1 /*
2  * Sound driver for Silicon Graphics 320 and 540 Visual Workstations'
3  * onboard audio.  See notes in ../../Documentation/sound/vwsnd .
4  *
5  * Copyright 1999 Silicon Graphics, Inc.  All rights reserved.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #undef VWSND_DEBUG			/* define for debugging */
23 
24 /*
25  * XXX to do -
26  *
27  *	External sync.
28  *	Rename swbuf, hwbuf, u&i, hwptr&swptr to something rational.
29  *	Bug - if select() called before read(), pcm_setup() not called.
30  *	Bug - output doesn't stop soon enough if process killed.
31  */
32 
33 /*
34  * Things to test -
35  *
36  *	Will readv/writev work?  Write a test.
37  *
38  *	insmod/rmmod 100 million times.
39  *
40  *	Run I/O until int ptrs wrap around (roughly 6.2 hours @ DAT
41  *	rate).
42  *
43  *	Concurrent threads banging on mixer simultaneously, both UP
44  *	and SMP kernels.  Especially, watch for thread A changing
45  *	OUTSRC while thread B changes gain -- both write to the same
46  *	ad1843 register.
47  *
48  *	What happens if a client opens /dev/audio then forks?
49  *	Do two procs have /dev/audio open?  Test.
50  *
51  *	Pump audio through the CD, MIC and line inputs and verify that
52  *	they mix/mute into the output.
53  *
54  *	Apps:
55  *		amp
56  *		mpg123
57  *		x11amp
58  *		mxv
59  *		kmedia
60  *		esound
61  *		need more input apps
62  *
63  *	Run tests while bombarding with signals.  setitimer(2) will do it...  */
64 
65 /*
66  * This driver is organized in nine sections.
67  * The nine sections are:
68  *
69  *	debug stuff
70  * 	low level lithium access
71  *	high level lithium access
72  *	AD1843 access
73  *	PCM I/O
74  *	audio driver
75  *	mixer driver
76  *	probe/attach/unload
77  *	initialization and loadable kernel module interface
78  *
79  * That is roughly the order of increasing abstraction, so forward
80  * dependencies are minimal.
81  */
82 
83 /*
84  * Locking Notes
85  *
86  *	INC_USE_COUNT and DEC_USE_COUNT keep track of the number of
87  *	open descriptors to this driver. They store it in vwsnd_use_count.
88  * 	The global device list, vwsnd_dev_list,	is immutable when the IN_USE
89  *	is true.
90  *
91  *	devc->open_lock is a semaphore that is used to enforce the
92  *	single reader/single writer rule for /dev/audio.  The rule is
93  *	that each device may have at most one reader and one writer.
94  *	Open will block until the previous client has closed the
95  *	device, unless O_NONBLOCK is specified.
96  *
97  *	The semaphore devc->io_sema serializes PCM I/O syscalls.  This
98  *	is unnecessary in Linux 2.2, because the kernel lock
99  *	serializes read, write, and ioctl globally, but it's there,
100  *	ready for the brave, new post-kernel-lock world.
101  *
102  *	Locking between interrupt and baselevel is handled by the
103  *	"lock" spinlock in vwsnd_port (one lock each for read and
104  *	write).  Each half holds the lock just long enough to see what
105  *	area it owns and update its pointers.  See pcm_output() and
106  *	pcm_input() for most of the gory stuff.
107  *
108  *	devc->mix_sema serializes all mixer ioctls.  This is also
109  *	redundant because of the kernel lock.
110  *
111  *	The lowest level lock is lith->lithium_lock.  It is a
112  *	spinlock which is held during the two-register tango of
113  *	reading/writing an AD1843 register.  See
114  *	li_{read,write}_ad1843_reg().
115  */
116 
117 /*
118  * Sample Format Notes
119  *
120  *	Lithium's DMA engine has two formats: 16-bit 2's complement
121  *	and 8-bit unsigned .  16-bit transfers the data unmodified, 2
122  *	bytes per sample.  8-bit unsigned transfers 1 byte per sample
123  *	and XORs each byte with 0x80.  Lithium can input or output
124  *	either mono or stereo in either format.
125  *
126  *	The AD1843 has four formats: 16-bit 2's complement, 8-bit
127  *	unsigned, 8-bit mu-Law and 8-bit A-Law.
128  *
129  *	This driver supports five formats: AFMT_S8, AFMT_U8,
130  *	AFMT_MU_LAW, AFMT_A_LAW, and AFMT_S16_LE.
131  *
132  *	For AFMT_U8 output, we keep the AD1843 in 16-bit mode, and
133  *	rely on Lithium's XOR to translate between U8 and S8.
134  *
135  *	For AFMT_S8, AFMT_MU_LAW and AFMT_A_LAW output, we have to XOR
136  *	the 0x80 bit in software to compensate for Lithium's XOR.
137  *	This happens in pcm_copy_{in,out}().
138  *
139  * Changes:
140  * 11-10-2000	Bartlomiej Zolnierkiewicz <bkz@linux-ide.org>
141  *		Added some __init/__exit
142  */
143 
144 #include <linux/module.h>
145 #include <linux/init.h>
146 
147 #include <linux/sched.h>
148 #include <linux/semaphore.h>
149 #include <linux/stddef.h>
150 #include <linux/spinlock.h>
151 #include <linux/smp_lock.h>
152 #include <asm/fixmap.h>
153 #include <asm/cobalt.h>
154 #include <asm/semaphore.h>
155 
156 #include "sound_config.h"
157 
158 /*****************************************************************************/
159 /* debug stuff */
160 
161 #ifdef VWSND_DEBUG
162 
163 #include <linux/interrupt.h>		/* for in_interrupt() */
164 
165 static int shut_up = 1;
166 
167 /*
168  * dbgassert - called when an assertion fails.
169  */
170 
dbgassert(const char * fcn,int line,const char * expr)171 static void dbgassert(const char *fcn, int line, const char *expr)
172 {
173 	if (in_interrupt())
174 		panic("ASSERTION FAILED IN INTERRUPT, %s:%s:%d %s\n",
175 		      __FILE__, fcn, line, expr);
176 	else {
177 		int x;
178 		printk(KERN_ERR "ASSERTION FAILED, %s:%s:%d %s\n",
179 		       __FILE__, fcn, line, expr);
180 		x = * (volatile int *) 0; /* force proc to exit */
181 	}
182 }
183 
184 /*
185  * Bunch of useful debug macros:
186  *
187  *	ASSERT	- print unless e nonzero (panic if in interrupt)
188  *	DBGDO	- include arbitrary code if debugging
189  *	DBGX	- debug print raw (w/o function name)
190  *	DBGP	- debug print w/ function name
191  *	DBGE	- debug print function entry
192  *	DBGC	- debug print function call
193  *	DBGR	- debug print function return
194  *	DBGXV	- debug print raw when verbose
195  *	DBGPV	- debug print when verbose
196  *	DBGEV	- debug print function entry when verbose
197  *	DBGRV	- debug print function return when verbose
198  */
199 
200 #define ASSERT(e)      ((e) ? (void) 0 : dbgassert(__FUNCTION__, __LINE__, #e))
201 #define DBGDO(x)            x
202 #define DBGX(fmt, args...)  (in_interrupt() ? 0 : printk(KERN_ERR fmt, ##args))
203 #define DBGP(fmt, args...)  (DBGX(__FUNCTION__ ": " fmt, ##args))
204 #define DBGE(fmt, args...)  (DBGX(__FUNCTION__ fmt, ##args))
205 #define DBGC(rtn)           (DBGP("calling %s\n", rtn))
206 #define DBGR()              (DBGP("returning\n"))
207 #define DBGXV(fmt, args...) (shut_up ? 0 : DBGX(fmt, ##args))
208 #define DBGPV(fmt, args...) (shut_up ? 0 : DBGP(fmt, ##args))
209 #define DBGEV(fmt, args...) (shut_up ? 0 : DBGE(fmt, ##args))
210 #define DBGCV(rtn)          (shut_up ? 0 : DBGC(rtn))
211 #define DBGRV()             (shut_up ? 0 : DBGR())
212 
213 #else /* !VWSND_DEBUG */
214 
215 #define ASSERT(e)           ((void) 0)
216 #define DBGDO(x)            /* don't */
217 #define DBGX(fmt, args...)  ((void) 0)
218 #define DBGP(fmt, args...)  ((void) 0)
219 #define DBGE(fmt, args...)  ((void) 0)
220 #define DBGC(rtn)           ((void) 0)
221 #define DBGR()              ((void) 0)
222 #define DBGPV(fmt, args...) ((void) 0)
223 #define DBGXV(fmt, args...) ((void) 0)
224 #define DBGEV(fmt, args...) ((void) 0)
225 #define DBGCV(rtn)          ((void) 0)
226 #define DBGRV()             ((void) 0)
227 
228 #endif /* !VWSND_DEBUG */
229 
230 /*****************************************************************************/
231 /* low level lithium access */
232 
233 /*
234  * We need to talk to Lithium registers on three pages.  Here are
235  * the pages' offsets from the base address (0xFF001000).
236  */
237 
238 enum {
239 	LI_PAGE0_OFFSET = 0x01000 - 0x1000, /* FF001000 */
240 	LI_PAGE1_OFFSET = 0x0F000 - 0x1000, /* FF00F000 */
241 	LI_PAGE2_OFFSET = 0x10000 - 0x1000, /* FF010000 */
242 };
243 
244 /* low-level lithium data */
245 
246 typedef struct lithium {
247 	caddr_t		page0;		/* virtual addresses */
248 	caddr_t		page1;
249 	caddr_t		page2;
250 	spinlock_t	lock;		/* protects codec and UST/MSC access */
251 } lithium_t;
252 
253 /*
254  * li_create initializes the lithium_t structure and sets up vm mappings
255  * to access the registers.
256  * Returns 0 on success, -errno on failure.
257  */
258 
li_create(lithium_t * lith,unsigned long baseaddr)259 static int li_create(lithium_t *lith, unsigned long baseaddr)
260 {
261 	static void li_destroy(lithium_t *);
262 
263 	lith->lock = SPIN_LOCK_UNLOCKED;
264 	lith->page0 = ioremap_nocache(baseaddr + LI_PAGE0_OFFSET, PAGE_SIZE);
265 	lith->page1 = ioremap_nocache(baseaddr + LI_PAGE1_OFFSET, PAGE_SIZE);
266 	lith->page2 = ioremap_nocache(baseaddr + LI_PAGE2_OFFSET, PAGE_SIZE);
267 	if (!lith->page0 || !lith->page1 || !lith->page2) {
268 		li_destroy(lith);
269 		return -ENOMEM;
270 	}
271 	return 0;
272 }
273 
274 /*
275  * li_destroy destroys the lithium_t structure and vm mappings.
276  */
277 
li_destroy(lithium_t * lith)278 static void li_destroy(lithium_t *lith)
279 {
280 	if (lith->page0) {
281 		iounmap(lith->page0);
282 		lith->page0 = NULL;
283 	}
284 	if (lith->page1) {
285 		iounmap(lith->page1);
286 		lith->page1 = NULL;
287 	}
288 	if (lith->page2) {
289 		iounmap(lith->page2);
290 		lith->page2 = NULL;
291 	}
292 }
293 
294 /*
295  * basic register accessors - read/write long/byte
296  */
297 
li_readl(lithium_t * lith,int off)298 static __inline__ unsigned long li_readl(lithium_t *lith, int off)
299 {
300 	return * (volatile unsigned long *) (lith->page0 + off);
301 }
302 
li_readb(lithium_t * lith,int off)303 static __inline__ unsigned char li_readb(lithium_t *lith, int off)
304 {
305 	return * (volatile unsigned char *) (lith->page0 + off);
306 }
307 
li_writel(lithium_t * lith,int off,unsigned long val)308 static __inline__ void li_writel(lithium_t *lith, int off, unsigned long val)
309 {
310 	* (volatile unsigned long *) (lith->page0 + off) = val;
311 }
312 
li_writeb(lithium_t * lith,int off,unsigned char val)313 static __inline__ void li_writeb(lithium_t *lith, int off, unsigned char val)
314 {
315 	* (volatile unsigned char *) (lith->page0 + off) = val;
316 }
317 
318 /*****************************************************************************/
319 /* High Level Lithium Access */
320 
321 /*
322  * Lithium DMA Notes
323  *
324  * Lithium has two dedicated DMA channels for audio.  They are known
325  * as comm1 and comm2 (communication areas 1 and 2).  Comm1 is for
326  * input, and comm2 is for output.  Each is controlled by three
327  * registers: BASE (base address), CFG (config) and CCTL
328  * (config/control).
329  *
330  * Each DMA channel points to a physically contiguous ring buffer in
331  * main memory of up to 8 Kbytes.  (This driver always uses 8 Kb.)
332  * There are three pointers into the ring buffer: read, write, and
333  * trigger.  The pointers are 8 bits each.  Each pointer points to
334  * 32-byte "chunks" of data.  The DMA engine moves 32 bytes at a time,
335  * so there is no finer-granularity control.
336  *
337  * In comm1, the hardware updates the write ptr, and software updates
338  * the read ptr.  In comm2, it's the opposite: hardware updates the
339  * read ptr, and software updates the write ptr.  I designate the
340  * hardware-updated ptr as the hwptr, and the software-updated ptr as
341  * the swptr.
342  *
343  * The trigger ptr and trigger mask are used to trigger interrupts.
344  * From the Lithium spec, section 5.6.8, revision of 12/15/1998:
345  *
346  *	Trigger Mask Value
347  *
348  *	A three bit wide field that represents a power of two mask
349  *	that is used whenever the trigger pointer is compared to its
350  *	respective read or write pointer.  A value of zero here
351  *	implies a mask of 0xFF and a value of seven implies a mask
352  *	0x01.  This value can be used to sub-divide the ring buffer
353  *	into pie sections so that interrupts monitor the progress of
354  *	hardware from section to section.
355  *
356  * My interpretation of that is, whenever the hw ptr is updated, it is
357  * compared with the trigger ptr, and the result is masked by the
358  * trigger mask.  (Actually, by the complement of the trigger mask.)
359  * If the result is zero, an interrupt is triggered.  I.e., interrupt
360  * if ((hwptr & ~mask) == (trptr & ~mask)).  The mask is formed from
361  * the trigger register value as mask = (1 << (8 - tmreg)) - 1.
362  *
363  * In yet different words, setting tmreg to 0 causes an interrupt after
364  * every 256 DMA chunks (8192 bytes) or once per traversal of the
365  * ring buffer.  Setting it to 7 caues an interrupt every 2 DMA chunks
366  * (64 bytes) or 128 times per traversal of the ring buffer.
367  */
368 
369 /* Lithium register offsets and bit definitions */
370 
371 #define LI_HOST_CONTROLLER	0x000
372 # define LI_HC_RESET		 0x00008000
373 # define LI_HC_LINK_ENABLE	 0x00004000
374 # define LI_HC_LINK_FAILURE	 0x00000004
375 # define LI_HC_LINK_CODEC	 0x00000002
376 # define LI_HC_LINK_READY	 0x00000001
377 
378 #define LI_INTR_STATUS		0x010
379 #define LI_INTR_MASK		0x014
380 # define LI_INTR_LINK_ERR	 0x00008000
381 # define LI_INTR_COMM2_TRIG	 0x00000008
382 # define LI_INTR_COMM2_UNDERFLOW 0x00000004
383 # define LI_INTR_COMM1_TRIG	 0x00000002
384 # define LI_INTR_COMM1_OVERFLOW  0x00000001
385 
386 #define LI_CODEC_COMMAND	0x018
387 # define LI_CC_BUSY		 0x00008000
388 # define LI_CC_DIR		 0x00000080
389 #  define LI_CC_DIR_RD		  LI_CC_DIR
390 #  define LI_CC_DIR_WR		(!LI_CC_DIR)
391 # define LI_CC_ADDR_MASK	 0x0000007F
392 
393 #define LI_CODEC_DATA		0x01C
394 
395 #define LI_COMM1_BASE		0x100
396 #define LI_COMM1_CTL		0x104
397 # define LI_CCTL_RESET		 0x80000000
398 # define LI_CCTL_SIZE		 0x70000000
399 # define LI_CCTL_DMA_ENABLE	 0x08000000
400 # define LI_CCTL_TMASK		 0x07000000 /* trigger mask */
401 # define LI_CCTL_TPTR		 0x00FF0000 /* trigger pointer */
402 # define LI_CCTL_RPTR		 0x0000FF00
403 # define LI_CCTL_WPTR		 0x000000FF
404 #define LI_COMM1_CFG		0x108
405 # define LI_CCFG_LOCK		 0x00008000
406 # define LI_CCFG_SLOT		 0x00000070
407 # define LI_CCFG_DIRECTION	 0x00000008
408 #  define LI_CCFG_DIR_IN	(!LI_CCFG_DIRECTION)
409 #  define LI_CCFG_DIR_OUT	  LI_CCFG_DIRECTION
410 # define LI_CCFG_MODE		 0x00000004
411 #  define LI_CCFG_MODE_MONO	(!LI_CCFG_MODE)
412 #  define LI_CCFG_MODE_STEREO	  LI_CCFG_MODE
413 # define LI_CCFG_FORMAT		 0x00000003
414 #  define LI_CCFG_FMT_8BIT	  0x00000000
415 #  define LI_CCFG_FMT_16BIT	  0x00000001
416 #define LI_COMM2_BASE		0x10C
417 #define LI_COMM2_CTL		0x110
418  /* bit definitions are the same as LI_COMM1_CTL */
419 #define LI_COMM2_CFG		0x114
420  /* bit definitions are the same as LI_COMM1_CFG */
421 
422 #define LI_UST_LOW		0x200	/* 64-bit Unadjusted System Time is */
423 #define LI_UST_HIGH		0x204	/* microseconds since boot */
424 
425 #define LI_AUDIO1_UST		0x300	/* UST-MSC pairs */
426 #define LI_AUDIO1_MSC		0x304	/* MSC (Media Stream Counter) */
427 #define LI_AUDIO2_UST		0x308	/* counts samples actually */
428 #define LI_AUDIO2_MSC		0x30C	/* processed as of time UST */
429 
430 /*
431  * Lithium's DMA engine operates on chunks of 32 bytes.  We call that
432  * a DMACHUNK.
433  */
434 
435 #define DMACHUNK_SHIFT 5
436 #define DMACHUNK_SIZE (1 << DMACHUNK_SHIFT)
437 #define BYTES_TO_CHUNKS(bytes) ((bytes) >> DMACHUNK_SHIFT)
438 #define CHUNKS_TO_BYTES(chunks) ((chunks) << DMACHUNK_SHIFT)
439 
440 /*
441  * Two convenient macros to shift bitfields into/out of position.
442  *
443  * Observe that (mask & -mask) is (1 << low_set_bit_of(mask)).
444  * As long as mask is constant, we trust the compiler will change the
445  * multipy and divide into shifts.
446  */
447 
448 #define SHIFT_FIELD(val, mask) (((val) * ((mask) & -(mask))) & (mask))
449 #define UNSHIFT_FIELD(val, mask) (((val) & (mask)) / ((mask) & -(mask)))
450 
451 /*
452  * dma_chan_desc is invariant information about a Lithium
453  * DMA channel.  There are two instances, li_comm1 and li_comm2.
454  *
455  * Note that the CCTL register fields are write ptr and read ptr, but what
456  * we care about are which pointer is updated by software and which by
457  * hardware.
458  */
459 
460 typedef struct dma_chan_desc {
461 	int basereg;
462 	int cfgreg;
463 	int ctlreg;
464 	int hwptrreg;
465 	int swptrreg;
466 	int ustreg;
467 	int mscreg;
468 	unsigned long swptrmask;
469 	int ad1843_slot;
470 	int direction;			/* LI_CCTL_DIR_IN/OUT */
471 } dma_chan_desc_t;
472 
473 static const dma_chan_desc_t li_comm1 = {
474 	LI_COMM1_BASE,			/* base register offset */
475 	LI_COMM1_CFG,			/* config register offset */
476 	LI_COMM1_CTL,			/* control register offset */
477 	LI_COMM1_CTL + 0,		/* hw ptr reg offset (write ptr) */
478 	LI_COMM1_CTL + 1,		/* sw ptr reg offset (read ptr) */
479 	LI_AUDIO1_UST,			/* ust reg offset */
480 	LI_AUDIO1_MSC,			/* msc reg offset */
481 	LI_CCTL_RPTR,			/* sw ptr bitmask in ctlval */
482 	2,				/* ad1843 serial slot */
483 	LI_CCFG_DIR_IN			/* direction */
484 };
485 
486 static const dma_chan_desc_t li_comm2 = {
487 	LI_COMM2_BASE,			/* base register offset */
488 	LI_COMM2_CFG,			/* config register offset */
489 	LI_COMM2_CTL,			/* control register offset */
490 	LI_COMM2_CTL + 1,		/* hw ptr reg offset (read ptr) */
491 	LI_COMM2_CTL + 0,		/* sw ptr reg offset (writr ptr) */
492 	LI_AUDIO2_UST,			/* ust reg offset */
493 	LI_AUDIO2_MSC,			/* msc reg offset */
494 	LI_CCTL_WPTR,			/* sw ptr bitmask in ctlval */
495 	2,				/* ad1843 serial slot */
496 	LI_CCFG_DIR_OUT			/* direction */
497 };
498 
499 /*
500  * dma_chan is variable information about a Lithium DMA channel.
501  *
502  * The desc field points to invariant information.
503  * The lith field points to a lithium_t which is passed
504  * to li_read* and li_write* to access the registers.
505  * The *val fields shadow the lithium registers' contents.
506  */
507 
508 typedef struct dma_chan {
509 	const dma_chan_desc_t *desc;
510 	lithium_t      *lith;
511 	unsigned long   baseval;
512 	unsigned long	cfgval;
513 	unsigned long	ctlval;
514 } dma_chan_t;
515 
516 /*
517  * ustmsc is a UST/MSC pair (Unadjusted System Time/Media Stream Counter).
518  * UST is time in microseconds since the system booted, and MSC is a
519  * counter that increments with every audio sample.
520  */
521 
522 typedef struct ustmsc {
523 	unsigned long long ust;
524 	unsigned long msc;
525 } ustmsc_t;
526 
527 /*
528  * li_ad1843_wait waits until lithium says the AD1843 register
529  * exchange is not busy.  Returns 0 on success, -EBUSY on timeout.
530  *
531  * Locking: must be called with lithium_lock held.
532  */
533 
li_ad1843_wait(lithium_t * lith)534 static int li_ad1843_wait(lithium_t *lith)
535 {
536 	unsigned long later = jiffies + 2;
537 	while (li_readl(lith, LI_CODEC_COMMAND) & LI_CC_BUSY)
538 		if (time_after_eq(jiffies, later))
539 			return -EBUSY;
540 	return 0;
541 }
542 
543 /*
544  * li_read_ad1843_reg returns the current contents of a 16 bit AD1843 register.
545  *
546  * Returns unsigned register value on success, -errno on failure.
547  */
548 
li_read_ad1843_reg(lithium_t * lith,int reg)549 static int li_read_ad1843_reg(lithium_t *lith, int reg)
550 {
551 	int val;
552 
553 	ASSERT(!in_interrupt());
554 	spin_lock(&lith->lock);
555 	{
556 		val = li_ad1843_wait(lith);
557 		if (val == 0) {
558 			li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_RD | reg);
559 			val = li_ad1843_wait(lith);
560 		}
561 		if (val == 0)
562 			val = li_readl(lith, LI_CODEC_DATA);
563 	}
564 	spin_unlock(&lith->lock);
565 
566 	DBGXV("li_read_ad1843_reg(lith=0x%p, reg=%d) returns 0x%04x\n",
567 	      lith, reg, val);
568 
569 	return val;
570 }
571 
572 /*
573  * li_write_ad1843_reg writes the specified value to a 16 bit AD1843 register.
574  */
575 
li_write_ad1843_reg(lithium_t * lith,int reg,int newval)576 static void li_write_ad1843_reg(lithium_t *lith, int reg, int newval)
577 {
578 	spin_lock(&lith->lock);
579 	{
580 		if (li_ad1843_wait(lith) == 0) {
581 			li_writel(lith, LI_CODEC_DATA, newval);
582 			li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_WR | reg);
583 		}
584 	}
585 	spin_unlock(&lith->lock);
586 }
587 
588 /*
589  * li_setup_dma calculates all the register settings for DMA in a particular
590  * mode.  It takes too many arguments.
591  */
592 
li_setup_dma(dma_chan_t * chan,const dma_chan_desc_t * desc,lithium_t * lith,unsigned long buffer_paddr,int bufshift,int fragshift,int channels,int sampsize)593 static void li_setup_dma(dma_chan_t *chan,
594 			 const dma_chan_desc_t *desc,
595 			 lithium_t *lith,
596 			 unsigned long buffer_paddr,
597 			 int bufshift,
598 			 int fragshift,
599 			 int channels,
600 			 int sampsize)
601 {
602 	unsigned long mode, format;
603 	unsigned long size, tmask;
604 
605 	DBGEV("(chan=0x%p, desc=0x%p, lith=0x%p, buffer_paddr=0x%lx, "
606 	     "bufshift=%d, fragshift=%d, channels=%d, sampsize=%d)\n",
607 	     chan, desc, lith, buffer_paddr,
608 	     bufshift, fragshift, channels, sampsize);
609 
610 	/* Reset the channel first. */
611 
612 	li_writel(lith, desc->ctlreg, LI_CCTL_RESET);
613 
614 	ASSERT(channels == 1 || channels == 2);
615 	if (channels == 2)
616 		mode = LI_CCFG_MODE_STEREO;
617 	else
618 		mode = LI_CCFG_MODE_MONO;
619 	ASSERT(sampsize == 1 || sampsize == 2);
620 	if (sampsize == 2)
621 		format = LI_CCFG_FMT_16BIT;
622 	else
623 		format = LI_CCFG_FMT_8BIT;
624 	chan->desc = desc;
625 	chan->lith = lith;
626 
627 	/*
628 	 * Lithium DMA address register takes a 40-bit physical
629 	 * address, right-shifted by 8 so it fits in 32 bits.  Bit 37
630 	 * must be set -- it enables cache coherence.
631 	 */
632 
633 	ASSERT(!(buffer_paddr & 0xFF));
634 	chan->baseval = (buffer_paddr >> 8) | 1 << (37 - 8);
635 
636 	chan->cfgval = (!LI_CCFG_LOCK |
637 			SHIFT_FIELD(desc->ad1843_slot, LI_CCFG_SLOT) |
638 			desc->direction |
639 			mode |
640 			format);
641 
642 	size = bufshift - 6;
643 	tmask = 13 - fragshift;		/* See Lithium DMA Notes above. */
644 	ASSERT(size >= 2 && size <= 7);
645 	ASSERT(tmask >= 1 && tmask <= 7);
646 	chan->ctlval = (!LI_CCTL_RESET |
647 			SHIFT_FIELD(size, LI_CCTL_SIZE) |
648 			!LI_CCTL_DMA_ENABLE |
649 			SHIFT_FIELD(tmask, LI_CCTL_TMASK) |
650 			SHIFT_FIELD(0, LI_CCTL_TPTR));
651 
652 	DBGPV("basereg 0x%x = 0x%lx\n", desc->basereg, chan->baseval);
653 	DBGPV("cfgreg 0x%x = 0x%lx\n", desc->cfgreg, chan->cfgval);
654 	DBGPV("ctlreg 0x%x = 0x%lx\n", desc->ctlreg, chan->ctlval);
655 
656 	li_writel(lith, desc->basereg, chan->baseval);
657 	li_writel(lith, desc->cfgreg, chan->cfgval);
658 	li_writel(lith, desc->ctlreg, chan->ctlval);
659 
660 	DBGRV();
661 }
662 
li_shutdown_dma(dma_chan_t * chan)663 static void li_shutdown_dma(dma_chan_t *chan)
664 {
665 	lithium_t *lith = chan->lith;
666 	caddr_t lith1 = lith->page1;
667 
668 	DBGEV("(chan=0x%p)\n", chan);
669 
670 	chan->ctlval &= ~LI_CCTL_DMA_ENABLE;
671 	DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval);
672 	li_writel(lith, chan->desc->ctlreg, chan->ctlval);
673 
674 	/*
675 	 * Offset 0x500 on Lithium page 1 is an undocumented,
676 	 * unsupported register that holds the zero sample value.
677 	 * Lithium is supposed to output zero samples when DMA is
678 	 * inactive, and repeat the last sample when DMA underflows.
679 	 * But it has a bug, where, after underflow occurs, the zero
680 	 * sample is not reset.
681 	 *
682 	 * I expect this to break in a future rev of Lithium.
683 	 */
684 
685 	if (lith1 && chan->desc->direction == LI_CCFG_DIR_OUT)
686 		* (volatile unsigned long *) (lith1 + 0x500) = 0;
687 }
688 
689 /*
690  * li_activate_dma always starts dma at the beginning of the buffer.
691  *
692  * N.B., these may be called from interrupt.
693  */
694 
li_activate_dma(dma_chan_t * chan)695 static __inline__ void li_activate_dma(dma_chan_t *chan)
696 {
697 	chan->ctlval |= LI_CCTL_DMA_ENABLE;
698 	DBGPV("ctlval = 0x%lx\n", chan->ctlval);
699 	li_writel(chan->lith, chan->desc->ctlreg, chan->ctlval);
700 }
701 
li_deactivate_dma(dma_chan_t * chan)702 static void li_deactivate_dma(dma_chan_t *chan)
703 {
704 	lithium_t *lith = chan->lith;
705 	caddr_t lith2 = lith->page2;
706 
707 	chan->ctlval &= ~(LI_CCTL_DMA_ENABLE | LI_CCTL_RPTR | LI_CCTL_WPTR);
708 	DBGPV("ctlval = 0x%lx\n", chan->ctlval);
709 	DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval);
710 	li_writel(lith, chan->desc->ctlreg, chan->ctlval);
711 
712 	/*
713 	 * Offsets 0x98 and 0x9C on Lithium page 2 are undocumented,
714 	 * unsupported registers that are internal copies of the DMA
715 	 * read and write pointers.  Because of a Lithium bug, these
716 	 * registers aren't zeroed correctly when DMA is shut off.  So
717 	 * we whack them directly.
718 	 *
719 	 * I expect this to break in a future rev of Lithium.
720 	 */
721 
722 	if (lith2 && chan->desc->direction == LI_CCFG_DIR_OUT) {
723 		* (volatile unsigned long *) (lith2 + 0x98) = 0;
724 		* (volatile unsigned long *) (lith2 + 0x9C) = 0;
725 	}
726 }
727 
728 /*
729  * read/write the ring buffer pointers.  These routines' arguments and results
730  * are byte offsets from the beginning of the ring buffer.
731  */
732 
li_read_swptr(dma_chan_t * chan)733 static __inline__ int li_read_swptr(dma_chan_t *chan)
734 {
735 	const unsigned long mask = chan->desc->swptrmask;
736 
737 	return CHUNKS_TO_BYTES(UNSHIFT_FIELD(chan->ctlval, mask));
738 }
739 
li_read_hwptr(dma_chan_t * chan)740 static __inline__ int li_read_hwptr(dma_chan_t *chan)
741 {
742 	return CHUNKS_TO_BYTES(li_readb(chan->lith, chan->desc->hwptrreg));
743 }
744 
li_write_swptr(dma_chan_t * chan,int val)745 static __inline__ void li_write_swptr(dma_chan_t *chan, int val)
746 {
747 	const unsigned long mask = chan->desc->swptrmask;
748 
749 	ASSERT(!(val & ~CHUNKS_TO_BYTES(0xFF)));
750 	val = BYTES_TO_CHUNKS(val);
751 	chan->ctlval = (chan->ctlval & ~mask) | SHIFT_FIELD(val, mask);
752 	li_writeb(chan->lith, chan->desc->swptrreg, val);
753 }
754 
755 /* li_read_USTMSC() returns a UST/MSC pair for the given channel. */
756 
li_read_USTMSC(dma_chan_t * chan,ustmsc_t * ustmsc)757 static void li_read_USTMSC(dma_chan_t *chan, ustmsc_t *ustmsc)
758 {
759 	lithium_t *lith = chan->lith;
760 	const dma_chan_desc_t *desc = chan->desc;
761 	unsigned long now_low, now_high0, now_high1, chan_ust;
762 
763 	spin_lock(&lith->lock);
764 	{
765 		/*
766 		 * retry until we do all five reads without the
767 		 * high word changing.  (High word increments
768 		 * every 2^32 microseconds, i.e., not often)
769 		 */
770 		do {
771 			now_high0 = li_readl(lith, LI_UST_HIGH);
772 			now_low = li_readl(lith, LI_UST_LOW);
773 
774 			/*
775 			 * Lithium guarantees these two reads will be
776 			 * atomic -- ust will not increment after msc
777 			 * is read.
778 			 */
779 
780 			ustmsc->msc = li_readl(lith, desc->mscreg);
781 			chan_ust = li_readl(lith, desc->ustreg);
782 
783 			now_high1 = li_readl(lith, LI_UST_HIGH);
784 		} while (now_high0 != now_high1);
785 	}
786 	spin_unlock(&lith->lock);
787 	ustmsc->ust = ((unsigned long long) now_high0 << 32 | chan_ust);
788 }
789 
li_enable_interrupts(lithium_t * lith,unsigned int mask)790 static void li_enable_interrupts(lithium_t *lith, unsigned int mask)
791 {
792 	DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask);
793 
794 	/* clear any already-pending interrupts. */
795 
796 	li_writel(lith, LI_INTR_STATUS, mask);
797 
798 	/* enable the interrupts. */
799 
800 	mask |= li_readl(lith, LI_INTR_MASK);
801 	li_writel(lith, LI_INTR_MASK, mask);
802 }
803 
li_disable_interrupts(lithium_t * lith,unsigned int mask)804 static void li_disable_interrupts(lithium_t *lith, unsigned int mask)
805 {
806 	unsigned int keepmask;
807 
808 	DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask);
809 
810 	/* disable the interrupts */
811 
812 	keepmask = li_readl(lith, LI_INTR_MASK) & ~mask;
813 	li_writel(lith, LI_INTR_MASK, keepmask);
814 
815 	/* clear any pending interrupts. */
816 
817 	li_writel(lith, LI_INTR_STATUS, mask);
818 }
819 
820 /* Get the interrupt status and clear all pending interrupts. */
821 
li_get_clear_intr_status(lithium_t * lith)822 static unsigned int li_get_clear_intr_status(lithium_t *lith)
823 {
824 	unsigned int status;
825 
826 	status = li_readl(lith, LI_INTR_STATUS);
827 	li_writel(lith, LI_INTR_STATUS, ~0);
828 	return status & li_readl(lith, LI_INTR_MASK);
829 }
830 
li_init(lithium_t * lith)831 static int li_init(lithium_t *lith)
832 {
833 	/* 1. System power supplies stabilize. */
834 
835 	/* 2. Assert the ~RESET signal. */
836 
837 	li_writel(lith, LI_HOST_CONTROLLER, LI_HC_RESET);
838 	udelay(1);
839 
840 	/* 3. Deassert the ~RESET signal and enter a wait period to allow
841 	   the AD1843 internal clocks and the external crystal oscillator
842 	   to stabilize. */
843 
844 	li_writel(lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE);
845 	udelay(1);
846 
847 	return 0;
848 }
849 
850 /*****************************************************************************/
851 /* AD1843 access */
852 
853 /*
854  * AD1843 bitfield definitions.  All are named as in the AD1843 data
855  * sheet, with ad1843_ prepended and individual bit numbers removed.
856  *
857  * E.g., bits LSS0 through LSS2 become ad1843_LSS.
858  *
859  * Only the bitfields we need are defined.
860  */
861 
862 typedef struct ad1843_bitfield {
863 	char reg;
864 	char lo_bit;
865 	char nbits;
866 } ad1843_bitfield_t;
867 
868 static const ad1843_bitfield_t
869 	ad1843_PDNO   = {  0, 14,  1 },	/* Converter Power-Down Flag */
870 	ad1843_INIT   = {  0, 15,  1 },	/* Clock Initialization Flag */
871 	ad1843_RIG    = {  2,  0,  4 },	/* Right ADC Input Gain */
872 	ad1843_RMGE   = {  2,  4,  1 },	/* Right ADC Mic Gain Enable */
873 	ad1843_RSS    = {  2,  5,  3 },	/* Right ADC Source Select */
874 	ad1843_LIG    = {  2,  8,  4 },	/* Left ADC Input Gain */
875 	ad1843_LMGE   = {  2, 12,  1 },	/* Left ADC Mic Gain Enable */
876 	ad1843_LSS    = {  2, 13,  3 },	/* Left ADC Source Select */
877 	ad1843_RX1M   = {  4,  0,  5 },	/* Right Aux 1 Mix Gain/Atten */
878 	ad1843_RX1MM  = {  4,  7,  1 },	/* Right Aux 1 Mix Mute */
879 	ad1843_LX1M   = {  4,  8,  5 },	/* Left Aux 1 Mix Gain/Atten */
880 	ad1843_LX1MM  = {  4, 15,  1 },	/* Left Aux 1 Mix Mute */
881 	ad1843_RX2M   = {  5,  0,  5 },	/* Right Aux 2 Mix Gain/Atten */
882 	ad1843_RX2MM  = {  5,  7,  1 },	/* Right Aux 2 Mix Mute */
883 	ad1843_LX2M   = {  5,  8,  5 },	/* Left Aux 2 Mix Gain/Atten */
884 	ad1843_LX2MM  = {  5, 15,  1 },	/* Left Aux 2 Mix Mute */
885 	ad1843_RMCM   = {  7,  0,  5 },	/* Right Mic Mix Gain/Atten */
886 	ad1843_RMCMM  = {  7,  7,  1 },	/* Right Mic Mix Mute */
887 	ad1843_LMCM   = {  7,  8,  5 },	/* Left Mic Mix Gain/Atten */
888 	ad1843_LMCMM  = {  7, 15,  1 },	/* Left Mic Mix Mute */
889 	ad1843_HPOS   = {  8,  4,  1 },	/* Headphone Output Voltage Swing */
890 	ad1843_HPOM   = {  8,  5,  1 },	/* Headphone Output Mute */
891 	ad1843_RDA1G  = {  9,  0,  6 },	/* Right DAC1 Analog/Digital Gain */
892 	ad1843_RDA1GM = {  9,  7,  1 },	/* Right DAC1 Analog Mute */
893 	ad1843_LDA1G  = {  9,  8,  6 },	/* Left DAC1 Analog/Digital Gain */
894 	ad1843_LDA1GM = {  9, 15,  1 },	/* Left DAC1 Analog Mute */
895 	ad1843_RDA1AM = { 11,  7,  1 },	/* Right DAC1 Digital Mute */
896 	ad1843_LDA1AM = { 11, 15,  1 },	/* Left DAC1 Digital Mute */
897 	ad1843_ADLC   = { 15,  0,  2 },	/* ADC Left Sample Rate Source */
898 	ad1843_ADRC   = { 15,  2,  2 },	/* ADC Right Sample Rate Source */
899 	ad1843_DA1C   = { 15,  8,  2 },	/* DAC1 Sample Rate Source */
900 	ad1843_C1C    = { 17,  0, 16 },	/* Clock 1 Sample Rate Select */
901 	ad1843_C2C    = { 20,  0, 16 },	/* Clock 1 Sample Rate Select */
902 	ad1843_DAADL  = { 25,  4,  2 },	/* Digital ADC Left Source Select */
903 	ad1843_DAADR  = { 25,  6,  2 },	/* Digital ADC Right Source Select */
904 	ad1843_DRSFLT = { 25, 15,  1 },	/* Digital Reampler Filter Mode */
905 	ad1843_ADLF   = { 26,  0,  2 }, /* ADC Left Channel Data Format */
906 	ad1843_ADRF   = { 26,  2,  2 }, /* ADC Right Channel Data Format */
907 	ad1843_ADTLK  = { 26,  4,  1 },	/* ADC Transmit Lock Mode Select */
908 	ad1843_SCF    = { 26,  7,  1 },	/* SCLK Frequency Select */
909 	ad1843_DA1F   = { 26,  8,  2 },	/* DAC1 Data Format Select */
910 	ad1843_DA1SM  = { 26, 14,  1 },	/* DAC1 Stereo/Mono Mode Select */
911 	ad1843_ADLEN  = { 27,  0,  1 },	/* ADC Left Channel Enable */
912 	ad1843_ADREN  = { 27,  1,  1 },	/* ADC Right Channel Enable */
913 	ad1843_AAMEN  = { 27,  4,  1 },	/* Analog to Analog Mix Enable */
914 	ad1843_ANAEN  = { 27,  7,  1 },	/* Analog Channel Enable */
915 	ad1843_DA1EN  = { 27,  8,  1 },	/* DAC1 Enable */
916 	ad1843_DA2EN  = { 27,  9,  1 },	/* DAC2 Enable */
917 	ad1843_C1EN   = { 28, 11,  1 },	/* Clock Generator 1 Enable */
918 	ad1843_C2EN   = { 28, 12,  1 },	/* Clock Generator 2 Enable */
919 	ad1843_PDNI   = { 28, 15,  1 };	/* Converter Power Down */
920 
921 /*
922  * The various registers of the AD1843 use three different formats for
923  * specifying gain.  The ad1843_gain structure parameterizes the
924  * formats.
925  */
926 
927 typedef struct ad1843_gain {
928 
929 	int	negative;		/* nonzero if gain is negative. */
930 	const ad1843_bitfield_t *lfield;
931 	const ad1843_bitfield_t *rfield;
932 
933 } ad1843_gain_t;
934 
935 static const ad1843_gain_t ad1843_gain_RECLEV
936 				= { 0, &ad1843_LIG,   &ad1843_RIG };
937 static const ad1843_gain_t ad1843_gain_LINE
938 				= { 1, &ad1843_LX1M,  &ad1843_RX1M };
939 static const ad1843_gain_t ad1843_gain_CD
940 				= { 1, &ad1843_LX2M,  &ad1843_RX2M };
941 static const ad1843_gain_t ad1843_gain_MIC
942 				= { 1, &ad1843_LMCM,  &ad1843_RMCM };
943 static const ad1843_gain_t ad1843_gain_PCM
944 				= { 1, &ad1843_LDA1G, &ad1843_RDA1G };
945 
946 /* read the current value of an AD1843 bitfield. */
947 
ad1843_read_bits(lithium_t * lith,const ad1843_bitfield_t * field)948 static int ad1843_read_bits(lithium_t *lith, const ad1843_bitfield_t *field)
949 {
950 	int w = li_read_ad1843_reg(lith, field->reg);
951 	int val = w >> field->lo_bit & ((1 << field->nbits) - 1);
952 
953 	DBGXV("ad1843_read_bits(lith=0x%p, field->{%d %d %d}) returns 0x%x\n",
954 	      lith, field->reg, field->lo_bit, field->nbits, val);
955 
956 	return val;
957 }
958 
959 /*
960  * write a new value to an AD1843 bitfield and return the old value.
961  */
962 
ad1843_write_bits(lithium_t * lith,const ad1843_bitfield_t * field,int newval)963 static int ad1843_write_bits(lithium_t *lith,
964 			     const ad1843_bitfield_t *field,
965 			     int newval)
966 {
967 	int w = li_read_ad1843_reg(lith, field->reg);
968 	int mask = ((1 << field->nbits) - 1) << field->lo_bit;
969 	int oldval = (w & mask) >> field->lo_bit;
970 	int newbits = (newval << field->lo_bit) & mask;
971 	w = (w & ~mask) | newbits;
972 	(void) li_write_ad1843_reg(lith, field->reg, w);
973 
974 	DBGXV("ad1843_write_bits(lith=0x%p, field->{%d %d %d}, val=0x%x) "
975 	      "returns 0x%x\n",
976 	      lith, field->reg, field->lo_bit, field->nbits, newval,
977 	      oldval);
978 
979 	return oldval;
980 }
981 
982 /*
983  * ad1843_read_multi reads multiple bitfields from the same AD1843
984  * register.  It uses a single read cycle to do it.  (Reading the
985  * ad1843 requires 256 bit times at 12.288 MHz, or nearly 20
986  * microseconds.)
987  *
988  * Called ike this.
989  *
990  *  ad1843_read_multi(lith, nfields,
991  *		      &ad1843_FIELD1, &val1,
992  *		      &ad1843_FIELD2, &val2, ...);
993  */
994 
ad1843_read_multi(lithium_t * lith,int argcount,...)995 static void ad1843_read_multi(lithium_t *lith, int argcount, ...)
996 {
997 	va_list ap;
998 	const ad1843_bitfield_t *fp;
999 	int w = 0, mask, *value, reg = -1;
1000 
1001 	va_start(ap, argcount);
1002 	while (--argcount >= 0) {
1003 		fp = va_arg(ap, const ad1843_bitfield_t *);
1004 		value = va_arg(ap, int *);
1005 		if (reg == -1) {
1006 			reg = fp->reg;
1007 			w = li_read_ad1843_reg(lith, reg);
1008 		}
1009 		ASSERT(reg == fp->reg);
1010 		mask = (1 << fp->nbits) - 1;
1011 		*value = w >> fp->lo_bit & mask;
1012 	}
1013 	va_end(ap);
1014 }
1015 
1016 /*
1017  * ad1843_write_multi stores multiple bitfields into the same AD1843
1018  * register.  It uses one read and one write cycle to do it.
1019  *
1020  * Called like this.
1021  *
1022  *  ad1843_write_multi(lith, nfields,
1023  *		       &ad1843_FIELD1, val1,
1024  *		       &ad1843_FIELF2, val2, ...);
1025  */
1026 
ad1843_write_multi(lithium_t * lith,int argcount,...)1027 static void ad1843_write_multi(lithium_t *lith, int argcount, ...)
1028 {
1029 	va_list ap;
1030 	int reg;
1031 	const ad1843_bitfield_t *fp;
1032 	int value;
1033 	int w, m, mask, bits;
1034 
1035 	mask = 0;
1036 	bits = 0;
1037 	reg = -1;
1038 
1039 	va_start(ap, argcount);
1040 	while (--argcount >= 0) {
1041 		fp = va_arg(ap, const ad1843_bitfield_t *);
1042 		value = va_arg(ap, int);
1043 		if (reg == -1)
1044 			reg = fp->reg;
1045 		ASSERT(fp->reg == reg);
1046 		m = ((1 << fp->nbits) - 1) << fp->lo_bit;
1047 		mask |= m;
1048 		bits |= (value << fp->lo_bit) & m;
1049 	}
1050 	va_end(ap);
1051 	ASSERT(!(bits & ~mask));
1052 	if (~mask & 0xFFFF)
1053 		w = li_read_ad1843_reg(lith, reg);
1054 	else
1055 		w = 0;
1056 	w = (w & ~mask) | bits;
1057 	(void) li_write_ad1843_reg(lith, reg, w);
1058 }
1059 
1060 /*
1061  * ad1843_get_gain reads the specified register and extracts the gain value
1062  * using the supplied gain type.  It returns the gain in OSS format.
1063  */
1064 
ad1843_get_gain(lithium_t * lith,const ad1843_gain_t * gp)1065 static int ad1843_get_gain(lithium_t *lith, const ad1843_gain_t *gp)
1066 {
1067 	int lg, rg;
1068 	unsigned short mask = (1 << gp->lfield->nbits) - 1;
1069 
1070 	ad1843_read_multi(lith, 2, gp->lfield, &lg, gp->rfield, &rg);
1071 	if (gp->negative) {
1072 		lg = mask - lg;
1073 		rg = mask - rg;
1074 	}
1075 	lg = (lg * 100 + (mask >> 1)) / mask;
1076 	rg = (rg * 100 + (mask >> 1)) / mask;
1077 	return lg << 0 | rg << 8;
1078 }
1079 
1080 /*
1081  * Set an audio channel's gain. Converts from OSS format to AD1843's
1082  * format.
1083  *
1084  * Returns the new gain, which may be lower than the old gain.
1085  */
1086 
ad1843_set_gain(lithium_t * lith,const ad1843_gain_t * gp,int newval)1087 static int ad1843_set_gain(lithium_t *lith,
1088 			   const ad1843_gain_t *gp,
1089 			   int newval)
1090 {
1091 	unsigned short mask = (1 << gp->lfield->nbits) - 1;
1092 
1093 	int lg = newval >> 0 & 0xFF;
1094 	int rg = newval >> 8;
1095 	if (lg < 0 || lg > 100 || rg < 0 || rg > 100)
1096 		return -EINVAL;
1097 	lg = (lg * mask + (mask >> 1)) / 100;
1098 	rg = (rg * mask + (mask >> 1)) / 100;
1099 	if (gp->negative) {
1100 		lg = mask - lg;
1101 		rg = mask - rg;
1102 	}
1103 	ad1843_write_multi(lith, 2, gp->lfield, lg, gp->rfield, rg);
1104 	return ad1843_get_gain(lith, gp);
1105 }
1106 
1107 /* Returns the current recording source, in OSS format. */
1108 
ad1843_get_recsrc(lithium_t * lith)1109 static int ad1843_get_recsrc(lithium_t *lith)
1110 {
1111 	int ls = ad1843_read_bits(lith, &ad1843_LSS);
1112 
1113 	switch (ls) {
1114 	case 1:
1115 		return SOUND_MASK_MIC;
1116 	case 2:
1117 		return SOUND_MASK_LINE;
1118 	case 3:
1119 		return SOUND_MASK_CD;
1120 	case 6:
1121 		return SOUND_MASK_PCM;
1122 	default:
1123 		ASSERT(0);
1124 		return -1;
1125 	}
1126 }
1127 
1128 /*
1129  * Enable/disable digital resample mode in the AD1843.
1130  *
1131  * The AD1843 requires that ADL, ADR, DA1 and DA2 be powered down
1132  * while switching modes.  So we save DA1's state (DA2's state is not
1133  * interesting), power them down, switch into/out of resample mode,
1134  * power them up, and restore state.
1135  *
1136  * This will cause audible glitches if D/A or A/D is going on, so the
1137  * driver disallows that (in mixer_write_ioctl()).
1138  *
1139  * The open question is, is this worth doing?  I'm leaving it in,
1140  * because it's written, but...
1141  */
1142 
ad1843_set_resample_mode(lithium_t * lith,int onoff)1143 static void ad1843_set_resample_mode(lithium_t *lith, int onoff)
1144 {
1145 	/* Save DA1 mute and gain (addr 9 is DA1 analog gain/attenuation) */
1146 	int save_da1 = li_read_ad1843_reg(lith, 9);
1147 
1148 	/* Power down A/D and D/A. */
1149 	ad1843_write_multi(lith, 4,
1150 			   &ad1843_DA1EN, 0,
1151 			   &ad1843_DA2EN, 0,
1152 			   &ad1843_ADLEN, 0,
1153 			   &ad1843_ADREN, 0);
1154 
1155 	/* Switch mode */
1156 	ASSERT(onoff == 0 || onoff == 1);
1157 	ad1843_write_bits(lith, &ad1843_DRSFLT, onoff);
1158 
1159  	/* Power up A/D and D/A. */
1160 	ad1843_write_multi(lith, 3,
1161 			   &ad1843_DA1EN, 1,
1162 			   &ad1843_ADLEN, 1,
1163 			   &ad1843_ADREN, 1);
1164 
1165 	/* Restore DA1 mute and gain. */
1166 	li_write_ad1843_reg(lith, 9, save_da1);
1167 }
1168 
1169 /*
1170  * Set recording source.  Arg newsrc specifies an OSS channel mask.
1171  *
1172  * The complication is that when we switch into/out of loopback mode
1173  * (i.e., src = SOUND_MASK_PCM), we change the AD1843 into/out of
1174  * digital resampling mode.
1175  *
1176  * Returns newsrc on success, -errno on failure.
1177  */
1178 
ad1843_set_recsrc(lithium_t * lith,int newsrc)1179 static int ad1843_set_recsrc(lithium_t *lith, int newsrc)
1180 {
1181 	int bits;
1182 	int oldbits;
1183 
1184 	switch (newsrc) {
1185 	case SOUND_MASK_PCM:
1186 		bits = 6;
1187 		break;
1188 
1189 	case SOUND_MASK_MIC:
1190 		bits = 1;
1191 		break;
1192 
1193 	case SOUND_MASK_LINE:
1194 		bits = 2;
1195 		break;
1196 
1197 	case SOUND_MASK_CD:
1198 		bits = 3;
1199 		break;
1200 
1201 	default:
1202 		return -EINVAL;
1203 	}
1204 	oldbits = ad1843_read_bits(lith, &ad1843_LSS);
1205 	if (newsrc == SOUND_MASK_PCM && oldbits != 6) {
1206 		DBGP("enabling digital resample mode\n");
1207 		ad1843_set_resample_mode(lith, 1);
1208 		ad1843_write_multi(lith, 2,
1209 				   &ad1843_DAADL, 2,
1210 				   &ad1843_DAADR, 2);
1211 	} else if (newsrc != SOUND_MASK_PCM && oldbits == 6) {
1212 		DBGP("disabling digital resample mode\n");
1213 		ad1843_set_resample_mode(lith, 0);
1214 		ad1843_write_multi(lith, 2,
1215 				   &ad1843_DAADL, 0,
1216 				   &ad1843_DAADR, 0);
1217 	}
1218 	ad1843_write_multi(lith, 2, &ad1843_LSS, bits, &ad1843_RSS, bits);
1219 	return newsrc;
1220 }
1221 
1222 /*
1223  * Return current output sources, in OSS format.
1224  */
1225 
ad1843_get_outsrc(lithium_t * lith)1226 static int ad1843_get_outsrc(lithium_t *lith)
1227 {
1228 	int pcm, line, mic, cd;
1229 
1230 	pcm  = ad1843_read_bits(lith, &ad1843_LDA1GM) ? 0 : SOUND_MASK_PCM;
1231 	line = ad1843_read_bits(lith, &ad1843_LX1MM)  ? 0 : SOUND_MASK_LINE;
1232 	cd   = ad1843_read_bits(lith, &ad1843_LX2MM)  ? 0 : SOUND_MASK_CD;
1233 	mic  = ad1843_read_bits(lith, &ad1843_LMCMM)  ? 0 : SOUND_MASK_MIC;
1234 
1235 	return pcm | line | cd | mic;
1236 }
1237 
1238 /*
1239  * Set output sources.  Arg is a mask of active sources in OSS format.
1240  *
1241  * Returns source mask on success, -errno on failure.
1242  */
1243 
ad1843_set_outsrc(lithium_t * lith,int mask)1244 static int ad1843_set_outsrc(lithium_t *lith, int mask)
1245 {
1246 	int pcm, line, mic, cd;
1247 
1248 	if (mask & ~(SOUND_MASK_PCM | SOUND_MASK_LINE |
1249 		     SOUND_MASK_CD | SOUND_MASK_MIC))
1250 		return -EINVAL;
1251 	pcm  = (mask & SOUND_MASK_PCM)  ? 0 : 1;
1252 	line = (mask & SOUND_MASK_LINE) ? 0 : 1;
1253 	mic  = (mask & SOUND_MASK_MIC)  ? 0 : 1;
1254 	cd   = (mask & SOUND_MASK_CD)   ? 0 : 1;
1255 
1256 	ad1843_write_multi(lith, 2, &ad1843_LDA1GM, pcm, &ad1843_RDA1GM, pcm);
1257 	ad1843_write_multi(lith, 2, &ad1843_LX1MM, line, &ad1843_RX1MM, line);
1258 	ad1843_write_multi(lith, 2, &ad1843_LX2MM, cd,   &ad1843_RX2MM, cd);
1259 	ad1843_write_multi(lith, 2, &ad1843_LMCMM, mic,  &ad1843_RMCMM, mic);
1260 
1261 	return mask;
1262 }
1263 
1264 /* Setup ad1843 for D/A conversion. */
1265 
ad1843_setup_dac(lithium_t * lith,int framerate,int fmt,int channels)1266 static void ad1843_setup_dac(lithium_t *lith,
1267 			     int framerate,
1268 			     int fmt,
1269 			     int channels)
1270 {
1271 	int ad_fmt = 0, ad_mode = 0;
1272 
1273 	DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
1274 	      lith, framerate, fmt, channels);
1275 
1276 	switch (fmt) {
1277 	case AFMT_S8:		ad_fmt = 1; break;
1278 	case AFMT_U8:		ad_fmt = 1; break;
1279 	case AFMT_S16_LE:	ad_fmt = 1; break;
1280 	case AFMT_MU_LAW:	ad_fmt = 2; break;
1281 	case AFMT_A_LAW:	ad_fmt = 3; break;
1282 	default:		ASSERT(0);
1283 	}
1284 
1285 	switch (channels) {
1286 	case 2:			ad_mode = 0; break;
1287 	case 1:			ad_mode = 1; break;
1288 	default:		ASSERT(0);
1289 	}
1290 
1291 	DBGPV("ad_mode = %d, ad_fmt = %d\n", ad_mode, ad_fmt);
1292 	ASSERT(framerate >= 4000 && framerate <= 49000);
1293 	ad1843_write_bits(lith, &ad1843_C1C, framerate);
1294 	ad1843_write_multi(lith, 2,
1295 			   &ad1843_DA1SM, ad_mode, &ad1843_DA1F, ad_fmt);
1296 }
1297 
ad1843_shutdown_dac(lithium_t * lith)1298 static void ad1843_shutdown_dac(lithium_t *lith)
1299 {
1300 	ad1843_write_bits(lith, &ad1843_DA1F, 1);
1301 }
1302 
ad1843_setup_adc(lithium_t * lith,int framerate,int fmt,int channels)1303 static void ad1843_setup_adc(lithium_t *lith, int framerate, int fmt, int channels)
1304 {
1305 	int da_fmt = 0;
1306 
1307 	DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
1308 	      lith, framerate, fmt, channels);
1309 
1310 	switch (fmt) {
1311 	case AFMT_S8:		da_fmt = 1; break;
1312 	case AFMT_U8:		da_fmt = 1; break;
1313 	case AFMT_S16_LE:	da_fmt = 1; break;
1314 	case AFMT_MU_LAW:	da_fmt = 2; break;
1315 	case AFMT_A_LAW:	da_fmt = 3; break;
1316 	default:		ASSERT(0);
1317 	}
1318 
1319 	DBGPV("da_fmt = %d\n", da_fmt);
1320 	ASSERT(framerate >= 4000 && framerate <= 49000);
1321 	ad1843_write_bits(lith, &ad1843_C2C, framerate);
1322 	ad1843_write_multi(lith, 2,
1323 			   &ad1843_ADLF, da_fmt, &ad1843_ADRF, da_fmt);
1324 }
1325 
ad1843_shutdown_adc(lithium_t * lith)1326 static void ad1843_shutdown_adc(lithium_t *lith)
1327 {
1328 	/* nothing to do */
1329 }
1330 
1331 /*
1332  * Fully initialize the ad1843.  As described in the AD1843 data
1333  * sheet, section "START-UP SEQUENCE".  The numbered comments are
1334  * subsection headings from the data sheet.  See the data sheet, pages
1335  * 52-54, for more info.
1336  *
1337  * return 0 on success, -errno on failure.  */
1338 
ad1843_init(lithium_t * lith)1339 static int __init ad1843_init(lithium_t *lith)
1340 {
1341 	unsigned long later;
1342 	int err;
1343 
1344 	err = li_init(lith);
1345 	if (err)
1346 		return err;
1347 
1348 	if (ad1843_read_bits(lith, &ad1843_INIT) != 0) {
1349 		printk(KERN_ERR "vwsnd sound: AD1843 won't initialize\n");
1350 		return -EIO;
1351 	}
1352 
1353 	ad1843_write_bits(lith, &ad1843_SCF, 1);
1354 
1355 	/* 4. Put the conversion resources into standby. */
1356 
1357 	ad1843_write_bits(lith, &ad1843_PDNI, 0);
1358 	later = jiffies + HZ / 2;	/* roughly half a second */
1359 	DBGDO(shut_up++);
1360 	while (ad1843_read_bits(lith, &ad1843_PDNO)) {
1361 		if (time_after(jiffies, later)) {
1362 			printk(KERN_ERR
1363 			       "vwsnd audio: AD1843 won't power up\n");
1364 			return -EIO;
1365 		}
1366 		schedule();
1367 	}
1368 	DBGDO(shut_up--);
1369 
1370 	/* 5. Power up the clock generators and enable clock output pins. */
1371 
1372 	ad1843_write_multi(lith, 2, &ad1843_C1EN, 1, &ad1843_C2EN, 1);
1373 
1374 	/* 6. Configure conversion resources while they are in standby. */
1375 
1376  	/* DAC1 uses clock 1 as source, ADC uses clock 2.  Always. */
1377 
1378 	ad1843_write_multi(lith, 3,
1379 			   &ad1843_DA1C, 1,
1380 			   &ad1843_ADLC, 2,
1381 			   &ad1843_ADRC, 2);
1382 
1383 	/* 7. Enable conversion resources. */
1384 
1385 	ad1843_write_bits(lith, &ad1843_ADTLK, 1);
1386 	ad1843_write_multi(lith, 5,
1387 			   &ad1843_ANAEN, 1,
1388 			   &ad1843_AAMEN, 1,
1389 			   &ad1843_DA1EN, 1,
1390 			   &ad1843_ADLEN, 1,
1391 			   &ad1843_ADREN, 1);
1392 
1393 	/* 8. Configure conversion resources while they are enabled. */
1394 
1395 	ad1843_write_bits(lith, &ad1843_DA1C, 1);
1396 
1397 	/* Unmute all channels. */
1398 
1399 	ad1843_set_outsrc(lith,
1400 			  (SOUND_MASK_PCM | SOUND_MASK_LINE |
1401 			   SOUND_MASK_MIC | SOUND_MASK_CD));
1402 	ad1843_write_multi(lith, 2, &ad1843_LDA1AM, 0, &ad1843_RDA1AM, 0);
1403 
1404 	/* Set default recording source to Line In and set
1405 	 * mic gain to +20 dB.
1406 	 */
1407 
1408 	ad1843_set_recsrc(lith, SOUND_MASK_LINE);
1409 	ad1843_write_multi(lith, 2, &ad1843_LMGE, 1, &ad1843_RMGE, 1);
1410 
1411 	/* Set Speaker Out level to +/- 4V and unmute it. */
1412 
1413 	ad1843_write_multi(lith, 2, &ad1843_HPOS, 1, &ad1843_HPOM, 0);
1414 
1415 	return 0;
1416 }
1417 
1418 /*****************************************************************************/
1419 /* PCM I/O */
1420 
1421 #define READ_INTR_MASK  (LI_INTR_COMM1_TRIG | LI_INTR_COMM1_OVERFLOW)
1422 #define WRITE_INTR_MASK (LI_INTR_COMM2_TRIG | LI_INTR_COMM2_UNDERFLOW)
1423 
1424 typedef enum vwsnd_port_swstate {	/* software state */
1425 	SW_OFF,
1426 	SW_INITIAL,
1427 	SW_RUN,
1428 	SW_DRAIN,
1429 } vwsnd_port_swstate_t;
1430 
1431 typedef enum vwsnd_port_hwstate {	/* hardware state */
1432 	HW_STOPPED,
1433 	HW_RUNNING,
1434 } vwsnd_port_hwstate_t;
1435 
1436 /*
1437  * These flags are read by ISR, but only written at baseline.
1438  */
1439 
1440 typedef enum vwsnd_port_flags {
1441 	DISABLED = 1 << 0,
1442 	ERFLOWN  = 1 << 1,		/* overflown or underflown */
1443 	HW_BUSY  = 1 << 2,
1444 } vwsnd_port_flags_t;
1445 
1446 /*
1447  * vwsnd_port is the per-port data structure.  Each device has two
1448  * ports, one for input and one for output.
1449  *
1450  * Locking:
1451  *
1452  *	port->lock protects: hwstate, flags, swb_[iu]_avail.
1453  *
1454  *	devc->io_sema protects: swstate, sw_*, swb_[iu]_idx.
1455  *
1456  *	everything else is only written by open/release or
1457  *	pcm_{setup,shutdown}(), which are serialized by a
1458  *	combination of devc->open_sema and devc->io_sema.
1459  */
1460 
1461 typedef struct vwsnd_port {
1462 
1463 	spinlock_t	lock;
1464 	wait_queue_head_t queue;
1465 	vwsnd_port_swstate_t swstate;
1466 	vwsnd_port_hwstate_t hwstate;
1467 	vwsnd_port_flags_t flags;
1468 
1469 	int		sw_channels;
1470 	int		sw_samplefmt;
1471 	int		sw_framerate;
1472 	int		sample_size;
1473 	int		frame_size;
1474 	unsigned int	zero_word;	/* zero for the sample format */
1475 
1476 	int		sw_fragshift;
1477 	int		sw_fragcount;
1478 	int		sw_subdivshift;
1479 
1480 	unsigned int	hw_fragshift;
1481 	unsigned int	hw_fragsize;
1482 	unsigned int	hw_fragcount;
1483 
1484 	int		hwbuf_size;
1485 	unsigned long	hwbuf_paddr;
1486 	unsigned long	hwbuf_vaddr;
1487 	caddr_t		hwbuf;		/* hwbuf == hwbuf_vaddr */
1488 	int		hwbuf_max;	/* max bytes to preload */
1489 
1490 	caddr_t		swbuf;
1491 	unsigned int	swbuf_size;	/* size in bytes */
1492 	unsigned int	swb_u_idx;	/* index of next user byte */
1493 	unsigned int	swb_i_idx;	/* index of next intr byte */
1494 	unsigned int	swb_u_avail;	/* # bytes avail to user */
1495 	unsigned int	swb_i_avail;	/* # bytes avail to intr */
1496 
1497 	dma_chan_t	chan;
1498 
1499 	/* Accounting */
1500 
1501 	int		byte_count;
1502 	int		frag_count;
1503 	int		MSC_offset;
1504 
1505 } vwsnd_port_t;
1506 
1507 /* vwsnd_dev is the per-device data structure. */
1508 
1509 typedef struct vwsnd_dev {
1510 	struct vwsnd_dev *next_dev;
1511 	int		audio_minor;	/* minor number of audio device */
1512 	int		mixer_minor;	/* minor number of mixer device */
1513 
1514 	struct semaphore open_sema;
1515 	struct semaphore io_sema;
1516 	struct semaphore mix_sema;
1517 	mode_t		open_mode;
1518 	wait_queue_head_t open_wait;
1519 
1520 	lithium_t	lith;
1521 
1522 	vwsnd_port_t	rport;
1523 	vwsnd_port_t	wport;
1524 } vwsnd_dev_t;
1525 
1526 static vwsnd_dev_t *vwsnd_dev_list;	/* linked list of all devices */
1527 
1528 static atomic_t vwsnd_use_count = ATOMIC_INIT(0);
1529 
1530 # define INC_USE_COUNT (atomic_inc(&vwsnd_use_count))
1531 # define DEC_USE_COUNT (atomic_dec(&vwsnd_use_count))
1532 # define IN_USE        (atomic_read(&vwsnd_use_count) != 0)
1533 
1534 /*
1535  * Lithium can only DMA multiples of 32 bytes.  Its DMA buffer may
1536  * be up to 8 Kb.  This driver always uses 8 Kb.
1537  *
1538  * Memory bug workaround -- I'm not sure what's going on here, but
1539  * somehow pcm_copy_out() was triggering segv's going on to the next
1540  * page of the hw buffer.  So, I make the hw buffer one size bigger
1541  * than we actually use.  That way, the following page is allocated
1542  * and mapped, and no error.  I suspect that something is broken
1543  * in Cobalt, but haven't really investigated.  HBO is the actual
1544  * size of the buffer, and HWBUF_ORDER is what we allocate.
1545  */
1546 
1547 #define HWBUF_SHIFT 13
1548 #define HWBUF_SIZE (1 << HWBUF_SHIFT)
1549 # define HBO         (HWBUF_SHIFT > PAGE_SHIFT ? HWBUF_SHIFT - PAGE_SHIFT : 0)
1550 # define HWBUF_ORDER (HBO + 1)		/* next size bigger */
1551 #define MIN_SPEED 4000
1552 #define MAX_SPEED 49000
1553 
1554 #define MIN_FRAGSHIFT			(DMACHUNK_SHIFT + 1)
1555 #define MAX_FRAGSHIFT			(PAGE_SHIFT)
1556 #define MIN_FRAGSIZE			(1 << MIN_FRAGSHIFT)
1557 #define MAX_FRAGSIZE			(1 << MAX_FRAGSHIFT)
1558 #define MIN_FRAGCOUNT(fragsize)		3
1559 #define MAX_FRAGCOUNT(fragsize)		(32 * PAGE_SIZE / (fragsize))
1560 #define DEFAULT_FRAGSHIFT		12
1561 #define DEFAULT_FRAGCOUNT		16
1562 #define DEFAULT_SUBDIVSHIFT		0
1563 
1564 /*
1565  * The software buffer (swbuf) is a ring buffer shared between user
1566  * level and interrupt level.  Each level owns some of the bytes in
1567  * the buffer, and may give bytes away by calling swb_inc_{u,i}().
1568  * User level calls _u for user, and interrupt level calls _i for
1569  * interrupt.
1570  *
1571  * port->swb_{u,i}_avail is the number of bytes available to that level.
1572  *
1573  * port->swb_{u,i}_idx is the index of the first available byte in the
1574  * buffer.
1575  *
1576  * Each level calls swb_inc_{u,i}() to atomically increment its index,
1577  * recalculate the number of bytes available for both sides, and
1578  * return the number of bytes available.  Since each side can only
1579  * give away bytes, the other side can only increase the number of
1580  * bytes available to this side.  Each side updates its own index
1581  * variable, swb_{u,i}_idx, so no lock is needed to read it.
1582  *
1583  * To query the number of bytes available, call swb_inc_{u,i} with an
1584  * increment of zero.
1585  */
1586 
__swb_inc_u(vwsnd_port_t * port,int inc)1587 static __inline__ unsigned int __swb_inc_u(vwsnd_port_t *port, int inc)
1588 {
1589 	if (inc) {
1590 		port->swb_u_idx += inc;
1591 		port->swb_u_idx %= port->swbuf_size;
1592 		port->swb_u_avail -= inc;
1593 		port->swb_i_avail += inc;
1594 	}
1595 	return port->swb_u_avail;
1596 }
1597 
swb_inc_u(vwsnd_port_t * port,int inc)1598 static __inline__ unsigned int swb_inc_u(vwsnd_port_t *port, int inc)
1599 {
1600 	unsigned long flags;
1601 	unsigned int ret;
1602 
1603 	spin_lock_irqsave(&port->lock, flags);
1604 	{
1605 		ret = __swb_inc_u(port, inc);
1606 	}
1607 	spin_unlock_irqrestore(&port->lock, flags);
1608 	return ret;
1609 }
1610 
__swb_inc_i(vwsnd_port_t * port,int inc)1611 static __inline__ unsigned int __swb_inc_i(vwsnd_port_t *port, int inc)
1612 {
1613 	if (inc) {
1614 		port->swb_i_idx += inc;
1615 		port->swb_i_idx %= port->swbuf_size;
1616 		port->swb_i_avail -= inc;
1617 		port->swb_u_avail += inc;
1618 	}
1619 	return port->swb_i_avail;
1620 }
1621 
swb_inc_i(vwsnd_port_t * port,int inc)1622 static __inline__ unsigned int swb_inc_i(vwsnd_port_t *port, int inc)
1623 {
1624 	unsigned long flags;
1625 	unsigned int ret;
1626 
1627 	spin_lock_irqsave(&port->lock, flags);
1628 	{
1629 		ret = __swb_inc_i(port, inc);
1630 	}
1631 	spin_unlock_irqrestore(&port->lock, flags);
1632 	return ret;
1633 }
1634 
1635 /*
1636  * pcm_setup - this routine initializes all port state after
1637  * mode-setting ioctls have been done, but before the first I/O is
1638  * done.
1639  *
1640  * Locking: called with devc->io_sema held.
1641  *
1642  * Returns 0 on success, -errno on failure.
1643  */
1644 
pcm_setup(vwsnd_dev_t * devc,vwsnd_port_t * rport,vwsnd_port_t * wport)1645 static int pcm_setup(vwsnd_dev_t *devc,
1646 		     vwsnd_port_t *rport,
1647 		     vwsnd_port_t *wport)
1648 {
1649 	vwsnd_port_t *aport = rport ? rport : wport;
1650 	int sample_size;
1651 	unsigned int zero_word;
1652 
1653 	DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport);
1654 
1655 	ASSERT(aport != NULL);
1656 	if (aport->swbuf != NULL)
1657 		return 0;
1658 	switch (aport->sw_samplefmt) {
1659 	case AFMT_MU_LAW:
1660 		sample_size = 1;
1661 		zero_word = 0xFFFFFFFF ^ 0x80808080;
1662 		break;
1663 
1664 	case AFMT_A_LAW:
1665 		sample_size = 1;
1666 		zero_word = 0xD5D5D5D5 ^ 0x80808080;
1667 		break;
1668 
1669 	case AFMT_U8:
1670 		sample_size = 1;
1671 		zero_word = 0x80808080;
1672 		break;
1673 
1674 	case AFMT_S8:
1675 		sample_size = 1;
1676 		zero_word = 0x00000000;
1677 		break;
1678 
1679 	case AFMT_S16_LE:
1680 		sample_size = 2;
1681 		zero_word = 0x00000000;
1682 		break;
1683 
1684 	default:
1685 		sample_size = 0;	/* prevent compiler warning */
1686 		zero_word = 0;
1687 		ASSERT(0);
1688 	}
1689 	aport->sample_size  = sample_size;
1690 	aport->zero_word    = zero_word;
1691 	aport->frame_size   = aport->sw_channels * aport->sample_size;
1692 	aport->hw_fragshift = aport->sw_fragshift - aport->sw_subdivshift;
1693 	aport->hw_fragsize  = 1 << aport->hw_fragshift;
1694 	aport->hw_fragcount = aport->sw_fragcount << aport->sw_subdivshift;
1695 	ASSERT(aport->hw_fragsize >= MIN_FRAGSIZE);
1696 	ASSERT(aport->hw_fragsize <= MAX_FRAGSIZE);
1697 	ASSERT(aport->hw_fragcount >= MIN_FRAGCOUNT(aport->hw_fragsize));
1698 	ASSERT(aport->hw_fragcount <= MAX_FRAGCOUNT(aport->hw_fragsize));
1699 	if (rport) {
1700 		int hwfrags, swfrags;
1701 		rport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE;
1702 		hwfrags = rport->hwbuf_max >> aport->hw_fragshift;
1703 		swfrags = aport->hw_fragcount - hwfrags;
1704 		if (swfrags < 2)
1705 			swfrags = 2;
1706 		rport->swbuf_size = swfrags * aport->hw_fragsize;
1707 		DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags);
1708 		DBGPV("read hwbuf_max = %d, swbuf_size = %d\n",
1709 		     rport->hwbuf_max, rport->swbuf_size);
1710 	}
1711 	if (wport) {
1712 		int hwfrags, swfrags;
1713 		int total_bytes = aport->hw_fragcount * aport->hw_fragsize;
1714 		wport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE;
1715 		if (wport->hwbuf_max > total_bytes)
1716 			wport->hwbuf_max = total_bytes;
1717 		hwfrags = wport->hwbuf_max >> aport->hw_fragshift;
1718 		DBGPV("hwfrags = %d\n", hwfrags);
1719 		swfrags = aport->hw_fragcount - hwfrags;
1720 		if (swfrags < 2)
1721 			swfrags = 2;
1722 		wport->swbuf_size = swfrags * aport->hw_fragsize;
1723 		DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags);
1724 		DBGPV("write hwbuf_max = %d, swbuf_size = %d\n",
1725 		     wport->hwbuf_max, wport->swbuf_size);
1726 	}
1727 
1728 	aport->swb_u_idx    = 0;
1729 	aport->swb_i_idx    = 0;
1730 	aport->byte_count   = 0;
1731 
1732 	/*
1733 	 * Is this a Cobalt bug?  We need to make this buffer extend
1734 	 * one page further than we actually use -- somehow memcpy
1735 	 * causes an exceptoin otherwise.  I suspect there's a bug in
1736 	 * Cobalt (or somewhere) where it's generating a fault on a
1737 	 * speculative load or something.  Obviously, I haven't taken
1738 	 * the time to track it down.
1739 	 */
1740 
1741 	aport->swbuf        = vmalloc(aport->swbuf_size + PAGE_SIZE);
1742 	if (!aport->swbuf)
1743 		return -ENOMEM;
1744 	if (rport && wport) {
1745 		ASSERT(aport == rport);
1746 		ASSERT(wport->swbuf == NULL);
1747 		/* One extra page - see comment above. */
1748 		wport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE);
1749 		if (!wport->swbuf) {
1750 			vfree(aport->swbuf);
1751 			aport->swbuf = NULL;
1752 			return -ENOMEM;
1753 		}
1754 		wport->sample_size  = rport->sample_size;
1755 		wport->zero_word    = rport->zero_word;
1756 		wport->frame_size   = rport->frame_size;
1757 		wport->hw_fragshift = rport->hw_fragshift;
1758 		wport->hw_fragsize  = rport->hw_fragsize;
1759 		wport->hw_fragcount = rport->hw_fragcount;
1760 		wport->swbuf_size   = rport->swbuf_size;
1761 		wport->hwbuf_max    = rport->hwbuf_max;
1762 		wport->swb_u_idx    = rport->swb_u_idx;
1763 		wport->swb_i_idx    = rport->swb_i_idx;
1764 		wport->byte_count   = rport->byte_count;
1765 	}
1766 	if (rport) {
1767 		rport->swb_u_avail = 0;
1768 		rport->swb_i_avail = rport->swbuf_size;
1769 		rport->swstate = SW_RUN;
1770 		li_setup_dma(&rport->chan,
1771 			     &li_comm1,
1772 			     &devc->lith,
1773 			     rport->hwbuf_paddr,
1774 			     HWBUF_SHIFT,
1775 			     rport->hw_fragshift,
1776 			     rport->sw_channels,
1777 			     rport->sample_size);
1778 		ad1843_setup_adc(&devc->lith,
1779 				 rport->sw_framerate,
1780 				 rport->sw_samplefmt,
1781 				 rport->sw_channels);
1782 		li_enable_interrupts(&devc->lith, READ_INTR_MASK);
1783 		if (!(rport->flags & DISABLED)) {
1784 			ustmsc_t ustmsc;
1785 			rport->hwstate = HW_RUNNING;
1786 			li_activate_dma(&rport->chan);
1787 			li_read_USTMSC(&rport->chan, &ustmsc);
1788 			rport->MSC_offset = ustmsc.msc;
1789 		}
1790 	}
1791 	if (wport) {
1792 		if (wport->hwbuf_max > wport->swbuf_size)
1793 			wport->hwbuf_max = wport->swbuf_size;
1794 		wport->flags &= ~ERFLOWN;
1795 		wport->swb_u_avail = wport->swbuf_size;
1796 		wport->swb_i_avail = 0;
1797 		wport->swstate = SW_RUN;
1798 		li_setup_dma(&wport->chan,
1799 			     &li_comm2,
1800 			     &devc->lith,
1801 			     wport->hwbuf_paddr,
1802 			     HWBUF_SHIFT,
1803 			     wport->hw_fragshift,
1804 			     wport->sw_channels,
1805 			     wport->sample_size);
1806 		ad1843_setup_dac(&devc->lith,
1807 				 wport->sw_framerate,
1808 				 wport->sw_samplefmt,
1809 				 wport->sw_channels);
1810 		li_enable_interrupts(&devc->lith, WRITE_INTR_MASK);
1811 	}
1812 	DBGRV();
1813 	return 0;
1814 }
1815 
1816 /*
1817  * pcm_shutdown_port - shut down one port (direction) for PCM I/O.
1818  * Only called from pcm_shutdown.
1819  */
1820 
pcm_shutdown_port(vwsnd_dev_t * devc,vwsnd_port_t * aport,unsigned int mask)1821 static void pcm_shutdown_port(vwsnd_dev_t *devc,
1822 			      vwsnd_port_t *aport,
1823 			      unsigned int mask)
1824 {
1825 	unsigned long flags;
1826 	vwsnd_port_hwstate_t hwstate;
1827 	DECLARE_WAITQUEUE(wait, current);
1828 
1829 	aport->swstate = SW_INITIAL;
1830 	add_wait_queue(&aport->queue, &wait);
1831 	while (1) {
1832 		set_current_state(TASK_UNINTERRUPTIBLE);
1833 		spin_lock_irqsave(&aport->lock, flags);
1834 		{
1835 			hwstate = aport->hwstate;
1836 		}
1837 		spin_unlock_irqrestore(&aport->lock, flags);
1838 		if (hwstate == HW_STOPPED)
1839 			break;
1840 		schedule();
1841 	}
1842 	current->state = TASK_RUNNING;
1843 	remove_wait_queue(&aport->queue, &wait);
1844 	li_disable_interrupts(&devc->lith, mask);
1845 	if (aport == &devc->rport)
1846 		ad1843_shutdown_adc(&devc->lith);
1847 	else /* aport == &devc->wport) */
1848 		ad1843_shutdown_dac(&devc->lith);
1849 	li_shutdown_dma(&aport->chan);
1850 	vfree(aport->swbuf);
1851 	aport->swbuf = NULL;
1852 	aport->byte_count = 0;
1853 }
1854 
1855 /*
1856  * pcm_shutdown undoes what pcm_setup did.
1857  * Also sets the ports' swstate to newstate.
1858  */
1859 
pcm_shutdown(vwsnd_dev_t * devc,vwsnd_port_t * rport,vwsnd_port_t * wport)1860 static void pcm_shutdown(vwsnd_dev_t *devc,
1861 			 vwsnd_port_t *rport,
1862 			 vwsnd_port_t *wport)
1863 {
1864 	DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport);
1865 
1866 	if (rport && rport->swbuf) {
1867 		DBGPV("shutting down rport\n");
1868 		pcm_shutdown_port(devc, rport, READ_INTR_MASK);
1869 	}
1870 	if (wport && wport->swbuf) {
1871 		DBGPV("shutting down wport\n");
1872 		pcm_shutdown_port(devc, wport, WRITE_INTR_MASK);
1873 	}
1874 	DBGRV();
1875 }
1876 
pcm_copy_in(vwsnd_port_t * rport,int swidx,int hwidx,int nb)1877 static void pcm_copy_in(vwsnd_port_t *rport, int swidx, int hwidx, int nb)
1878 {
1879 	char *src = rport->hwbuf + hwidx;
1880 	char *dst = rport->swbuf + swidx;
1881 	int fmt = rport->sw_samplefmt;
1882 
1883 	DBGPV("swidx = %d, hwidx = %d\n", swidx, hwidx);
1884 	ASSERT(rport->hwbuf != NULL);
1885 	ASSERT(rport->swbuf != NULL);
1886 	ASSERT(nb > 0 && (nb % 32) == 0);
1887 	ASSERT(swidx % 32 == 0 && hwidx % 32 == 0);
1888 	ASSERT(swidx >= 0 && swidx + nb <= rport->swbuf_size);
1889 	ASSERT(hwidx >= 0 && hwidx + nb <= rport->hwbuf_size);
1890 
1891 	if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) {
1892 
1893 		/* See Sample Format Notes above. */
1894 
1895 		char *end = src + nb;
1896 		while (src < end)
1897 			*dst++ = *src++ ^ 0x80;
1898 	} else
1899 		memcpy(dst, src, nb);
1900 }
1901 
pcm_copy_out(vwsnd_port_t * wport,int swidx,int hwidx,int nb)1902 static void pcm_copy_out(vwsnd_port_t *wport, int swidx, int hwidx, int nb)
1903 {
1904 	char *src = wport->swbuf + swidx;
1905 	char *dst = wport->hwbuf + hwidx;
1906 	int fmt = wport->sw_samplefmt;
1907 
1908 	ASSERT(nb > 0 && (nb % 32) == 0);
1909 	ASSERT(wport->hwbuf != NULL);
1910 	ASSERT(wport->swbuf != NULL);
1911 	ASSERT(swidx % 32 == 0 && hwidx % 32 == 0);
1912 	ASSERT(swidx >= 0 && swidx + nb <= wport->swbuf_size);
1913 	ASSERT(hwidx >= 0 && hwidx + nb <= wport->hwbuf_size);
1914 	if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) {
1915 
1916 		/* See Sample Format Notes above. */
1917 
1918 		char *end = src + nb;
1919 		while (src < end)
1920 			*dst++ = *src++ ^ 0x80;
1921 	} else
1922 		memcpy(dst, src, nb);
1923 }
1924 
1925 /*
1926  * pcm_output() is called both from baselevel and from interrupt level.
1927  * This is where audio frames are copied into the hardware-accessible
1928  * ring buffer.
1929  *
1930  * Locking note: The part of this routine that figures out what to do
1931  * holds wport->lock.  The longer part releases wport->lock, but sets
1932  * wport->flags & HW_BUSY.  Afterward, it reacquires wport->lock, and
1933  * checks for more work to do.
1934  *
1935  * If another thread calls pcm_output() while HW_BUSY is set, it
1936  * returns immediately, knowing that the thread that set HW_BUSY will
1937  * look for more work to do before returning.
1938  *
1939  * This has the advantage that port->lock is held for several short
1940  * periods instead of one long period.  Also, when pcm_output is
1941  * called from base level, it reenables interrupts.
1942  */
1943 
pcm_output(vwsnd_dev_t * devc,int erflown,int nb)1944 static void pcm_output(vwsnd_dev_t *devc, int erflown, int nb)
1945 {
1946 	vwsnd_port_t *wport = &devc->wport;
1947 	const int hwmax  = wport->hwbuf_max;
1948 	const int hwsize = wport->hwbuf_size;
1949 	const int swsize = wport->swbuf_size;
1950 	const int fragsize = wport->hw_fragsize;
1951 	unsigned long iflags;
1952 
1953 	DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb);
1954 	spin_lock_irqsave(&wport->lock, iflags);
1955 	if (erflown)
1956 		wport->flags |= ERFLOWN;
1957 	(void) __swb_inc_u(wport, nb);
1958 	if (wport->flags & HW_BUSY) {
1959 		spin_unlock_irqrestore(&wport->lock, iflags);
1960 		DBGPV("returning: HW BUSY\n");
1961 		return;
1962 	}
1963 	if (wport->flags & DISABLED) {
1964 		spin_unlock_irqrestore(&wport->lock, iflags);
1965 		DBGPV("returning: DISABLED\n");
1966 		return;
1967 	}
1968 	wport->flags |= HW_BUSY;
1969 	while (1) {
1970 		int swptr, hwptr, hw_avail, sw_avail, swidx;
1971 		vwsnd_port_hwstate_t hwstate = wport->hwstate;
1972 		vwsnd_port_swstate_t swstate = wport->swstate;
1973 		int hw_unavail;
1974 		ustmsc_t ustmsc;
1975 
1976 		hwptr = li_read_hwptr(&wport->chan);
1977 		swptr = li_read_swptr(&wport->chan);
1978 		hw_unavail = (swptr - hwptr + hwsize) % hwsize;
1979 		hw_avail = (hwmax - hw_unavail) & -fragsize;
1980 		sw_avail = wport->swb_i_avail & -fragsize;
1981 		if (sw_avail && swstate == SW_RUN) {
1982 			if (wport->flags & ERFLOWN) {
1983 				wport->flags &= ~ERFLOWN;
1984 			}
1985 		} else if (swstate == SW_INITIAL ||
1986 			 swstate == SW_OFF ||
1987 			 (swstate == SW_DRAIN &&
1988 			  !sw_avail &&
1989 			  (wport->flags & ERFLOWN))) {
1990 			DBGP("stopping.  hwstate = %d\n", hwstate);
1991 			if (hwstate != HW_STOPPED) {
1992 				li_deactivate_dma(&wport->chan);
1993 				wport->hwstate = HW_STOPPED;
1994 			}
1995 			wake_up(&wport->queue);
1996 			break;
1997 		}
1998 		if (!sw_avail || !hw_avail)
1999 			break;
2000 		spin_unlock_irqrestore(&wport->lock, iflags);
2001 
2002 		/*
2003 		 * We gave up the port lock, but we have the HW_BUSY flag.
2004 		 * Proceed without accessing any nonlocal state.
2005 		 * Do not exit the loop -- must check for more work.
2006 		 */
2007 
2008 		swidx = wport->swb_i_idx;
2009 		nb = hw_avail;
2010 		if (nb > sw_avail)
2011 			nb = sw_avail;
2012 		if (nb > hwsize - swptr)
2013 			nb = hwsize - swptr; /* don't overflow hwbuf */
2014 		if (nb > swsize - swidx)
2015 			nb = swsize - swidx; /* don't overflow swbuf */
2016 		ASSERT(nb > 0);
2017 		if (nb % fragsize) {
2018 			DBGP("nb = %d, fragsize = %d\n", nb, fragsize);
2019 			DBGP("hw_avail = %d\n", hw_avail);
2020 			DBGP("sw_avail = %d\n", sw_avail);
2021 			DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr);
2022 			DBGP("swsize = %d, swidx = %d\n", swsize, swidx);
2023 		}
2024 		ASSERT(!(nb % fragsize));
2025 		DBGPV("copying swb[%d..%d] to hwb[%d..%d]\n",
2026 		      swidx, swidx + nb, swptr, swptr + nb);
2027 		pcm_copy_out(wport, swidx, swptr, nb);
2028 		li_write_swptr(&wport->chan, (swptr + nb) % hwsize);
2029 		spin_lock_irqsave(&wport->lock, iflags);
2030 		if (hwstate == HW_STOPPED) {
2031 			DBGPV("starting\n");
2032 			li_activate_dma(&wport->chan);
2033 			wport->hwstate = HW_RUNNING;
2034 			li_read_USTMSC(&wport->chan, &ustmsc);
2035 			ASSERT(wport->byte_count % wport->frame_size == 0);
2036 			wport->MSC_offset = ustmsc.msc - wport->byte_count / wport->frame_size;
2037 		}
2038 		__swb_inc_i(wport, nb);
2039 		wport->byte_count += nb;
2040 		wport->frag_count += nb / fragsize;
2041 		ASSERT(nb % fragsize == 0);
2042 		wake_up(&wport->queue);
2043 	}
2044 	wport->flags &= ~HW_BUSY;
2045 	spin_unlock_irqrestore(&wport->lock, iflags);
2046 	DBGRV();
2047 }
2048 
2049 /*
2050  * pcm_input() is called both from baselevel and from interrupt level.
2051  * This is where audio frames are copied out of the hardware-accessible
2052  * ring buffer.
2053  *
2054  * Locking note: The part of this routine that figures out what to do
2055  * holds rport->lock.  The longer part releases rport->lock, but sets
2056  * rport->flags & HW_BUSY.  Afterward, it reacquires rport->lock, and
2057  * checks for more work to do.
2058  *
2059  * If another thread calls pcm_input() while HW_BUSY is set, it
2060  * returns immediately, knowing that the thread that set HW_BUSY will
2061  * look for more work to do before returning.
2062  *
2063  * This has the advantage that port->lock is held for several short
2064  * periods instead of one long period.  Also, when pcm_input is
2065  * called from base level, it reenables interrupts.
2066  */
2067 
pcm_input(vwsnd_dev_t * devc,int erflown,int nb)2068 static void pcm_input(vwsnd_dev_t *devc, int erflown, int nb)
2069 {
2070 	vwsnd_port_t *rport = &devc->rport;
2071 	const int hwmax  = rport->hwbuf_max;
2072 	const int hwsize = rport->hwbuf_size;
2073 	const int swsize = rport->swbuf_size;
2074 	const int fragsize = rport->hw_fragsize;
2075 	unsigned long iflags;
2076 
2077 	DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb);
2078 
2079 	spin_lock_irqsave(&rport->lock, iflags);
2080 	if (erflown)
2081 		rport->flags |= ERFLOWN;
2082 	(void) __swb_inc_u(rport, nb);
2083 	if (rport->flags & HW_BUSY || !rport->swbuf) {
2084 		spin_unlock_irqrestore(&rport->lock, iflags);
2085 		DBGPV("returning: HW BUSY or !swbuf\n");
2086 		return;
2087 	}
2088 	if (rport->flags & DISABLED) {
2089 		spin_unlock_irqrestore(&rport->lock, iflags);
2090 		DBGPV("returning: DISABLED\n");
2091 		return;
2092 	}
2093 	rport->flags |= HW_BUSY;
2094 	while (1) {
2095 		int swptr, hwptr, hw_avail, sw_avail, swidx;
2096 		vwsnd_port_hwstate_t hwstate = rport->hwstate;
2097 		vwsnd_port_swstate_t swstate = rport->swstate;
2098 
2099 		hwptr = li_read_hwptr(&rport->chan);
2100 		swptr = li_read_swptr(&rport->chan);
2101 		hw_avail = (hwptr - swptr + hwsize) % hwsize & -fragsize;
2102 		if (hw_avail > hwmax)
2103 			hw_avail = hwmax;
2104 		sw_avail = rport->swb_i_avail & -fragsize;
2105 		if (swstate != SW_RUN) {
2106 			DBGP("stopping.  hwstate = %d\n", hwstate);
2107 			if (hwstate != HW_STOPPED) {
2108 				li_deactivate_dma(&rport->chan);
2109 				rport->hwstate = HW_STOPPED;
2110 			}
2111 			wake_up(&rport->queue);
2112 			break;
2113 		}
2114 		if (!sw_avail || !hw_avail)
2115 			break;
2116 		spin_unlock_irqrestore(&rport->lock, iflags);
2117 
2118 		/*
2119 		 * We gave up the port lock, but we have the HW_BUSY flag.
2120 		 * Proceed without accessing any nonlocal state.
2121 		 * Do not exit the loop -- must check for more work.
2122 		 */
2123 
2124 		swidx = rport->swb_i_idx;
2125 		nb = hw_avail;
2126 		if (nb > sw_avail)
2127 			nb = sw_avail;
2128 		if (nb > hwsize - swptr)
2129 			nb = hwsize - swptr; /* don't overflow hwbuf */
2130 		if (nb > swsize - swidx)
2131 			nb = swsize - swidx; /* don't overflow swbuf */
2132 		ASSERT(nb > 0);
2133 		if (nb % fragsize) {
2134 			DBGP("nb = %d, fragsize = %d\n", nb, fragsize);
2135 			DBGP("hw_avail = %d\n", hw_avail);
2136 			DBGP("sw_avail = %d\n", sw_avail);
2137 			DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr);
2138 			DBGP("swsize = %d, swidx = %d\n", swsize, swidx);
2139 		}
2140 		ASSERT(!(nb % fragsize));
2141 		DBGPV("copying hwb[%d..%d] to swb[%d..%d]\n",
2142 		      swptr, swptr + nb, swidx, swidx + nb);
2143 		pcm_copy_in(rport, swidx, swptr, nb);
2144 		li_write_swptr(&rport->chan, (swptr + nb) % hwsize);
2145 		spin_lock_irqsave(&rport->lock, iflags);
2146 		__swb_inc_i(rport, nb);
2147 		rport->byte_count += nb;
2148 		rport->frag_count += nb / fragsize;
2149 		ASSERT(nb % fragsize == 0);
2150 		wake_up(&rport->queue);
2151 	}
2152 	rport->flags &= ~HW_BUSY;
2153 	spin_unlock_irqrestore(&rport->lock, iflags);
2154 	DBGRV();
2155 }
2156 
2157 /*
2158  * pcm_flush_frag() writes zero samples to fill the current fragment,
2159  * then flushes it to the hardware.
2160  *
2161  * It is only meaningful to flush output, not input.
2162  */
2163 
pcm_flush_frag(vwsnd_dev_t * devc)2164 static void pcm_flush_frag(vwsnd_dev_t *devc)
2165 {
2166 	vwsnd_port_t *wport = &devc->wport;
2167 
2168 	DBGPV("swstate = %d\n", wport->swstate);
2169 	if (wport->swstate == SW_RUN) {
2170 		int idx = wport->swb_u_idx;
2171 		int end = (idx + wport->hw_fragsize - 1)
2172 			>> wport->hw_fragshift
2173 			<< wport->hw_fragshift;
2174 		int nb = end - idx;
2175 		DBGPV("clearing %d bytes\n", nb);
2176 		if (nb)
2177 			memset(wport->swbuf + idx,
2178 			       (char) wport->zero_word,
2179 			       nb);
2180 		wport->swstate = SW_DRAIN;
2181 		pcm_output(devc, 0, nb);
2182 	}
2183 	DBGRV();
2184 }
2185 
2186 /*
2187  * Wait for output to drain.  This sleeps uninterruptibly because
2188  * there is nothing intelligent we can do if interrupted.  This
2189  * means the process will be delayed in responding to the signal.
2190  */
2191 
pcm_write_sync(vwsnd_dev_t * devc)2192 static void pcm_write_sync(vwsnd_dev_t *devc)
2193 {
2194 	vwsnd_port_t *wport = &devc->wport;
2195 	DECLARE_WAITQUEUE(wait, current);
2196 	unsigned long flags;
2197 	vwsnd_port_hwstate_t hwstate;
2198 
2199 	DBGEV("(devc=0x%p)\n", devc);
2200 	add_wait_queue(&wport->queue, &wait);
2201 	while (1) {
2202 		set_current_state(TASK_UNINTERRUPTIBLE);
2203 		spin_lock_irqsave(&wport->lock, flags);
2204 		{
2205 			hwstate = wport->hwstate;
2206 		}
2207 		spin_unlock_irqrestore(&wport->lock, flags);
2208 		if (hwstate == HW_STOPPED)
2209 			break;
2210 		schedule();
2211 	}
2212 	current->state = TASK_RUNNING;
2213 	remove_wait_queue(&wport->queue, &wait);
2214 	DBGPV("swstate = %d, hwstate = %d\n", wport->swstate, wport->hwstate);
2215 	DBGRV();
2216 }
2217 
2218 /*****************************************************************************/
2219 /* audio driver */
2220 
2221 /*
2222  * seek on an audio device always fails.
2223  */
2224 
vwsnd_audio_read_intr(vwsnd_dev_t * devc,unsigned int status)2225 static void vwsnd_audio_read_intr(vwsnd_dev_t *devc, unsigned int status)
2226 {
2227 	int overflown = status & LI_INTR_COMM1_OVERFLOW;
2228 
2229 	if (status & READ_INTR_MASK)
2230 		pcm_input(devc, overflown, 0);
2231 }
2232 
vwsnd_audio_write_intr(vwsnd_dev_t * devc,unsigned int status)2233 static void vwsnd_audio_write_intr(vwsnd_dev_t *devc, unsigned int status)
2234 {
2235 	int underflown = status & LI_INTR_COMM2_UNDERFLOW;
2236 
2237 	if (status & WRITE_INTR_MASK)
2238 		pcm_output(devc, underflown, 0);
2239 }
2240 
vwsnd_audio_intr(int irq,void * dev_id,struct pt_regs * regs)2241 static void vwsnd_audio_intr(int irq, void *dev_id, struct pt_regs *regs)
2242 {
2243 	vwsnd_dev_t *devc = (vwsnd_dev_t *) dev_id;
2244 	unsigned int status;
2245 
2246 	DBGEV("(irq=%d, dev_id=0x%p, regs=0x%p)\n", irq, dev_id, regs);
2247 
2248 	status = li_get_clear_intr_status(&devc->lith);
2249 	vwsnd_audio_read_intr(devc, status);
2250 	vwsnd_audio_write_intr(devc, status);
2251 }
2252 
vwsnd_audio_do_read(struct file * file,char * buffer,size_t count,loff_t * ppos)2253 static ssize_t vwsnd_audio_do_read(struct file *file,
2254 				   char *buffer,
2255 				   size_t count,
2256 				   loff_t *ppos)
2257 {
2258 	vwsnd_dev_t *devc = file->private_data;
2259 	vwsnd_port_t *rport = ((file->f_mode & FMODE_READ) ?
2260 			       &devc->rport : NULL);
2261 	int ret, nb;
2262 
2263 	DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
2264 	     file, buffer, count, ppos);
2265 
2266 	if (!rport)
2267 		return -EINVAL;
2268 
2269 	if (rport->swbuf == NULL) {
2270 		vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2271 			&devc->wport : NULL;
2272 		ret = pcm_setup(devc, rport, wport);
2273 		if (ret < 0)
2274 			return ret;
2275 	}
2276 
2277 	if (!access_ok(VERIFY_READ, buffer, count))
2278 		return -EFAULT;
2279 	ret = 0;
2280 	while (count) {
2281 		DECLARE_WAITQUEUE(wait, current);
2282 		add_wait_queue(&rport->queue, &wait);
2283 		while ((nb = swb_inc_u(rport, 0)) == 0) {
2284 			DBGPV("blocking\n");
2285 			set_current_state(TASK_INTERRUPTIBLE);
2286 			if (rport->flags & DISABLED ||
2287 			    file->f_flags & O_NONBLOCK) {
2288 				current->state = TASK_RUNNING;
2289 				remove_wait_queue(&rport->queue, &wait);
2290 				return ret ? ret : -EAGAIN;
2291 			}
2292 			schedule();
2293 			if (signal_pending(current)) {
2294 				current->state = TASK_RUNNING;
2295 				remove_wait_queue(&rport->queue, &wait);
2296 				return ret ? ret : -ERESTARTSYS;
2297 			}
2298 		}
2299 		current->state = TASK_RUNNING;
2300 		remove_wait_queue(&rport->queue, &wait);
2301 		pcm_input(devc, 0, 0);
2302 		/* nb bytes are available in userbuf. */
2303 		if (nb > count)
2304 			nb = count;
2305 		DBGPV("nb = %d\n", nb);
2306 		copy_to_user(buffer, rport->swbuf + rport->swb_u_idx, nb);
2307 		(void) swb_inc_u(rport, nb);
2308 		buffer += nb;
2309 		count -= nb;
2310 		ret += nb;
2311 	}
2312 	DBGPV("returning %d\n", ret);
2313 	return ret;
2314 }
2315 
vwsnd_audio_read(struct file * file,char * buffer,size_t count,loff_t * ppos)2316 static ssize_t vwsnd_audio_read(struct file *file,
2317 				char *buffer,
2318 				size_t count,
2319 				loff_t *ppos)
2320 {
2321 	vwsnd_dev_t *devc = file->private_data;
2322 	ssize_t ret;
2323 
2324 	down(&devc->io_sema);
2325 	ret = vwsnd_audio_do_read(file, buffer, count, ppos);
2326 	up(&devc->io_sema);
2327 	return ret;
2328 }
2329 
vwsnd_audio_do_write(struct file * file,const char * buffer,size_t count,loff_t * ppos)2330 static ssize_t vwsnd_audio_do_write(struct file *file,
2331 				    const char *buffer,
2332 				    size_t count,
2333 				    loff_t *ppos)
2334 {
2335 	vwsnd_dev_t *devc = file->private_data;
2336 	vwsnd_port_t *wport = ((file->f_mode & FMODE_WRITE) ?
2337 			       &devc->wport : NULL);
2338 	int ret, nb;
2339 
2340 	DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
2341 	      file, buffer, count, ppos);
2342 
2343 	if (!wport)
2344 		return -EINVAL;
2345 
2346 	if (wport->swbuf == NULL) {
2347 		vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2348 			&devc->rport : NULL;
2349 		ret = pcm_setup(devc, rport, wport);
2350 		if (ret < 0)
2351 			return ret;
2352 	}
2353 	if (!access_ok(VERIFY_WRITE, buffer, count))
2354 		return -EFAULT;
2355 	ret = 0;
2356 	while (count) {
2357 		DECLARE_WAITQUEUE(wait, current);
2358 		add_wait_queue(&wport->queue, &wait);
2359 		while ((nb = swb_inc_u(wport, 0)) == 0) {
2360 			set_current_state(TASK_INTERRUPTIBLE);
2361 			if (wport->flags & DISABLED ||
2362 			    file->f_flags & O_NONBLOCK) {
2363 				current->state = TASK_RUNNING;
2364 				remove_wait_queue(&wport->queue, &wait);
2365 				return ret ? ret : -EAGAIN;
2366 			}
2367 			schedule();
2368 			if (signal_pending(current)) {
2369 				current->state = TASK_RUNNING;
2370 				remove_wait_queue(&wport->queue, &wait);
2371 				return ret ? ret : -ERESTARTSYS;
2372 			}
2373 		}
2374 		current->state = TASK_RUNNING;
2375 		remove_wait_queue(&wport->queue, &wait);
2376 		/* nb bytes are available in userbuf. */
2377 		if (nb > count)
2378 			nb = count;
2379 		DBGPV("nb = %d\n", nb);
2380 		copy_from_user(wport->swbuf + wport->swb_u_idx, buffer, nb);
2381 		pcm_output(devc, 0, nb);
2382 		buffer += nb;
2383 		count -= nb;
2384 		ret += nb;
2385 	}
2386 	DBGPV("returning %d\n", ret);
2387 	return ret;
2388 }
2389 
vwsnd_audio_write(struct file * file,const char * buffer,size_t count,loff_t * ppos)2390 static ssize_t vwsnd_audio_write(struct file *file,
2391 				 const char *buffer,
2392 				 size_t count,
2393 				 loff_t *ppos)
2394 {
2395 	vwsnd_dev_t *devc = file->private_data;
2396 	ssize_t ret;
2397 
2398 	down(&devc->io_sema);
2399 	ret = vwsnd_audio_do_write(file, buffer, count, ppos);
2400 	up(&devc->io_sema);
2401 	return ret;
2402 }
2403 
2404 /* No kernel lock - fine */
vwsnd_audio_poll(struct file * file,struct poll_table_struct * wait)2405 static unsigned int vwsnd_audio_poll(struct file *file,
2406 				     struct poll_table_struct *wait)
2407 {
2408 	vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2409 	vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2410 		&devc->rport : NULL;
2411 	vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2412 		&devc->wport : NULL;
2413 	unsigned int mask = 0;
2414 
2415 	DBGEV("(file=0x%p, wait=0x%p)\n", file, wait);
2416 
2417 	ASSERT(rport || wport);
2418 	if (rport) {
2419 		poll_wait(file, &rport->queue, wait);
2420 		if (swb_inc_u(rport, 0))
2421 			mask |= (POLLIN | POLLRDNORM);
2422 	}
2423 	if (wport) {
2424 		poll_wait(file, &wport->queue, wait);
2425 		if (wport->swbuf == NULL || swb_inc_u(wport, 0))
2426 			mask |= (POLLOUT | POLLWRNORM);
2427 	}
2428 
2429 	DBGPV("returning 0x%x\n", mask);
2430 	return mask;
2431 }
2432 
vwsnd_audio_do_ioctl(struct inode * inode,struct file * file,unsigned int cmd,unsigned long arg)2433 static int vwsnd_audio_do_ioctl(struct inode *inode,
2434 				struct file *file,
2435 				unsigned int cmd,
2436 				unsigned long arg)
2437 {
2438 	vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2439 	vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2440 		&devc->rport : NULL;
2441 	vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2442 		&devc->wport : NULL;
2443 	vwsnd_port_t *aport = rport ? rport : wport;
2444 	struct audio_buf_info buf_info;
2445 	struct count_info info;
2446 	unsigned long flags;
2447 	int ival;
2448 
2449 
2450 	DBGEV("(inode=0x%p, file=0x%p, cmd=0x%x, arg=0x%lx)\n",
2451 	      inode, file, cmd, arg);
2452 	switch (cmd) {
2453 	case OSS_GETVERSION:		/* _SIOR ('M', 118, int) */
2454 		DBGX("OSS_GETVERSION\n");
2455 		ival = SOUND_VERSION;
2456 		return put_user(ival, (int *) arg);
2457 
2458 	case SNDCTL_DSP_GETCAPS:	/* _SIOR ('P',15, int) */
2459 		DBGX("SNDCTL_DSP_GETCAPS\n");
2460 		ival = DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER;
2461 		return put_user(ival, (int *) arg);
2462 
2463 	case SNDCTL_DSP_GETFMTS:	/* _SIOR ('P',11, int) */
2464 		DBGX("SNDCTL_DSP_GETFMTS\n");
2465 		ival = (AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW |
2466 			AFMT_U8 | AFMT_S8);
2467 		return put_user(ival, (int *) arg);
2468 		break;
2469 
2470 	case SOUND_PCM_READ_RATE:	/* _SIOR ('P', 2, int) */
2471 		DBGX("SOUND_PCM_READ_RATE\n");
2472 		ival = aport->sw_framerate;
2473 		return put_user(ival, (int *) arg);
2474 
2475 	case SOUND_PCM_READ_CHANNELS:	/* _SIOR ('P', 6, int) */
2476 		DBGX("SOUND_PCM_READ_CHANNELS\n");
2477 		ival = aport->sw_channels;
2478 		return put_user(ival, (int *) arg);
2479 
2480 	case SNDCTL_DSP_SPEED:		/* _SIOWR('P', 2, int) */
2481 		if (get_user(ival, (int *) arg))
2482 			return -EFAULT;
2483 		DBGX("SNDCTL_DSP_SPEED %d\n", ival);
2484 		if (ival) {
2485 			if (aport->swstate != SW_INITIAL) {
2486 				DBGX("SNDCTL_DSP_SPEED failed: swstate = %d\n",
2487 				     aport->swstate);
2488 				return -EINVAL;
2489 			}
2490 			if (ival < MIN_SPEED)
2491 				ival = MIN_SPEED;
2492 			if (ival > MAX_SPEED)
2493 				ival = MAX_SPEED;
2494 			if (rport)
2495 				rport->sw_framerate = ival;
2496 			if (wport)
2497 				wport->sw_framerate = ival;
2498 		} else
2499 			ival = aport->sw_framerate;
2500 		return put_user(ival, (int *) arg);
2501 
2502 	case SNDCTL_DSP_STEREO:		/* _SIOWR('P', 3, int) */
2503 		if (get_user(ival, (int *) arg))
2504 			return -EFAULT;
2505 		DBGX("SNDCTL_DSP_STEREO %d\n", ival);
2506 		if (ival != 0 && ival != 1)
2507 			return -EINVAL;
2508 		if (aport->swstate != SW_INITIAL)
2509 			return -EINVAL;
2510 		if (rport)
2511 			rport->sw_channels = ival + 1;
2512 		if (wport)
2513 			wport->sw_channels = ival + 1;
2514 		return put_user(ival, (int *) arg);
2515 
2516 	case SNDCTL_DSP_CHANNELS:	/* _SIOWR('P', 6, int) */
2517 		if (get_user(ival, (int *) arg))
2518 			return -EFAULT;
2519 		DBGX("SNDCTL_DSP_CHANNELS %d\n", ival);
2520 		if (ival != 1 && ival != 2)
2521 			return -EINVAL;
2522 		if (aport->swstate != SW_INITIAL)
2523 			return -EINVAL;
2524 		if (rport)
2525 			rport->sw_channels = ival;
2526 		if (wport)
2527 			wport->sw_channels = ival;
2528 		return put_user(ival, (int *) arg);
2529 
2530 	case SNDCTL_DSP_GETBLKSIZE:	/* _SIOWR('P', 4, int) */
2531 		ival = pcm_setup(devc, rport, wport);
2532 		if (ival < 0) {
2533 			DBGX("SNDCTL_DSP_GETBLKSIZE failed, errno %d\n", ival);
2534 			return ival;
2535 		}
2536 		ival = 1 << aport->sw_fragshift;
2537 		DBGX("SNDCTL_DSP_GETBLKSIZE returning %d\n", ival);
2538 		return put_user(ival, (int *) arg);
2539 
2540 	case SNDCTL_DSP_SETFRAGMENT:	/* _SIOWR('P',10, int) */
2541 		if (get_user(ival, (int *) arg))
2542 			return -EFAULT;
2543 		DBGX("SNDCTL_DSP_SETFRAGMENT %d:%d\n",
2544 		     ival >> 16, ival & 0xFFFF);
2545 		if (aport->swstate != SW_INITIAL)
2546 			return -EINVAL;
2547 		{
2548 			int sw_fragshift = ival & 0xFFFF;
2549 			int sw_subdivshift = aport->sw_subdivshift;
2550 			int hw_fragshift = sw_fragshift - sw_subdivshift;
2551 			int sw_fragcount = (ival >> 16) & 0xFFFF;
2552 			int hw_fragsize;
2553 			if (hw_fragshift < MIN_FRAGSHIFT)
2554 				hw_fragshift = MIN_FRAGSHIFT;
2555 			if (hw_fragshift > MAX_FRAGSHIFT)
2556 				hw_fragshift = MAX_FRAGSHIFT;
2557 			sw_fragshift = hw_fragshift + aport->sw_subdivshift;
2558 			hw_fragsize = 1 << hw_fragshift;
2559 			if (sw_fragcount < MIN_FRAGCOUNT(hw_fragsize))
2560 				sw_fragcount = MIN_FRAGCOUNT(hw_fragsize);
2561 			if (sw_fragcount > MAX_FRAGCOUNT(hw_fragsize))
2562 				sw_fragcount = MAX_FRAGCOUNT(hw_fragsize);
2563 			DBGPV("sw_fragshift = %d\n", sw_fragshift);
2564 			DBGPV("rport = 0x%p, wport = 0x%p\n", rport, wport);
2565 			if (rport) {
2566 				rport->sw_fragshift = sw_fragshift;
2567 				rport->sw_fragcount = sw_fragcount;
2568 			}
2569 			if (wport) {
2570 				wport->sw_fragshift = sw_fragshift;
2571 				wport->sw_fragcount = sw_fragcount;
2572 			}
2573 			ival = sw_fragcount << 16 | sw_fragshift;
2574 		}
2575 		DBGX("SNDCTL_DSP_SETFRAGMENT returns %d:%d\n",
2576 		      ival >> 16, ival & 0xFFFF);
2577 		return put_user(ival, (int *) arg);
2578 
2579 	case SNDCTL_DSP_SUBDIVIDE:	/* _SIOWR('P', 9, int) */
2580                 if (get_user(ival, (int *) arg))
2581 			return -EFAULT;
2582 		DBGX("SNDCTL_DSP_SUBDIVIDE %d\n", ival);
2583 		if (aport->swstate != SW_INITIAL)
2584 			return -EINVAL;
2585 		{
2586 			int subdivshift;
2587 			int hw_fragshift, hw_fragsize, hw_fragcount;
2588 			switch (ival) {
2589 			case 1: subdivshift = 0; break;
2590 			case 2: subdivshift = 1; break;
2591 			case 4: subdivshift = 2; break;
2592 			default: return -EINVAL;
2593 			}
2594 			hw_fragshift = aport->sw_fragshift - subdivshift;
2595 			if (hw_fragshift < MIN_FRAGSHIFT ||
2596 			    hw_fragshift > MAX_FRAGSHIFT)
2597 				return -EINVAL;
2598 			hw_fragsize = 1 << hw_fragshift;
2599 			hw_fragcount = aport->sw_fragcount >> subdivshift;
2600 			if (hw_fragcount < MIN_FRAGCOUNT(hw_fragsize) ||
2601 			    hw_fragcount > MAX_FRAGCOUNT(hw_fragsize))
2602 				return -EINVAL;
2603 			if (rport)
2604 				rport->sw_subdivshift = subdivshift;
2605 			if (wport)
2606 				wport->sw_subdivshift = subdivshift;
2607 		}
2608 		return 0;
2609 
2610 	case SNDCTL_DSP_SETFMT:		/* _SIOWR('P',5, int) */
2611 		if (get_user(ival, (int *) arg))
2612 			return -EFAULT;
2613 		DBGX("SNDCTL_DSP_SETFMT %d\n", ival);
2614 		if (ival != AFMT_QUERY) {
2615 			if (aport->swstate != SW_INITIAL) {
2616 				DBGP("SETFMT failed, swstate = %d\n",
2617 				     aport->swstate);
2618 				return -EINVAL;
2619 			}
2620 			switch (ival) {
2621 			case AFMT_MU_LAW:
2622 			case AFMT_A_LAW:
2623 			case AFMT_U8:
2624 			case AFMT_S8:
2625 			case AFMT_S16_LE:
2626 				if (rport)
2627 					rport->sw_samplefmt = ival;
2628 				if (wport)
2629 					wport->sw_samplefmt = ival;
2630 				break;
2631 			default:
2632 				return -EINVAL;
2633 			}
2634 		}
2635 		ival = aport->sw_samplefmt;
2636 		return put_user(ival, (int *) arg);
2637 
2638 	case SNDCTL_DSP_GETOSPACE:	/* _SIOR ('P',12, audio_buf_info) */
2639 		DBGXV("SNDCTL_DSP_GETOSPACE\n");
2640 		if (!wport)
2641 			return -EINVAL;
2642 		ival = pcm_setup(devc, rport, wport);
2643 		if (ival < 0)
2644 			return ival;
2645 		ival = swb_inc_u(wport, 0);
2646 		buf_info.fragments = ival >> wport->sw_fragshift;
2647 		buf_info.fragstotal = wport->sw_fragcount;
2648 		buf_info.fragsize = 1 << wport->sw_fragshift;
2649 		buf_info.bytes = ival;
2650 		DBGXV("SNDCTL_DSP_GETOSPACE returns { %d %d %d %d }\n",
2651 		     buf_info.fragments, buf_info.fragstotal,
2652 		     buf_info.fragsize, buf_info.bytes);
2653 		return copy_to_user((void *) arg, &buf_info, sizeof buf_info) ? -EFAULT : 0;
2654 
2655 	case SNDCTL_DSP_GETISPACE:	/* _SIOR ('P',13, audio_buf_info) */
2656 		DBGX("SNDCTL_DSP_GETISPACE\n");
2657 		if (!rport)
2658 			return -EINVAL;
2659 		ival = pcm_setup(devc, rport, wport);
2660 		if (ival < 0)
2661 			return ival;
2662 		ival = swb_inc_u(rport, 0);
2663 		buf_info.fragments = ival >> rport->sw_fragshift;
2664 		buf_info.fragstotal = rport->sw_fragcount;
2665 		buf_info.fragsize = 1 << rport->sw_fragshift;
2666 		buf_info.bytes = ival;
2667 		DBGX("SNDCTL_DSP_GETISPACE returns { %d %d %d %d }\n",
2668 		     buf_info.fragments, buf_info.fragstotal,
2669 		     buf_info.fragsize, buf_info.bytes);
2670 		return copy_to_user((void *) arg, &buf_info, sizeof buf_info) ? -EFAULT : 0;
2671 
2672 	case SNDCTL_DSP_NONBLOCK:	/* _SIO  ('P',14) */
2673 		DBGX("SNDCTL_DSP_NONBLOCK\n");
2674 		file->f_flags |= O_NONBLOCK;
2675 		return 0;
2676 
2677 	case SNDCTL_DSP_RESET:		/* _SIO  ('P', 0) */
2678 		DBGX("SNDCTL_DSP_RESET\n");
2679 		/*
2680 		 * Nothing special needs to be done for input.  Input
2681 		 * samples sit in swbuf, but it will be reinitialized
2682 		 * to empty when pcm_setup() is called.
2683 		 */
2684 		if (wport && wport->swbuf) {
2685 			wport->swstate = SW_INITIAL;
2686 			pcm_output(devc, 0, 0);
2687 			pcm_write_sync(devc);
2688 		}
2689 		pcm_shutdown(devc, rport, wport);
2690 		return 0;
2691 
2692 	case SNDCTL_DSP_SYNC:		/* _SIO  ('P', 1) */
2693 		DBGX("SNDCTL_DSP_SYNC\n");
2694 		if (wport) {
2695 			pcm_flush_frag(devc);
2696 			pcm_write_sync(devc);
2697 		}
2698 		pcm_shutdown(devc, rport, wport);
2699 		return 0;
2700 
2701 	case SNDCTL_DSP_POST:		/* _SIO  ('P', 8) */
2702 		DBGX("SNDCTL_DSP_POST\n");
2703 		if (!wport)
2704 			return -EINVAL;
2705 		pcm_flush_frag(devc);
2706 		return 0;
2707 
2708 	case SNDCTL_DSP_GETIPTR:	/* _SIOR ('P', 17, count_info) */
2709 		DBGX("SNDCTL_DSP_GETIPTR\n");
2710 		if (!rport)
2711 			return -EINVAL;
2712 		spin_lock_irqsave(&rport->lock, flags);
2713 		{
2714 			ustmsc_t ustmsc;
2715 			if (rport->hwstate == HW_RUNNING) {
2716 				ASSERT(rport->swstate == SW_RUN);
2717 				li_read_USTMSC(&rport->chan, &ustmsc);
2718 				info.bytes = ustmsc.msc - rport->MSC_offset;
2719 				info.bytes *= rport->frame_size;
2720 			} else {
2721 				info.bytes = rport->byte_count;
2722 			}
2723 			info.blocks = rport->frag_count;
2724 			info.ptr = 0;	/* not implemented */
2725 			rport->frag_count = 0;
2726 		}
2727 		spin_unlock_irqrestore(&rport->lock, flags);
2728 		return copy_to_user((void *) arg, &info, sizeof info) ? -EFAULT : 0;
2729 
2730 	case SNDCTL_DSP_GETOPTR:	/* _SIOR ('P',18, count_info) */
2731 		DBGX("SNDCTL_DSP_GETOPTR\n");
2732 		if (!wport)
2733 			return -EINVAL;
2734 		spin_lock_irqsave(&wport->lock, flags);
2735 		{
2736 			ustmsc_t ustmsc;
2737 			if (wport->hwstate == HW_RUNNING) {
2738 				ASSERT(wport->swstate == SW_RUN);
2739 				li_read_USTMSC(&wport->chan, &ustmsc);
2740 				info.bytes = ustmsc.msc - wport->MSC_offset;
2741 				info.bytes *= wport->frame_size;
2742 			} else {
2743 				info.bytes = wport->byte_count;
2744 			}
2745 			info.blocks = wport->frag_count;
2746 			info.ptr = 0;	/* not implemented */
2747 			wport->frag_count = 0;
2748 		}
2749 		spin_unlock_irqrestore(&wport->lock, flags);
2750 		return copy_to_user((void *) arg, &info, sizeof info) ? -EFAULT : 0;
2751 
2752 	case SNDCTL_DSP_GETODELAY:	/* _SIOR ('P', 23, int) */
2753 		DBGX("SNDCTL_DSP_GETODELAY\n");
2754 		if (!wport)
2755 			return -EINVAL;
2756 		spin_lock_irqsave(&wport->lock, flags);
2757 		{
2758 			int fsize = wport->frame_size;
2759 			ival = wport->swb_i_avail / fsize;
2760 			if (wport->hwstate == HW_RUNNING) {
2761 				int swptr, hwptr, hwframes, hwbytes, hwsize;
2762 				int totalhwbytes;
2763 				ustmsc_t ustmsc;
2764 
2765 				hwsize = wport->hwbuf_size;
2766 				swptr = li_read_swptr(&wport->chan);
2767 				li_read_USTMSC(&wport->chan, &ustmsc);
2768 				hwframes = ustmsc.msc - wport->MSC_offset;
2769 				totalhwbytes = hwframes * fsize;
2770 				hwptr = totalhwbytes % hwsize;
2771 				hwbytes = (swptr - hwptr + hwsize) % hwsize;
2772 				ival += hwbytes / fsize;
2773 			}
2774 		}
2775 		spin_unlock_irqrestore(&wport->lock, flags);
2776 		return put_user(ival, (int *) arg);
2777 
2778 	case SNDCTL_DSP_PROFILE:	/* _SIOW ('P', 23, int) */
2779 		DBGX("SNDCTL_DSP_PROFILE\n");
2780 
2781 		/*
2782 		 * Thomas Sailer explains SNDCTL_DSP_PROFILE
2783 		 * (private email, March 24, 1999):
2784 		 *
2785 		 *     This gives the sound driver a hint on what it
2786 		 *     should do with partial fragments
2787 		 *     (i.e. fragments partially filled with write).
2788 		 *     This can direct the driver to zero them or
2789 		 *     leave them alone.  But don't ask me what this
2790 		 *     is good for, my driver just zeroes the last
2791 		 *     fragment before the receiver stops, no idea
2792 		 *     what good for any other behaviour could
2793 		 *     be. Implementing it as NOP seems safe.
2794 		 */
2795 
2796 		break;
2797 
2798 	case SNDCTL_DSP_GETTRIGGER:	/* _SIOR ('P',16, int) */
2799 		DBGX("SNDCTL_DSP_GETTRIGGER\n");
2800 		ival = 0;
2801 		if (rport) {
2802 			spin_lock_irqsave(&rport->lock, flags);
2803 			{
2804 				if (!(rport->flags & DISABLED))
2805 					ival |= PCM_ENABLE_INPUT;
2806 			}
2807 			spin_unlock_irqrestore(&rport->lock, flags);
2808 		}
2809 		if (wport) {
2810 			spin_lock_irqsave(&wport->lock, flags);
2811 			{
2812 				if (!(wport->flags & DISABLED))
2813 					ival |= PCM_ENABLE_OUTPUT;
2814 			}
2815 			spin_unlock_irqrestore(&wport->lock, flags);
2816 		}
2817 		return put_user(ival, (int *) arg);
2818 
2819 	case SNDCTL_DSP_SETTRIGGER:	/* _SIOW ('P',16, int) */
2820 		if (get_user(ival, (int *) arg))
2821 			return -EFAULT;
2822 		DBGX("SNDCTL_DSP_SETTRIGGER %d\n", ival);
2823 
2824 		/*
2825 		 * If user is disabling I/O and port is not in initial
2826 		 * state, fail with EINVAL.
2827 		 */
2828 
2829 		if (((rport && !(ival & PCM_ENABLE_INPUT)) ||
2830 		     (wport && !(ival & PCM_ENABLE_OUTPUT))) &&
2831 		    aport->swstate != SW_INITIAL)
2832 			return -EINVAL;
2833 
2834 		if (rport) {
2835 			vwsnd_port_hwstate_t hwstate;
2836 			spin_lock_irqsave(&rport->lock, flags);
2837 			{
2838 				hwstate = rport->hwstate;
2839 				if (ival & PCM_ENABLE_INPUT)
2840 					rport->flags &= ~DISABLED;
2841 				else
2842 					rport->flags |= DISABLED;
2843 			}
2844 			spin_unlock_irqrestore(&rport->lock, flags);
2845 			if (hwstate != HW_RUNNING && ival & PCM_ENABLE_INPUT) {
2846 
2847 				if (rport->swstate == SW_INITIAL)
2848 					pcm_setup(devc, rport, wport);
2849 				else
2850 					li_activate_dma(&rport->chan);
2851 			}
2852 		}
2853 		if (wport) {
2854 			vwsnd_port_flags_t pflags;
2855 			spin_lock_irqsave(&wport->lock, flags);
2856 			{
2857 				pflags = wport->flags;
2858 				if (ival & PCM_ENABLE_OUTPUT)
2859 					wport->flags &= ~DISABLED;
2860 				else
2861 					wport->flags |= DISABLED;
2862 			}
2863 			spin_unlock_irqrestore(&wport->lock, flags);
2864 			if (pflags & DISABLED && ival & PCM_ENABLE_OUTPUT) {
2865 				if (wport->swstate == SW_RUN)
2866 					pcm_output(devc, 0, 0);
2867 			}
2868 		}
2869 		return 0;
2870 
2871 	default:
2872 		DBGP("unknown ioctl 0x%x\n", cmd);
2873 		return -EINVAL;
2874 	}
2875 	DBGP("unimplemented ioctl 0x%x\n", cmd);
2876 	return -EINVAL;
2877 }
2878 
vwsnd_audio_ioctl(struct inode * inode,struct file * file,unsigned int cmd,unsigned long arg)2879 static int vwsnd_audio_ioctl(struct inode *inode,
2880 				struct file *file,
2881 				unsigned int cmd,
2882 				unsigned long arg)
2883 {
2884 	vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2885 	int ret;
2886 
2887 	down(&devc->io_sema);
2888 	ret = vwsnd_audio_do_ioctl(inode, file, cmd, arg);
2889 	up(&devc->io_sema);
2890 	return ret;
2891 }
2892 
2893 /* No mmap. */
2894 
vwsnd_audio_mmap(struct file * file,struct vm_area_struct * vma)2895 static int vwsnd_audio_mmap(struct file *file, struct vm_area_struct *vma)
2896 {
2897 	DBGE("(file=0x%p, vma=0x%p)\n", file, vma);
2898 	return -ENODEV;
2899 }
2900 
2901 /*
2902  * Open the audio device for read and/or write.
2903  *
2904  * Returns 0 on success, -errno on failure.
2905  */
2906 
vwsnd_audio_open(struct inode * inode,struct file * file)2907 static int vwsnd_audio_open(struct inode *inode, struct file *file)
2908 {
2909 	vwsnd_dev_t *devc;
2910 	dev_t minor = MINOR(inode->i_rdev);
2911 	int sw_samplefmt;
2912 
2913 	DBGE("(inode=0x%p, file=0x%p)\n", inode, file);
2914 
2915 	INC_USE_COUNT;
2916 	for (devc = vwsnd_dev_list; devc; devc = devc->next_dev)
2917 		if ((devc->audio_minor & ~0x0F) == (minor & ~0x0F))
2918 			break;
2919 
2920 	if (devc == NULL) {
2921 		DEC_USE_COUNT;
2922 		return -ENODEV;
2923 	}
2924 
2925 	down(&devc->open_sema);
2926 	while (devc->open_mode & file->f_mode) {
2927 		up(&devc->open_sema);
2928 		if (file->f_flags & O_NONBLOCK) {
2929 			DEC_USE_COUNT;
2930 			return -EBUSY;
2931 		}
2932 		interruptible_sleep_on(&devc->open_wait);
2933 		if (signal_pending(current)) {
2934 			DEC_USE_COUNT;
2935 			return -ERESTARTSYS;
2936 		}
2937 		down(&devc->open_sema);
2938 	}
2939 	devc->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
2940 	up(&devc->open_sema);
2941 
2942 	/* get default sample format from minor number. */
2943 
2944 	sw_samplefmt = 0;
2945 	if ((minor & 0xF) == SND_DEV_DSP)
2946 		sw_samplefmt = AFMT_U8;
2947 	else if ((minor & 0xF) == SND_DEV_AUDIO)
2948 		sw_samplefmt = AFMT_MU_LAW;
2949 	else if ((minor & 0xF) == SND_DEV_DSP16)
2950 		sw_samplefmt = AFMT_S16_LE;
2951 	else
2952 		ASSERT(0);
2953 
2954 	/* Initialize vwsnd_ports. */
2955 
2956 	down(&devc->io_sema);
2957 	{
2958 		if (file->f_mode & FMODE_READ) {
2959 			devc->rport.swstate        = SW_INITIAL;
2960 			devc->rport.flags          = 0;
2961 			devc->rport.sw_channels    = 1;
2962 			devc->rport.sw_samplefmt   = sw_samplefmt;
2963 			devc->rport.sw_framerate   = 8000;
2964 			devc->rport.sw_fragshift   = DEFAULT_FRAGSHIFT;
2965 			devc->rport.sw_fragcount   = DEFAULT_FRAGCOUNT;
2966 			devc->rport.sw_subdivshift = DEFAULT_SUBDIVSHIFT;
2967 			devc->rport.byte_count     = 0;
2968 			devc->rport.frag_count     = 0;
2969 		}
2970 		if (file->f_mode & FMODE_WRITE) {
2971 			devc->wport.swstate        = SW_INITIAL;
2972 			devc->wport.flags          = 0;
2973 			devc->wport.sw_channels    = 1;
2974 			devc->wport.sw_samplefmt   = sw_samplefmt;
2975 			devc->wport.sw_framerate   = 8000;
2976 			devc->wport.sw_fragshift   = DEFAULT_FRAGSHIFT;
2977 			devc->wport.sw_fragcount   = DEFAULT_FRAGCOUNT;
2978 			devc->wport.sw_subdivshift = DEFAULT_SUBDIVSHIFT;
2979 			devc->wport.byte_count     = 0;
2980 			devc->wport.frag_count     = 0;
2981 		}
2982 	}
2983 	up(&devc->io_sema);
2984 
2985 	file->private_data = devc;
2986 	DBGRV();
2987 	return 0;
2988 }
2989 
2990 /*
2991  * Release (close) the audio device.
2992  */
2993 
vwsnd_audio_release(struct inode * inode,struct file * file)2994 static int vwsnd_audio_release(struct inode *inode, struct file *file)
2995 {
2996 	vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2997 	vwsnd_port_t *wport = NULL, *rport = NULL;
2998 	int err = 0;
2999 
3000 	lock_kernel();
3001 	down(&devc->io_sema);
3002 	{
3003 		DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3004 
3005 		if (file->f_mode & FMODE_READ)
3006 			rport = &devc->rport;
3007 		if (file->f_mode & FMODE_WRITE) {
3008 			wport = &devc->wport;
3009 			pcm_flush_frag(devc);
3010 			pcm_write_sync(devc);
3011 		}
3012 		pcm_shutdown(devc, rport, wport);
3013 		if (rport)
3014 			rport->swstate = SW_OFF;
3015 		if (wport)
3016 			wport->swstate = SW_OFF;
3017 	}
3018 	up(&devc->io_sema);
3019 
3020 	down(&devc->open_sema);
3021 	{
3022 		devc->open_mode &= ~file->f_mode;
3023 	}
3024 	up(&devc->open_sema);
3025 	wake_up(&devc->open_wait);
3026 	DEC_USE_COUNT;
3027 	DBGR();
3028 	unlock_kernel();
3029 	return err;
3030 }
3031 
3032 static struct file_operations vwsnd_audio_fops = {
3033 	owner:		THIS_MODULE,
3034 	llseek:		no_llseek,
3035 	read:		vwsnd_audio_read,
3036 	write:		vwsnd_audio_write,
3037 	poll:		vwsnd_audio_poll,
3038 	ioctl:		vwsnd_audio_ioctl,
3039 	mmap:		vwsnd_audio_mmap,
3040 	open:		vwsnd_audio_open,
3041 	release:	vwsnd_audio_release,
3042 };
3043 
3044 /*****************************************************************************/
3045 /* mixer driver */
3046 
3047 /* open the mixer device. */
3048 
vwsnd_mixer_open(struct inode * inode,struct file * file)3049 static int vwsnd_mixer_open(struct inode *inode, struct file *file)
3050 {
3051 	vwsnd_dev_t *devc;
3052 
3053 	DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3054 
3055 	INC_USE_COUNT;
3056 	for (devc = vwsnd_dev_list; devc; devc = devc->next_dev)
3057 		if (devc->mixer_minor == MINOR(inode->i_rdev))
3058 			break;
3059 
3060 	if (devc == NULL) {
3061 		DEC_USE_COUNT;
3062 		return -ENODEV;
3063 	}
3064 	file->private_data = devc;
3065 	return 0;
3066 }
3067 
3068 /* release (close) the mixer device. */
3069 
vwsnd_mixer_release(struct inode * inode,struct file * file)3070 static int vwsnd_mixer_release(struct inode *inode, struct file *file)
3071 {
3072 	DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3073 	DEC_USE_COUNT;
3074 	return 0;
3075 }
3076 
3077 /* mixer_read_ioctl handles all read ioctls on the mixer device. */
3078 
mixer_read_ioctl(vwsnd_dev_t * devc,unsigned int nr,caddr_t arg)3079 static int mixer_read_ioctl(vwsnd_dev_t *devc, unsigned int nr, caddr_t arg)
3080 {
3081 	int val = -1;
3082 
3083 	DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg);
3084 
3085 	switch (nr) {
3086 	case SOUND_MIXER_CAPS:
3087 		val = SOUND_CAP_EXCL_INPUT;
3088 		break;
3089 
3090 	case SOUND_MIXER_DEVMASK:
3091 		val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3092 		       SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV);
3093 		break;
3094 
3095 	case SOUND_MIXER_STEREODEVS:
3096 		val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3097 		       SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV);
3098 		break;
3099 
3100 	case SOUND_MIXER_OUTMASK:
3101 		val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3102 		       SOUND_MASK_MIC | SOUND_MASK_CD);
3103 		break;
3104 
3105 	case SOUND_MIXER_RECMASK:
3106 		val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3107 		       SOUND_MASK_MIC | SOUND_MASK_CD);
3108 		break;
3109 
3110 	case SOUND_MIXER_PCM:
3111 		val = ad1843_get_gain(&devc->lith, &ad1843_gain_PCM);
3112 		break;
3113 
3114 	case SOUND_MIXER_LINE:
3115 		val = ad1843_get_gain(&devc->lith, &ad1843_gain_LINE);
3116 		break;
3117 
3118 	case SOUND_MIXER_MIC:
3119 		val = ad1843_get_gain(&devc->lith, &ad1843_gain_MIC);
3120 		break;
3121 
3122 	case SOUND_MIXER_CD:
3123 		val = ad1843_get_gain(&devc->lith, &ad1843_gain_CD);
3124 		break;
3125 
3126 	case SOUND_MIXER_RECLEV:
3127 		val = ad1843_get_gain(&devc->lith, &ad1843_gain_RECLEV);
3128 		break;
3129 
3130 	case SOUND_MIXER_RECSRC:
3131 		val = ad1843_get_recsrc(&devc->lith);
3132 		break;
3133 
3134 	case SOUND_MIXER_OUTSRC:
3135 		val = ad1843_get_outsrc(&devc->lith);
3136 		break;
3137 
3138 	default:
3139 		return -EINVAL;
3140 	}
3141 	return put_user(val, (int *) arg);
3142 }
3143 
3144 /* mixer_write_ioctl handles all write ioctls on the mixer device. */
3145 
mixer_write_ioctl(vwsnd_dev_t * devc,unsigned int nr,caddr_t arg)3146 static int mixer_write_ioctl(vwsnd_dev_t *devc, unsigned int nr, caddr_t arg)
3147 {
3148 	int val;
3149 	int err;
3150 
3151 	DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg);
3152 
3153 	err = get_user(val, (int *) arg);
3154 	if (err)
3155 		return -EFAULT;
3156 	switch (nr) {
3157 	case SOUND_MIXER_PCM:
3158 		val = ad1843_set_gain(&devc->lith, &ad1843_gain_PCM, val);
3159 		break;
3160 
3161 	case SOUND_MIXER_LINE:
3162 		val = ad1843_set_gain(&devc->lith, &ad1843_gain_LINE, val);
3163 		break;
3164 
3165 	case SOUND_MIXER_MIC:
3166 		val = ad1843_set_gain(&devc->lith, &ad1843_gain_MIC, val);
3167 		break;
3168 
3169 	case SOUND_MIXER_CD:
3170 		val = ad1843_set_gain(&devc->lith, &ad1843_gain_CD, val);
3171 		break;
3172 
3173 	case SOUND_MIXER_RECLEV:
3174 		val = ad1843_set_gain(&devc->lith, &ad1843_gain_RECLEV, val);
3175 		break;
3176 
3177 	case SOUND_MIXER_RECSRC:
3178 		if (devc->rport.swbuf || devc->wport.swbuf)
3179 			return -EBUSY;	/* can't change recsrc while running */
3180 		val = ad1843_set_recsrc(&devc->lith, val);
3181 		break;
3182 
3183 	case SOUND_MIXER_OUTSRC:
3184 		val = ad1843_set_outsrc(&devc->lith, val);
3185 		break;
3186 
3187 	default:
3188 		return -EINVAL;
3189 	}
3190 	if (val < 0)
3191 		return val;
3192 	return put_user(val, (int *) arg);
3193 }
3194 
3195 /* This is the ioctl entry to the mixer driver. */
3196 
vwsnd_mixer_ioctl(struct inode * ioctl,struct file * file,unsigned int cmd,unsigned long arg)3197 static int vwsnd_mixer_ioctl(struct inode *ioctl,
3198 			      struct file *file,
3199 			      unsigned int cmd,
3200 			      unsigned long arg)
3201 {
3202 	vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
3203 	const unsigned int nrmask = _IOC_NRMASK << _IOC_NRSHIFT;
3204 	const unsigned int nr = (cmd & nrmask) >> _IOC_NRSHIFT;
3205 	int retval;
3206 
3207 	DBGEV("(devc=0x%p, cmd=0x%x, arg=0x%lx)\n", devc, cmd, arg);
3208 
3209 	down(&devc->mix_sema);
3210 	{
3211 		if ((cmd & ~nrmask) == MIXER_READ(0))
3212 			retval = mixer_read_ioctl(devc, nr, (caddr_t) arg);
3213 		else if ((cmd & ~nrmask) == MIXER_WRITE(0))
3214 			retval = mixer_write_ioctl(devc, nr, (caddr_t) arg);
3215 		else
3216 			retval = -EINVAL;
3217 	}
3218 	up(&devc->mix_sema);
3219 	return retval;
3220 }
3221 
3222 static struct file_operations vwsnd_mixer_fops = {
3223 	owner:		THIS_MODULE,
3224 	llseek:		no_llseek,
3225 	ioctl:		vwsnd_mixer_ioctl,
3226 	open:		vwsnd_mixer_open,
3227 	release:	vwsnd_mixer_release,
3228 };
3229 
3230 /*****************************************************************************/
3231 /* probe/attach/unload */
3232 
3233 /* driver probe routine.  Return nonzero if hardware is found. */
3234 
probe_vwsnd(struct address_info * hw_config)3235 static int __init probe_vwsnd(struct address_info *hw_config)
3236 {
3237 	lithium_t lith;
3238 	int w;
3239 	unsigned long later;
3240 
3241 	DBGEV("(hw_config=0x%p)\n", hw_config);
3242 
3243 	/* XXX verify lithium present (to prevent crash on non-vw) */
3244 
3245 	if (li_create(&lith, hw_config->io_base) != 0) {
3246 		printk(KERN_WARNING "probe_vwsnd: can't map lithium\n");
3247 		return 0;
3248 	}
3249 	later = jiffies + 2;
3250 	li_writel(&lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE);
3251 	do {
3252 		w = li_readl(&lith, LI_HOST_CONTROLLER);
3253 	} while (w == LI_HC_LINK_ENABLE && jiffies < later);
3254 
3255 	li_destroy(&lith);
3256 
3257 	DBGPV("HC = 0x%04x\n", w);
3258 
3259 	if ((w == LI_HC_LINK_ENABLE) || (w & LI_HC_LINK_CODEC)) {
3260 
3261 		/* This may indicate a beta machine with no audio,
3262 		 * or a future machine with different audio.
3263 		 * On beta-release 320 w/ no audio, HC == 0x4000 */
3264 
3265 		printk(KERN_WARNING "probe_vwsnd: audio codec not found\n");
3266 		return 0;
3267 	}
3268 
3269 	if (w & LI_HC_LINK_FAILURE) {
3270 		printk(KERN_WARNING "probe_vwsnd: can't init audio codec\n");
3271 		return 0;
3272 	}
3273 
3274 	printk(KERN_INFO "probe_vwsnd: lithium audio found\n");
3275 
3276 	return 1;
3277 }
3278 
3279 /*
3280  * driver attach routine.  Initialize driver data structures and
3281  * initialize hardware.  A new vwsnd_dev_t is allocated and put
3282  * onto the global list, vwsnd_dev_list.
3283  *
3284  * Return +minor_dev on success, -errno on failure.
3285  */
3286 
attach_vwsnd(struct address_info * hw_config)3287 static int __init attach_vwsnd(struct address_info *hw_config)
3288 {
3289 	vwsnd_dev_t *devc = NULL;
3290 	int err = -ENOMEM;
3291 
3292 	DBGEV("(hw_config=0x%p)\n", hw_config);
3293 
3294 	devc = kmalloc(sizeof (vwsnd_dev_t), GFP_KERNEL);
3295 	if (devc == NULL)
3296 		goto fail0;
3297 
3298 	err = li_create(&devc->lith, hw_config->io_base);
3299 	if (err)
3300 		goto fail1;
3301 
3302 	init_waitqueue(&devc->open_wait);
3303 
3304 	devc->rport.hwbuf_size = HWBUF_SIZE;
3305 	devc->rport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER);
3306 	if (!devc->rport.hwbuf_vaddr)
3307 		goto fail2;
3308 	devc->rport.hwbuf = (caddr_t) devc->rport.hwbuf_vaddr;
3309 	devc->rport.hwbuf_paddr = virt_to_phys(devc->rport.hwbuf);
3310 
3311 	/*
3312 	 * Quote from the NT driver:
3313 	 *
3314 	 * // WARNING!!! HACK to setup output dma!!!
3315 	 * // This is required because even on output there is some data
3316 	 * // trickling into the input DMA channel.  This is a bug in the
3317 	 * // Lithium microcode.
3318 	 * // --sde
3319 	 *
3320 	 * We set the input side's DMA base address here.  It will remain
3321 	 * valid until the driver is unloaded.
3322 	 */
3323 
3324 	li_writel(&devc->lith, LI_COMM1_BASE,
3325 		  devc->rport.hwbuf_paddr >> 8 | 1 << (37 - 8));
3326 
3327 	devc->wport.hwbuf_size = HWBUF_SIZE;
3328 	devc->wport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER);
3329 	if (!devc->wport.hwbuf_vaddr)
3330 		goto fail3;
3331 	devc->wport.hwbuf = (caddr_t) devc->wport.hwbuf_vaddr;
3332 	devc->wport.hwbuf_paddr = virt_to_phys(devc->wport.hwbuf);
3333 	DBGP("wport hwbuf = 0x%p\n", devc->wport.hwbuf);
3334 
3335 	DBGDO(shut_up++);
3336 	err = ad1843_init(&devc->lith);
3337 	DBGDO(shut_up--);
3338 	if (err)
3339 		goto fail4;
3340 
3341 	/* install interrupt handler */
3342 
3343 	err = request_irq(hw_config->irq, vwsnd_audio_intr, 0, "vwsnd", devc);
3344 	if (err)
3345 		goto fail5;
3346 
3347 	/* register this device's drivers. */
3348 
3349 	devc->audio_minor = register_sound_dsp(&vwsnd_audio_fops, -1);
3350 	if ((err = devc->audio_minor) < 0) {
3351 		DBGDO(printk(KERN_WARNING
3352 			     "attach_vwsnd: register_sound_dsp error %d\n",
3353 			     err));
3354 		goto fail6;
3355 	}
3356 	devc->mixer_minor = register_sound_mixer(&vwsnd_mixer_fops,
3357 						 devc->audio_minor >> 4);
3358 	if ((err = devc->mixer_minor) < 0) {
3359 		DBGDO(printk(KERN_WARNING
3360 			     "attach_vwsnd: register_sound_mixer error %d\n",
3361 			     err));
3362 		goto fail7;
3363 	}
3364 
3365 	/* Squirrel away device indices for unload routine. */
3366 
3367 	hw_config->slots[0] = devc->audio_minor;
3368 
3369 	/* Initialize as much of *devc as possible */
3370 
3371 	devc->open_sema = MUTEX;
3372 	devc->io_sema = MUTEX;
3373 	devc->mix_sema = MUTEX;
3374 	devc->open_mode = 0;
3375 	devc->rport.lock = SPIN_LOCK_UNLOCKED;
3376 	init_waitqueue(&devc->rport.queue);
3377 	devc->rport.swstate = SW_OFF;
3378 	devc->rport.hwstate = HW_STOPPED;
3379 	devc->rport.flags = 0;
3380 	devc->rport.swbuf = NULL;
3381 	devc->wport.lock = SPIN_LOCK_UNLOCKED;
3382 	init_waitqueue(&devc->wport.queue);
3383 	devc->wport.swstate = SW_OFF;
3384 	devc->wport.hwstate = HW_STOPPED;
3385 	devc->wport.flags = 0;
3386 	devc->wport.swbuf = NULL;
3387 
3388 	/* Success.  Link us onto the local device list. */
3389 
3390 	devc->next_dev = vwsnd_dev_list;
3391 	vwsnd_dev_list = devc;
3392 	return devc->audio_minor;
3393 
3394 	/* So many ways to fail.  Undo what we did. */
3395 
3396  fail7:
3397 	unregister_sound_dsp(devc->audio_minor);
3398  fail6:
3399 	free_irq(hw_config->irq, devc);
3400  fail5:
3401  fail4:
3402 	free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER);
3403  fail3:
3404 	free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER);
3405  fail2:
3406 	li_destroy(&devc->lith);
3407  fail1:
3408 	kfree(devc);
3409  fail0:
3410 	return err;
3411 }
3412 
unload_vwsnd(struct address_info * hw_config)3413 static int __exit unload_vwsnd(struct address_info *hw_config)
3414 {
3415 	vwsnd_dev_t *devc, **devcp;
3416 
3417 	DBGE("()\n");
3418 
3419 	devcp = &vwsnd_dev_list;
3420 	while ((devc = *devcp)) {
3421 		if (devc->audio_minor == hw_config->slots[0]) {
3422 			*devcp = devc->next_dev;
3423 			break;
3424 		}
3425 		devcp = &devc->next_dev;
3426 	}
3427 
3428 	if (!devc)
3429 		return -ENODEV;
3430 
3431 	unregister_sound_mixer(devc->mixer_minor);
3432 	unregister_sound_dsp(devc->audio_minor);
3433 	free_irq(hw_config->irq, devc);
3434 	free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER);
3435 	free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER);
3436 	li_destroy(&devc->lith);
3437 	kfree(devc);
3438 
3439 	return 0;
3440 }
3441 
3442 /*****************************************************************************/
3443 /* initialization and loadable kernel module interface */
3444 
3445 static struct address_info the_hw_config = {
3446 	0xFF001000,			/* lithium phys addr  */
3447 	CO_IRQ(CO_APIC_LI_AUDIO)	/* irq */
3448 };
3449 
3450 MODULE_DESCRIPTION("SGI Visual Workstation sound module");
3451 MODULE_AUTHOR("Bob Miller <kbob@sgi.com>");
3452 MODULE_LICENSE("GPL");
3453 
init_vwsnd(void)3454 static int __init init_vwsnd(void)
3455 {
3456 	int err;
3457 
3458 	DBGXV("\n");
3459 	DBGXV("sound::vwsnd::init_module()\n");
3460 
3461 	if(!probe_vwsnd(&the_hw_config))
3462 		return -ENODEV;
3463 	err = attach_vwsnd(&the_hw_config);
3464 	if (err < 0)
3465 		return err;
3466 	return 0;
3467 }
3468 
cleanup_vwsnd(void)3469 static void __exit cleanup_vwsnd(void)
3470 {
3471 	DBGX("sound::vwsnd::cleanup_module()\n");
3472 
3473 	unload_vwsnd(&the_hw_config);
3474 }
3475 
3476 module_init(init_vwsnd);
3477 module_exit(cleanup_vwsnd);
3478