2_free_inode (inode);
78 
79 	unlock_kernel();
80 	return;
81 no_delete:
82 	unlock_kernel();
83 	clear_inode(inode);	/* We must guarantee clearing of inode... */
84 }
85 
ext2_discard_prealloc(struct inode * inode)86 void ext2_discard_prealloc (struct inode * inode)
87 {
88 #ifdef EXT2_PREALLOCATE
89 	lock_kernel();
90 	/* Writer: ->i_prealloc* */
91 	if (inode->u.ext2_i.i_prealloc_count) {
92 		unsigned short total = inode->u.ext2_i.i_prealloc_count;
93 		unsigned long block = inode->u.ext2_i.i_prealloc_block;
94 		inode->u.ext2_i.i_prealloc_count = 0;
95 		inode->u.ext2_i.i_prealloc_block = 0;
96 		/* Writer: end */
97 		ext2_free_blocks (inode, block, total);
98 	}
99 	unlock_kernel();
100 #endif
101 }
102 
ext2_alloc_block(struct inode * inode,unsigned long goal,int * err)103 static int ext2_alloc_block (struct inode * inode, unsigned long goal, int *err)
104 {
105 #ifdef EXT2FS_DEBUG
106 	static unsigned long alloc_hits = 0, alloc_attempts = 0;
107 #endif
108 	unsigned long result;
109 
110 
111 #ifdef EXT2_PREALLOCATE
112 	/* Writer: ->i_prealloc* */
113 	if (inode->u.ext2_i.i_prealloc_count &&
114 	    (goal == inode->u.ext2_i.i_prealloc_block ||
115 	     goal + 1 == inode->u.ext2_i.i_prealloc_block))
116 	{
117 		result = inode->u.ext2_i.i_prealloc_block++;
118 		inode->u.ext2_i.i_prealloc_count--;
119 		/* Writer: end */
120 		ext2_debug ("preallocation hit (%lu/%lu).\n",
121 			    ++alloc_hits, ++alloc_attempts);
122 	} else {
123 		ext2_discard_prealloc (inode);
124 		ext2_debug ("preallocation miss (%lu/%lu).\n",
125 			    alloc_hits, ++alloc_attempts);
126 		if (S_ISREG(inode->i_mode))
127 			result = ext2_new_block (inode, goal,
128 				 &inode->u.ext2_i.i_prealloc_count,
129 				 &inode->u.ext2_i.i_prealloc_block, err);
130 		else
131 			result = ext2_new_block (inode, goal, 0, 0, err);
132 	}
133 #else
134 	result = ext2_new_block (inode, goal, 0, 0, err);
135 #endif
136 	return result;
137 }
138 
139 typedef struct {
140 	u32	*p;
141 	u32	key;
142 	struct buffer_head *bh;
143 } Indirect;
144 
add_chain(Indirect * p,struct buffer_head * bh,u32 * v)145 static inline void add_chain(Indirect *p, struct buffer_head *bh, u32 *v)
146 {
147 	p->key = *(p->p = v);
148 	p->bh = bh;
149 }
150 
verify_chain(Indirect * from,Indirect * to)151 static inline int verify_chain(Indirect *from, Indirect *to)
152 {
153 	while (from <= to && from->key == *from->p)
154 		from++;
155 	return (from > to);
156 }
157 
158 /**
159  *	ext2_block_to_path - parse the block number into array of offsets
160  *	@inode: inode in question (we are only interested in its superblock)
161  *	@i_block: block number to be parsed
162  *	@offsets: array to store the offsets in
163  *
164  *	To store the locations of file's data ext2 uses a data structure common
165  *	for UNIX filesystems - tree of pointers anchored in the inode, with
166  *	data blocks at leaves and indirect blocks in intermediate nodes.
167  *	This function translates the block number into path in that tree -
168  *	return value is the path length and @offsets[n] is the offset of
169  *	pointer to (n+1)th node in the nth one. If @block is out of range
170  *	(negative or too large) warning is printed and zero returned.
171  *
172  *	Note: function doesn't find node addresses, so no IO is needed. All
173  *	we need to know is the capacity of indirect blocks (taken from the
174  *	inode->i_sb).
175  */
176 
177 /*
178  * Portability note: the last comparison (check that we fit into triple
179  * indirect block) is spelled differently, because otherwise on an
180  * architecture with 32-bit longs and 8Kb pages we might get into trouble
181  * if our filesystem had 8Kb blocks. We might use long long, but that would
182  * kill us on x86. Oh, well, at least the sign propagation does not matter -
183  * i_block would have to be negative in the very beginning, so we would not
184  * get there at all.
185  */
186 
ext2_block_to_path(struct inode * inode,long i_block,int offsets[4])187 static int ext2_block_to_path(struct inode *inode, long i_block, int offsets[4])
188 {
189 	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
190 	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
191 	const long direct_blocks = EXT2_NDIR_BLOCKS,
192 		indirect_blocks = ptrs,
193 		double_blocks = (1 << (ptrs_bits * 2));
194 	int n = 0;
195 
196 	if (i_block < 0) {
197 		ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0");
198 	} else if (i_block < direct_blocks) {
199 		offsets[n++] = i_block;
200 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
201 		offsets[n++] = EXT2_IND_BLOCK;
202 		offsets[n++] = i_block;
203 	} else if ((i_block -= indirect_blocks) < double_blocks) {
204 		offsets[n++] = EXT2_DIND_BLOCK;
205 		offsets[n++] = i_block >> ptrs_bits;
206 		offsets[n++] = i_block & (ptrs - 1);
207 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
208 		offsets[n++] = EXT2_TIND_BLOCK;
209 		offsets[n++] = i_block >> (ptrs_bits * 2);
210 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
211 		offsets[n++] = i_block & (ptrs - 1);
212 	} else {
213 		ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big");
214 	}
215 	return n;
216 }
217 
218 /**
219  *	ext2_get_branch - read the chain of indirect blocks leading to data
220  *	@inode: inode in question
221  *	@depth: depth of the chain (1 - direct pointer, etc.)
222  *	@offsets: offsets of pointers in inode/indirect blocks
223  *	@chain: place to store the result
224  *	@err: here we store the error value
225  *
226  *	Function fills the array of triples <key, p, bh> and returns %NULL
227  *	if everything went OK or the pointer to the last filled triple
228  *	(incomplete one) otherwise. Upon the return chain[i].key contains
229  *	the number of (i+1)-th block in the chain (as it is stored in memory,
230  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
231  *	number (it points into struct inode for i==0 and into the bh->b_data
232  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
233  *	block for i>0 and NULL for i==0. In other words, it holds the block
234  *	numbers of the chain, addresses they were taken from (and where we can
235  *	verify that chain did not change) and buffer_heads hosting these
236  *	numbers.
237  *
238  *	Function stops when it stumbles upon zero pointer (absent block)
239  *		(pointer to last triple returned, *@err == 0)
240  *	or when it gets an IO error reading an indirect block
241  *		(ditto, *@err == -EIO)
242  *	or when it notices that chain had been changed while it was reading
243  *		(ditto, *@err == -EAGAIN)
244  *	or when it reads all @depth-1 indirect blocks successfully and finds
245  *	the whole chain, all way to the data (returns %NULL, *err == 0).
246  */
ext2_get_branch(struct inode * inode,int depth,int * offsets,Indirect chain[4],int * err)247 static Indirect *ext2_get_branch(struct inode *inode,
248 				 int depth,
249 				 int *offsets,
250 				 Indirect chain[4],
251 				 int *err)
252 {
253 	struct super_block *sb = inode->i_sb;
254 	Indirect *p = chain;
255 	struct buffer_head *bh;
256 
257 	*err = 0;
258 	/* i_data is not going away, no lock needed */
259 	add_chain (chain, NULL, inode->u.ext2_i.i_data + *offsets);
260 	if (!p->key)
261 		goto no_block;
262 	while (--depth) {
263 		bh = sb_bread(sb, le32_to_cpu(p->key));
264 		if (!bh)
265 			goto failure;
266 		/* Reader: pointers */
267 		if (!verify_chain(chain, p))
268 			goto changed;
269 		add_chain(++p, bh, (u32*)bh->b_data + *++offsets);
270 		/* Reader: end */
271 		if (!p->key)
272 			goto no_block;
273 	}
274 	return NULL;
275 
276 changed:
277 	*err = -EAGAIN;
278 	goto no_block;
279 failure:
280 	*err = -EIO;
281 no_block:
282 	return p;
283 }
284 
285 /**
286  *	ext2_find_near - find a place for allocation with sufficient locality
287  *	@inode: owner
288  *	@ind: descriptor of indirect block.
289  *
290  *	This function returns the prefered place for block allocation.
291  *	It is used when heuristic for sequential allocation fails.
292  *	Rules are:
293  *	  + if there is a block to the left of our position - allocate near it.
294  *	  + if pointer will live in indirect block - allocate near that block.
295  *	  + if pointer will live in inode - allocate in the same cylinder group.
296  *	Caller must make sure that @ind is valid and will stay that way.
297  */
298 
ext2_find_near(struct inode * inode,Indirect * ind)299 static inline unsigned long ext2_find_near(struct inode *inode, Indirect *ind)
300 {
301 	u32 *start = ind->bh ? (u32*) ind->bh->b_data : inode->u.ext2_i.i_data;
302 	u32 *p;
303 
304 	/* Try to find previous block */
305 	for (p = ind->p - 1; p >= start; p--)
306 		if (*p)
307 			return le32_to_cpu(*p);
308 
309 	/* No such thing, so let's try location of indirect block */
310 	if (ind->bh)
311 		return ind->bh->b_blocknr;
312 
313 	/*
314 	 * It is going to be refered from inode itself? OK, just put it into
315 	 * the same cylinder group then.
316 	 */
317 	return (inode->u.ext2_i.i_block_group *
318 		EXT2_BLOCKS_PER_GROUP(inode->i_sb)) +
319 	       le32_to_cpu(inode->i_sb->u.ext2_sb.s_es->s_first_data_block);
320 }
321 
322 /**
323  *	ext2_find_goal - find a prefered place for allocation.
324  *	@inode: owner
325  *	@block:  block we want
326  *	@chain:  chain of indirect blocks
327  *	@partial: pointer to the last triple within a chain
328  *	@goal:	place to store the result.
329  *
330  *	Normally this function find the prefered place for block allocation,
331  *	stores it in *@goal and returns zero. If the branch had been changed
332  *	under us we return -EAGAIN.
333  */
334 
ext2_find_goal(struct inode * inode,long block,Indirect chain[4],Indirect * partial,unsigned long * goal)335 static inline int ext2_find_goal(struct inode *inode,
336 				 long block,
337 				 Indirect chain[4],
338 				 Indirect *partial,
339 				 unsigned long *goal)
340 {
341 	/* Writer: ->i_next_alloc* */
342 	if (block == inode->u.ext2_i.i_next_alloc_block + 1) {
343 		inode->u.ext2_i.i_next_alloc_block++;
344 		inode->u.ext2_i.i_next_alloc_goal++;
345 	}
346 	/* Writer: end */
347 	/* Reader: pointers, ->i_next_alloc* */
348 	if (verify_chain(chain, partial)) {
349 		/*
350 		 * try the heuristic for sequential allocation,
351 		 * failing that at least try to get decent locality.
352 		 */
353 		if (block == inode->u.ext2_i.i_next_alloc_block)
354 			*goal = inode->u.ext2_i.i_next_alloc_goal;
355 		if (!*goal)
356 			*goal = ext2_find_near(inode, partial);
357 		return 0;
358 	}
359 	/* Reader: end */
360 	return -EAGAIN;
361 }
362 
363 /**
364  *	ext2_alloc_branch - allocate and set up a chain of blocks.
365  *	@inode: owner
366  *	@num: depth of the chain (number of blocks to allocate)
367  *	@offsets: offsets (in the blocks) to store the pointers to next.
368  *	@branch: place to store the chain in.
369  *
370  *	This function allocates @num blocks, zeroes out all but the last one,
371  *	links them into chain and (if we are synchronous) writes them to disk.
372  *	In other words, it prepares a branch that can be spliced onto the
373  *	inode. It stores the information about that chain in the branch[], in
374  *	the same format as ext2_get_branch() would do. We are calling it after
375  *	we had read the existing part of chain and partial points to the last
376  *	triple of that (one with zero ->key). Upon the exit we have the same
377  *	picture as after the successful ext2_get_block(), excpet that in one
378  *	place chain is disconnected - *branch->p is still zero (we did not
379  *	set the last link), but branch->key contains the number that should
380  *	be placed into *branch->p to fill that gap.
381  *
382  *	If allocation fails we free all blocks we've allocated (and forget
383  *	their buffer_heads) and return the error value the from failed
384  *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
385  *	as described above and return 0.
386  */
387 
ext2_alloc_branch(struct inode * inode,int num,unsigned long goal,int * offsets,Indirect * branch)388 static int ext2_alloc_branch(struct inode *inode,
389 			     int num,
390 			     unsigned long goal,
391 			     int *offsets,
392 			     Indirect *branch)
393 {
394 	int blocksize = inode->i_sb->s_blocksize;
395 	int n = 0;
396 	int err;
397 	int i;
398 	int parent = ext2_alloc_block(inode, goal, &err);
399 
400 	branch[0].key = cpu_to_le32(parent);
401 	if (parent) for (n = 1; n < num; n++) {
402 		struct buffer_head *bh;
403 		/* Allocate the next block */
404 		int nr = ext2_alloc_block(inode, parent, &err);
405 		if (!nr)
406 			break;
407 		branch[n].key = cpu_to_le32(nr);
408 		/*
409 		 * Get buffer_head for parent block, zero it out and set
410 		 * the pointer to new one, then send parent to disk.
411 		 */
412 		bh = sb_getblk(inode->i_sb, parent);
413 		lock_buffer(bh);
414 		memset(bh->b_data, 0, blocksize);
415 		branch[n].bh = bh;
416 		branch[n].p = (u32*) bh->b_data + offsets[n];
417 		*branch[n].p = branch[n].key;
418 		mark_buffer_uptodate(bh, 1);
419 		unlock_buffer(bh);
420 		mark_buffer_dirty_inode(bh, inode);
421 		/* We used to sync bh here if IS_SYNC(inode).
422 		 * But for S_ISREG files we now rely upon generic_osync_inode()
423 		 * and b_inode_buffers
424 		 */
425 		if (S_ISDIR(inode->i_mode) && IS_SYNC(inode)) {
426 			ll_rw_block (WRITE, 1, &bh);
427 			wait_on_buffer (bh);
428 		}
429 		parent = nr;
430 	}
431 	if (n == num)
432 		return 0;
433 
434 	/* Allocation failed, free what we already allocated */
435 	for (i = 1; i < n; i++)
436 		bforget(branch[i].bh);
437 	for (i = 0; i < n; i++)
438 		ext2_free_blocks(inode, le32_to_cpu(branch[i].key), 1);
439 	return err;
440 }
441 
442 /**
443  *	ext2_splice_branch - splice the allocated branch onto inode.
444  *	@inode: owner
445  *	@block: (logical) number of block we are adding
446  *	@chain: chain of indirect blocks (with a missing link - see
447  *		ext2_alloc_branch)
448  *	@where: location of missing link
449  *	@num:   number of blocks we are adding
450  *
451  *	This function verifies that chain (up to the missing link) had not
452  *	changed, fills the missing link and does all housekeeping needed in
453  *	inode (->i_blocks, etc.). In case of success we end up with the full
454  *	chain to new block and return 0. Otherwise (== chain had been changed)
455  *	we free the new blocks (forgetting their buffer_heads, indeed) and
456  *	return -EAGAIN.
457  */
458 
ext2_splice_branch(struct inode * inode,long block,Indirect chain[4],Indirect * where,int num)459 static inline int ext2_splice_branch(struct inode *inode,
460 				     long block,
461 				     Indirect chain[4],
462 				     Indirect *where,
463 				     int num)
464 {
465 	int i;
466 
467 	/* Verify that place we are splicing to is still there and vacant */
468 
469 	/* Writer: pointers, ->i_next_alloc* */
470 	if (!verify_chain(chain, where-1) || *where->p)
471 		/* Writer: end */
472 		goto changed;
473 
474 	/* That's it */
475 
476 	*where->p = where->key;
477 	inode->u.ext2_i.i_next_alloc_block = block;
478 	inode->u.ext2_i.i_next_alloc_goal = le32_to_cpu(where[num-1].key);
479 
480 	/* Writer: end */
481 
482 	/* We are done with atomic stuff, now do the rest of housekeeping */
483 
484 	inode->i_ctime = CURRENT_TIME;
485 
486 	/* had we spliced it onto indirect block? */
487 	if (where->bh) {
488 		mark_buffer_dirty_inode(where->bh, inode);
489 		if (S_ISDIR(inode->i_mode) && IS_SYNC(inode)) {
490 			ll_rw_block(WRITE, 1, &where->bh);
491 			wait_on_buffer(where->bh);
492 		}
493 	}
494 
495 	mark_inode_dirty(inode);
496 	return 0;
497 
498 changed:
499 	for (i = 1; i < num; i++)
500 		bforget(where[i].bh);
501 	for (i = 0; i < num; i++)
502 		ext2_free_blocks(inode, le32_to_cpu(where[i].key), 1);
503 	return -EAGAIN;
504 }
505 
506 /*
507  * Allocation strategy is simple: if we have to allocate something, we will
508  * have to go the whole way to leaf. So let's do it before attaching anything
509  * to tree, set linkage between the newborn blocks, write them if sync is
510  * required, recheck the path, free and repeat if check fails, otherwise
511  * set the last missing link (that will protect us from any truncate-generated
512  * removals - all blocks on the path are immune now) and possibly force the
513  * write on the parent block.
514  * That has a nice additional property: no special recovery from the failed
515  * allocations is needed - we simply release blocks and do not touch anything
516  * reachable from inode.
517  */
518 
ext2_get_block(struct inode * inode,long iblock,struct buffer_head * bh_result,int create)519 static int ext2_get_block(struct inode *inode, long iblock, struct buffer_head *bh_result, int create)
520 {
521 	int err = -EIO;
522 	int offsets[4];
523 	Indirect chain[4];
524 	Indirect *partial;
525 	unsigned long goal;
526 	int left;
527 	int depth = ext2_block_to_path(inode, iblock, offsets);
528 
529 	if (depth == 0)
530 		goto out;
531 
532 	lock_kernel();
533 reread:
534 	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
535 
536 	/* Simplest case - block found, no allocation needed */
537 	if (!partial) {
538 got_it:
539 		bh_result->b_dev = inode->i_dev;
540 		bh_result->b_blocknr = le32_to_cpu(chain[depth-1].key);
541 		bh_result->b_state |= (1UL << BH_Mapped);
542 		/* Clean up and exit */
543 		partial = chain+depth-1; /* the whole chain */
544 		goto cleanup;
545 	}
546 
547 	/* Next simple case - plain lookup or failed read of indirect block */
548 	if (!create || err == -EIO) {
549 cleanup:
550 		while (partial > chain) {
551 			brelse(partial->bh);
552 			partial--;
553 		}
554 		unlock_kernel();
555 out:
556 		return err;
557 	}
558 
559 	/*
560 	 * Indirect block might be removed by truncate while we were
561 	 * reading it. Handling of that case (forget what we've got and
562 	 * reread) is taken out of the main path.
563 	 */
564 	if (err == -EAGAIN)
565 		goto changed;
566 
567 	goal = 0;
568 	if (ext2_find_goal(inode, iblock, chain, partial, &goal) < 0)
569 		goto changed;
570 
571 	left = (chain + depth) - partial;
572 	err = ext2_alloc_branch(inode, left, goal,
573 					offsets+(partial-chain), partial);
574 	if (err)
575 		goto cleanup;
576 
577 	if (ext2_splice_branch(inode, iblock, chain, partial, left) < 0)
578 		goto changed;
579 
580 	bh_result->b_state |= (1UL << BH_New);
581 	goto got_it;
582 
583 changed:
584 	while (partial > chain) {
585 		brelse(partial->bh);
586 		partial--;
587 	}
588 	goto reread;
589 }
590 
ext2_writepage(struct page * page)591 static int ext2_writepage(struct page *page)
592 {
593 	return block_write_full_page(page,ext2_get_block);
594 }
ext2_readpage(struct file * file,struct page * page)595 static int ext2_readpage(struct file *file, struct page *page)
596 {
597 	return block_read_full_page(page,ext2_get_block);
598 }
ext2_prepare_write(struct file * file,struct page * page,unsigned from,unsigned to)599 static int ext2_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to)
600 {
601 	return block_prepare_write(page,from,to,ext2_get_block);
602 }
ext2_bmap(struct address_space * mapping,long block)603 static int ext2_bmap(struct address_space *mapping, long block)
604 {
605 	return generic_block_bmap(mapping,block,ext2_get_block);
606 }
ext2_direct_IO(int rw,struct inode * inode,struct kiobuf * iobuf,unsigned long blocknr,int blocksize)607 static int ext2_direct_IO(int rw, struct inode * inode, struct kiobuf * iobuf, unsigned long blocknr, int blocksize)
608 {
609 	return generic_direct_IO(rw, inode, iobuf, blocknr, blocksize, ext2_get_block);
610 }
611 struct address_space_operations ext2_aops = {
612 	readpage: ext2_readpage,
613 	writepage: ext2_writepage,
614 	sync_page: block_sync_page,
615 	prepare_write: ext2_prepare_write,
616 	commit_write: generic_commit_write,
617 	bmap: ext2_bmap,
618 	direct_IO: ext2_direct_IO,
619 };
620 
621 /*
622  * Probably it should be a library function... search for first non-zero word
623  * or memcmp with zero_page, whatever is better for particular architecture.
624  * Linus?
625  */
all_zeroes(u32 * p,u32 * q)626 static inline int all_zeroes(u32 *p, u32 *q)
627 {
628 	while (p < q)
629 		if (*p++)
630 			return 0;
631 	return 1;
632 }
633 
634 /**
635  *	ext2_find_shared - find the indirect blocks for partial truncation.
636  *	@inode:	  inode in question
637  *	@depth:	  depth of the affected branch
638  *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
639  *	@chain:	  place to store the pointers to partial indirect blocks
640  *	@top:	  place to the (detached) top of branch
641  *
642  *	This is a helper function used by ext2_truncate().
643  *
644  *	When we do truncate() we may have to clean the ends of several indirect
645  *	blocks but leave the blocks themselves alive. Block is partially
646  *	truncated if some data below the new i_size is refered from it (and
647  *	it is on the path to the first completely truncated data block, indeed).
648  *	We have to free the top of that path along with everything to the right
649  *	of the path. Since no allocation past the truncation point is possible
650  *	until ext2_truncate() finishes, we may safely do the latter, but top
651  *	of branch may require special attention - pageout below the truncation
652  *	point might try to populate it.
653  *
654  *	We atomically detach the top of branch from the tree, store the block
655  *	number of its root in *@top, pointers to buffer_heads of partially
656  *	truncated blocks - in @chain[].bh and pointers to their last elements
657  *	that should not be removed - in @chain[].p. Return value is the pointer
658  *	to last filled element of @chain.
659  *
660  *	The work left to caller to do the actual freeing of subtrees:
661  *		a) free the subtree starting from *@top
662  *		b) free the subtrees whose roots are stored in
663  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
664  *		c) free the subtrees growing from the inode past the @chain[0].p
665  *			(no partially truncated stuff there).
666  */
667 
ext2_find_shared(struct inode * inode,int depth,int offsets[4],Indirect chain[4],u32 * top)668 static Indirect *ext2_find_shared(struct inode *inode,
669 				int depth,
670 				int offsets[4],
671 				Indirect chain[4],
672 				u32 *top)
673 {
674 	Indirect *partial, *p;
675 	int k, err;
676 
677 	*top = 0;
678 	for (k = depth; k > 1 && !offsets[k-1]; k--)
679 		;
680 	partial = ext2_get_branch(inode, k, offsets, chain, &err);
681 	/* Writer: pointers */
682 	if (!partial)
683 		partial = chain + k-1;
684 	/*
685 	 * If the branch acquired continuation since we've looked at it -
686 	 * fine, it should all survive and (new) top doesn't belong to us.
687 	 */
688 	if (!partial->key && *partial->p)
689 		/* Writer: end */
690 		goto no_top;
691 	for (p=partial; p>chain && all_zeroes((u32*)p->bh->b_data,p->p); p--)
692 		;
693 	/*
694 	 * OK, we've found the last block that must survive. The rest of our
695 	 * branch should be detached before unlocking. However, if that rest
696 	 * of branch is all ours and does not grow immediately from the inode
697 	 * it's easier to cheat and just decrement partial->p.
698 	 */
699 	if (p == chain + k - 1 && p > chain) {
700 		p->p--;
701 	} else {
702 		*top = *p->p;
703 		*p->p = 0;
704 	}
705 	/* Writer: end */
706 
707 	while(partial > p)
708 	{
709 		brelse(partial->bh);
710 		partial--;
711 	}
712 no_top:
713 	return partial;
714 }
715 
716 /**
717  *	ext2_free_data - free a list of data blocks
718  *	@inode:	inode we are dealing with
719  *	@p:	array of block numbers
720  *	@q:	points immediately past the end of array
721  *
722  *	We are freeing all blocks refered from that array (numbers are
723  *	stored as little-endian 32-bit) and updating @inode->i_blocks
724  *	appropriately.
725  */
ext2_free_data(struct inode * inode,u32 * p,u32 * q)726 static inline void ext2_free_data(struct inode *inode, u32 *p, u32 *q)
727 {
728 	unsigned long block_to_free = 0, count = 0;
729 	unsigned long nr;
730 
731 	for ( ; p < q ; p++) {
732 		nr = le32_to_cpu(*p);
733 		if (nr) {
734 			*p = 0;
735 			/* accumulate blocks to free if they're contiguous */
736 			if (count == 0)
737 				goto free_this;
738 			else if (block_to_free == nr - count)
739 				count++;
740 			else {
741 				mark_inode_dirty(inode);
742 				ext2_free_blocks (inode, block_to_free, count);
743 			free_this:
744 				block_to_free = nr;
745 				count = 1;
746 			}
747 		}
748 	}
749 	if (count > 0) {
750 		mark_inode_dirty(inode);
751 		ext2_free_blocks (inode, block_to_free, count);
752 	}
753 }
754 
755 /**
756  *	ext2_free_branches - free an array of branches
757  *	@inode:	inode we are dealing with
758  *	@p:	array of block numbers
759  *	@q:	pointer immediately past the end of array
760  *	@depth:	depth of the branches to free
761  *
762  *	We are freeing all blocks refered from these branches (numbers are
763  *	stored as little-endian 32-bit) and updating @inode->i_blocks
764  *	appropriately.
765  */
ext2_free_branches(struct inode * inode,u32 * p,u32 * q,int depth)766 static void ext2_free_branches(struct inode *inode, u32 *p, u32 *q, int depth)
767 {
768 	struct buffer_head * bh;
769 	unsigned long nr;
770 
771 	if (depth--) {
772 		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
773 		for ( ; p < q ; p++) {
774 			nr = le32_to_cpu(*p);
775 			if (!nr)
776 				continue;
777 			*p = 0;
778 			bh = sb_bread(inode->i_sb, nr);
779 			/*
780 			 * A read failure? Report error and clear slot
781 			 * (should be rare).
782 			 */
783 			if (!bh) {
784 				ext2_error(inode->i_sb, "ext2_free_branches",
785 					"Read failure, inode=%ld, block=%ld",
786 					inode->i_ino, nr);
787 				continue;
788 			}
789 			ext2_free_branches(inode,
790 					   (u32*)bh->b_data,
791 					   (u32*)bh->b_data + addr_per_block,
792 					   depth);
793 			bforget(bh);
794 			ext2_free_blocks(inode, nr, 1);
795 			mark_inode_dirty(inode);
796 		}
797 	} else
798 		ext2_free_data(inode, p, q);
799 }
800 
ext2_truncate(struct inode * inode)801 void ext2_truncate (struct inode * inode)
802 {
803 	u32 *i_data = inode->u.ext2_i.i_data;
804 	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
805 	int offsets[4];
806 	Indirect chain[4];
807 	Indirect *partial;
808 	int nr = 0;
809 	int n;
810 	long iblock;
811 	unsigned blocksize;
812 
813 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
814 	    S_ISLNK(inode->i_mode)))
815 		return;
816 	if (ext2_inode_is_fast_symlink(inode))
817 		return;
818 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
819 		return;
820 
821 	ext2_discard_prealloc(inode);
822 
823 	blocksize = inode->i_sb->s_blocksize;
824 	iblock = (inode->i_size + blocksize-1)
825 					>> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
826 
827 	block_truncate_page(inode->i_mapping, inode->i_size, ext2_get_block);
828 
829 	n = ext2_block_to_path(inode, iblock, offsets);
830 	if (n == 0)
831 		return;
832 
833 	if (n == 1) {
834 		ext2_free_data(inode, i_data+offsets[0],
835 					i_data + EXT2_NDIR_BLOCKS);
836 		goto do_indirects;
837 	}
838 
839 	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
840 	/* Kill the top of shared branch (already detached) */
841 	if (nr) {
842 		if (partial == chain)
843 			mark_inode_dirty(inode);
844 		else
845 			mark_buffer_dirty_inode(partial->bh, inode);
846 		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
847 	}
848 	/* Clear the ends of indirect blocks on the shared branch */
849 	while (partial > chain) {
850 		ext2_free_branches(inode,
851 				   partial->p + 1,
852 				   (u32*)partial->bh->b_data + addr_per_block,
853 				   (chain+n-1) - partial);
854 		mark_buffer_dirty_inode(partial->bh, inode);
855 		brelse (partial->bh);
856 		partial--;
857 	}
858 do_indirects:
859 	/* Kill the remaining (whole) subtrees */
860 	switch (offsets[0]) {
861 		default:
862 			nr = i_data[EXT2_IND_BLOCK];
863 			if (nr) {
864 				i_data[EXT2_IND_BLOCK] = 0;
865 				mark_inode_dirty(inode);
866 				ext2_free_branches(inode, &nr, &nr+1, 1);
867 			}
868 		case EXT2_IND_BLOCK:
869 			nr = i_data[EXT2_DIND_BLOCK];
870 			if (nr) {
871 				i_data[EXT2_DIND_BLOCK] = 0;
872 				mark_inode_dirty(inode);
873 				ext2_free_branches(inode, &nr, &nr+1, 2);
874 			}
875 		case EXT2_DIND_BLOCK:
876 			nr = i_data[EXT2_TIND_BLOCK];
877 			if (nr) {
878 				i_data[EXT2_TIND_BLOCK] = 0;
879 				mark_inode_dirty(inode);
880 				ext2_free_branches(inode, &nr, &nr+1, 3);
881 			}
882 		case EXT2_TIND_BLOCK:
883 			;
884 	}
885 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
886 	if (IS_SYNC(inode)) {
887 		fsync_inode_buffers(inode);
888 		ext2_sync_inode (inode);
889 	} else {
890 		mark_inode_dirty(inode);
891 	}
892 }
893 
ext2_set_inode_flags(struct inode * inode)894 void ext2_set_inode_flags(struct inode *inode)
895 {
896 	unsigned int flags = inode->u.ext2_i.i_flags;
897 
898 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME);
899 	if (flags & EXT2_SYNC_FL)
900 		inode->i_flags |= S_SYNC;
901 	if (flags & EXT2_APPEND_FL)
902 		inode->i_flags |= S_APPEND;
903 	if (flags & EXT2_IMMUTABLE_FL)
904 		inode->i_flags |= S_IMMUTABLE;
905 	if (flags & EXT2_NOATIME_FL)
906 		inode->i_flags |= S_NOATIME;
907 }
908 
ext2_read_inode(struct inode * inode)909 void ext2_read_inode (struct inode * inode)
910 {
911 	struct buffer_head * bh;
912 	struct ext2_inode * raw_inode;
913 	unsigned long block_group;
914 	unsigned long group_desc;
915 	unsigned long desc;
916 	unsigned long block;
917 	unsigned long offset;
918 	struct ext2_group_desc * gdp;
919 
920 	if ((inode->i_ino != EXT2_ROOT_INO && inode->i_ino != EXT2_ACL_IDX_INO &&
921 	     inode->i_ino != EXT2_ACL_DATA_INO &&
922 	     inode->i_ino < EXT2_FIRST_INO(inode->i_sb)) ||
923 	    inode->i_ino > le32_to_cpu(inode->i_sb->u.ext2_sb.s_es->s_inodes_count)) {
924 		ext2_error (inode->i_sb, "ext2_read_inode",
925 			    "bad inode number: %lu", inode->i_ino);
926 		goto bad_inode;
927 	}
928 	block_group = (inode->i_ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
929 	if (block_group >= inode->i_sb->u.ext2_sb.s_groups_count) {
930 		ext2_error (inode->i_sb, "ext2_read_inode",
931 			    "group >= groups count");
932 		goto bad_inode;
933 	}
934 	group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(inode->i_sb);
935 	desc = block_group & (EXT2_DESC_PER_BLOCK(inode->i_sb) - 1);
936 	bh = inode->i_sb->u.ext2_sb.s_group_desc[group_desc];
937 	if (!bh) {
938 		ext2_error (inode->i_sb, "ext2_read_inode",
939 			    "Descriptor not loaded");
940 		goto bad_inode;
941 	}
942 
943 	gdp = (struct ext2_group_desc *) bh->b_data;
944 	/*
945 	 * Figure out the offset within the block group inode table
946 	 */
947 	offset = ((inode->i_ino - 1) % EXT2_INODES_PER_GROUP(inode->i_sb)) *
948 		EXT2_INODE_SIZE(inode->i_sb);
949 	block = le32_to_cpu(gdp[desc].bg_inode_table) +
950 		(offset >> EXT2_BLOCK_SIZE_BITS(inode->i_sb));
951 	if (!(bh = sb_bread(inode->i_sb, block))) {
952 		ext2_error (inode->i_sb, "ext2_read_inode",
953 			    "unable to read inode block - "
954 			    "inode=%lu, block=%lu", inode->i_ino, block);
955 		goto bad_inode;
956 	}
957 	offset &= (EXT2_BLOCK_SIZE(inode->i_sb) - 1);
958 	raw_inode = (struct ext2_inode *) (bh->b_data + offset);
959 
960 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
961 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
962 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
963 	if(!(test_opt (inode->i_sb, NO_UID32))) {
964 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
965 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
966 	}
967 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
968 	inode->i_size = le32_to_cpu(raw_inode->i_size);
969 	inode->i_atime = le32_to_cpu(raw_inode->i_atime);
970 	inode->i_ctime = le32_to_cpu(raw_inode->i_ctime);
971 	inode->i_mtime = le32_to_cpu(raw_inode->i_mtime);
972 	inode->u.ext2_i.i_dtime = le32_to_cpu(raw_inode->i_dtime);
973 	/* We now have enough fields to check if the inode was active or not.
974 	 * This is needed because nfsd might try to access dead inodes
975 	 * the test is that same one that e2fsck uses
976 	 * NeilBrown 1999oct15
977 	 */
978 	if (inode->i_nlink == 0 && (inode->i_mode == 0 || inode->u.ext2_i.i_dtime)) {
979 		/* this inode is deleted */
980 		brelse (bh);
981 		goto bad_inode;
982 	}
983 	inode->i_blksize = PAGE_SIZE;	/* This is the optimal IO size (for stat), not the fs block size */
984 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
985 	inode->i_version = ++event;
986 	inode->u.ext2_i.i_flags = le32_to_cpu(raw_inode->i_flags);
987 	inode->u.ext2_i.i_faddr = le32_to_cpu(raw_inode->i_faddr);
988 	inode->u.ext2_i.i_frag_no = raw_inode->i_frag;
989 	inode->u.ext2_i.i_frag_size = raw_inode->i_fsize;
990 	inode->u.ext2_i.i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
991 	if (S_ISREG(inode->i_mode))
992 		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
993 	else
994 		inode->u.ext2_i.i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
995 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
996  	inode->u.ext2_i.i_state = 0;
997 	inode->u.ext2_i.i_prealloc_count = 0;
998 	inode->u.ext2_i.i_block_group = block_group;
999 
1000 	/*
1001 	 * NOTE! The in-memory inode i_data array is in little-endian order
1002 	 * even on big-endian machines: we do NOT byteswap the block numbers!
1003 	 */
1004 	for (block = 0; block < EXT2_N_BLOCKS; block++)
1005 		inode->u.ext2_i.i_data[block] = raw_inode->i_block[block];
1006 
1007 	if (inode->i_ino == EXT2_ACL_IDX_INO ||
1008 	    inode->i_ino == EXT2_ACL_DATA_INO)
1009 		/* Nothing to do */ ;
1010 	else if (S_ISREG(inode->i_mode)) {
1011 		inode->i_op = &ext2_file_inode_operations;
1012 		inode->i_fop = &ext2_file_operations;
1013 		inode->i_mapping->a_ops = &ext2_aops;
1014 	} else if (S_ISDIR(inode->i_mode)) {
1015 		inode->i_op = &ext2_dir_inode_operations;
1016 		inode->i_fop = &ext2_dir_operations;
1017 		inode->i_mapping->a_ops = &ext2_aops;
1018 	} else if (S_ISLNK(inode->i_mode)) {
1019 		if (ext2_inode_is_fast_symlink(inode))
1020 			inode->i_op = &ext2_fast_symlink_inode_operations;
1021 		else {
1022 			inode->i_op = &page_symlink_inode_operations;
1023 			inode->i_mapping->a_ops = &ext2_aops;
1024 		}
1025 	} else
1026 		init_special_inode(inode, inode->i_mode,
1027 				   le32_to_cpu(raw_inode->i_block[0]));
1028 	brelse (bh);
1029 	inode->i_attr_flags = 0;
1030 	ext2_set_inode_flags(inode);
1031 	return;
1032 
1033 bad_inode:
1034 	make_bad_inode(inode);
1035 	return;
1036 }
1037 
ext2_update_inode(struct inode * inode,int do_sync)1038 static int ext2_update_inode(struct inode * inode, int do_sync)
1039 {
1040 	struct buffer_head * bh;
1041 	struct ext2_inode * raw_inode;
1042 	unsigned long block_group;
1043 	unsigned long group_desc;
1044 	unsigned long desc;
1045 	unsigned long block;
1046 	unsigned long offset;
1047 	int err = 0;
1048 	struct ext2_group_desc * gdp;
1049 
1050 	if ((inode->i_ino != EXT2_ROOT_INO &&
1051 	     inode->i_ino < EXT2_FIRST_INO(inode->i_sb)) ||
1052 	    inode->i_ino > le32_to_cpu(inode->i_sb->u.ext2_sb.s_es->s_inodes_count)) {
1053 		ext2_error (inode->i_sb, "ext2_write_inode",
1054 			    "bad inode number: %lu", inode->i_ino);
1055 		return -EIO;
1056 	}
1057 	block_group = (inode->i_ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1058 	if (block_group >= inode->i_sb->u.ext2_sb.s_groups_count) {
1059 		ext2_error (inode->i_sb, "ext2_write_inode",
1060 			    "group >= groups count");
1061 		return -EIO;
1062 	}
1063 	group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(inode->i_sb);
1064 	desc = block_group & (EXT2_DESC_PER_BLOCK(inode->i_sb) - 1);
1065 	bh = inode->i_sb->u.ext2_sb.s_group_desc[group_desc];
1066 	if (!bh) {
1067 		ext2_error (inode->i_sb, "ext2_write_inode",
1068 			    "Descriptor not loaded");
1069 		return -EIO;
1070 	}
1071 	gdp = (struct ext2_group_desc *) bh->b_data;
1072 	/*
1073 	 * Figure out the offset within the block group inode table
1074 	 */
1075 	offset = ((inode->i_ino - 1) % EXT2_INODES_PER_GROUP(inode->i_sb)) *
1076 		EXT2_INODE_SIZE(inode->i_sb);
1077 	block = le32_to_cpu(gdp[desc].bg_inode_table) +
1078 		(offset >> EXT2_BLOCK_SIZE_BITS(inode->i_sb));
1079 	if (!(bh = sb_bread(inode->i_sb, block))) {
1080 		ext2_error (inode->i_sb, "ext2_write_inode",
1081 			    "unable to read inode block - "
1082 			    "inode=%lu, block=%lu", inode->i_ino, block);
1083 		return -EIO;
1084 	}
1085 	offset &= EXT2_BLOCK_SIZE(inode->i_sb) - 1;
1086 	raw_inode = (struct ext2_inode *) (bh->b_data + offset);
1087 
1088 	/* For fields not tracked in the in-memory inode,
1089 	 * initialise them to zero for new inodes. */
1090 	if (inode->u.ext2_i.i_state & EXT2_STATE_NEW)
1091 		memset(raw_inode, 0, EXT2_SB(inode->i_sb)->s_inode_size);
1092 
1093 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1094 	if(!(test_opt(inode->i_sb, NO_UID32))) {
1095 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
1096 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
1097 /*
1098  * Fix up interoperability with old kernels. Otherwise, old inodes get
1099  * re-used with the upper 16 bits of the uid/gid intact
1100  */
1101 		if(!inode->u.ext2_i.i_dtime) {
1102 			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(inode->i_uid));
1103 			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(inode->i_gid));
1104 		} else {
1105 			raw_inode->i_uid_high = 0;
1106 			raw_inode->i_gid_high = 0;
1107 		}
1108 	} else {
1109 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(inode->i_uid));
1110 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(inode->i_gid));
1111 		raw_inode->i_uid_high = 0;
1112 		raw_inode->i_gid_high = 0;
1113 	}
1114 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1115 	raw_inode->i_size = cpu_to_le32(inode->i_size);
1116 	raw_inode->i_atime = cpu_to_le32(inode->i_atime);
1117 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime);
1118 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime);
1119 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1120 	raw_inode->i_dtime = cpu_to_le32(inode->u.ext2_i.i_dtime);
1121 	raw_inode->i_flags = cpu_to_le32(inode->u.ext2_i.i_flags);
1122 	raw_inode->i_faddr = cpu_to_le32(inode->u.ext2_i.i_faddr);
1123 	raw_inode->i_frag = inode->u.ext2_i.i_frag_no;
1124 	raw_inode->i_fsize = inode->u.ext2_i.i_frag_size;
1125 	raw_inode->i_file_acl = cpu_to_le32(inode->u.ext2_i.i_file_acl);
1126 	if (!S_ISREG(inode->i_mode))
1127 		raw_inode->i_dir_acl = cpu_to_le32(inode->u.ext2_i.i_dir_acl);
1128 	else {
1129 		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1130 		if (inode->i_size > 0x7fffffffULL) {
1131 			struct super_block *sb = inode->i_sb;
1132 			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1133 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1134 			    EXT2_SB(sb)->s_es->s_rev_level ==
1135 					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1136 			       /* If this is the first large file
1137 				* created, add a flag to the superblock.
1138 				*/
1139 				lock_kernel();
1140 				ext2_update_dynamic_rev(sb);
1141 				EXT2_SET_RO_COMPAT_FEATURE(sb,
1142 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1143 				unlock_kernel();
1144 				ext2_write_super(sb);
1145 			}
1146 		}
1147 	}
1148 
1149 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1150 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1151 		raw_inode->i_block[0] = cpu_to_le32(kdev_t_to_nr(inode->i_rdev));
1152 	else for (block = 0; block < EXT2_N_BLOCKS; block++)
1153 		raw_inode->i_block[block] = inode->u.ext2_i.i_data[block];
1154 	mark_buffer_dirty(bh);
1155 	if (do_sync) {
1156 		ll_rw_block (WRITE, 1, &bh);
1157 		wait_on_buffer (bh);
1158 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1159 			printk ("IO error syncing ext2 inode ["
1160 				"%s:%08lx]\n",
1161 				bdevname(inode->i_dev), inode->i_ino);
1162 			err = -EIO;
1163 		}
1164 	}
1165 	inode->u.ext2_i.i_state &= ~EXT2_STATE_NEW;
1166 	brelse (bh);
1167 	return err;
1168 }
1169 
ext2_write_inode(struct inode * inode,int wait)1170 void ext2_write_inode (struct inode * inode, int wait)
1171 {
1172 	lock_kernel();
1173 	ext2_update_inode (inode, wait);
1174 	unlock_kernel();
1175 }
1176 
ext2_sync_inode(struct inode * inode)1177 int ext2_sync_inode (struct inode *inode)
1178 {
1179 	return ext2_update_inode (inode, 1);
1180 }
1181