1 /*******************************************************************************
2 *
3 * "cs4281m.c" -- Cirrus Logic-Crystal CS4281 linux audio driver.
4 *
5 * Copyright (C) 2000,2001 Cirrus Logic Corp.
6 * -- adapted from drivers by Thomas Sailer,
7 * -- but don't bug him; Problems should go to:
8 * -- tom woller (twoller@crystal.cirrus.com) or
9 * (pcaudio@crystal.cirrus.com).
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Module command line parameters:
26 * none
27 *
28 * Supported devices:
29 * /dev/dsp standard /dev/dsp device, (mostly) OSS compatible
30 * /dev/mixer standard /dev/mixer device, (mostly) OSS compatible
31 * /dev/midi simple MIDI UART interface, no ioctl
32 *
33 * Modification History
34 * 08/20/00 trw - silence and no stopping DAC until release
35 * 08/23/00 trw - added CS_DBG statements, fix interrupt hang issue on DAC stop.
36 * 09/18/00 trw - added 16bit only record with conversion
37 * 09/24/00 trw - added Enhanced Full duplex (separate simultaneous
38 * capture/playback rates)
39 * 10/03/00 trw - fixed mmap (fixed GRECORD and the XMMS mmap test plugin
40 * libOSSm.so)
41 * 10/11/00 trw - modified for 2.4.0-test9 kernel enhancements (NR_MAP removal)
42 * 11/03/00 trw - fixed interrupt loss/stutter, added debug.
43 * 11/10/00 bkz - added __devinit to cs4281_hw_init()
44 * 11/10/00 trw - fixed SMP and capture spinlock hang.
45 * 12/04/00 trw - cleaned up CSDEBUG flags and added "defaultorder" moduleparm.
46 * 12/05/00 trw - fixed polling (myth2), and added underrun swptr fix.
47 * 12/08/00 trw - added PM support.
48 * 12/14/00 trw - added wrapper code, builds under 2.4.0, 2.2.17-20, 2.2.17-8
49 * (RH/Dell base), 2.2.18, 2.2.12. cleaned up code mods by ident.
50 * 12/19/00 trw - added PM support for 2.2 base (apm_callback). other PM cleanup.
51 * 12/21/00 trw - added fractional "defaultorder" inputs. if >100 then use
52 * defaultorder-100 as power of 2 for the buffer size. example:
53 * 106 = 2^(106-100) = 2^6 = 64 bytes for the buffer size.
54 * 04/02/01 trw - reworked the includes, so kgdb wouldn't get confused.
55 * 04/17/01 trw - added ifdef CONFIG_PM for 2.4.x non-pm kernels. static pmprint.
56 * 04/19/01 trw - reworked all of the wrapper macros to keep native 2.4.x code
57 * predominate in the driver.
58 * 07/01/01 trw - added ability to modify the record source mask to alleviate
59 * problems with toshiba systems. also, check for toshiba
60 * system to set default up properly.
61 * 11/12/01 trw - removed cs4281_update_ptr() in the polling interface code.
62 * returning with only a few bytes available in the write buffer
63 * seems to cause some problems with some apps (xmms OSS plugin).
64 * Also, fixed bug in cs4281_update_ptr() code to wakeup when
65 * 1/2 buffer is empty, not when completely full.
66 *
67 *******************************************************************************/
68
69 /* uncomment the following line to disable building PM support into the driver */
70 //#define NOT_CS4281_PM 1
71
72 #include <linux/list.h>
73 #include <linux/version.h>
74 #include <linux/module.h>
75 #include <linux/string.h>
76 #include <linux/ioport.h>
77 #include <linux/sched.h>
78 #include <linux/delay.h>
79 #include <linux/sound.h>
80 #include <linux/slab.h>
81 #include <linux/soundcard.h>
82 #include <linux/pci.h>
83 #include <linux/bitops.h>
84 #include <asm/io.h>
85 #include <asm/dma.h>
86 #include <linux/init.h>
87 #include <linux/poll.h>
88 #include <linux/smp_lock.h>
89 #include <linux/wrapper.h>
90 #include <asm/uaccess.h>
91 #include <asm/hardirq.h>
92 #include "cs4281_hwdefs.h"
93
94 EXPORT_NO_SYMBOLS;
95
96 struct cs4281_state;
97 int cs4281_suspend(struct cs4281_state *s);
98 int cs4281_resume(struct cs4281_state *s);
99
100 #include "cs4281_wrapper.h"
101 #include "cs4281pm-24.h"
102
103 static void stop_dac(struct cs4281_state *s);
104 static void stop_adc(struct cs4281_state *s);
105 static void start_dac(struct cs4281_state *s);
106 static void start_adc(struct cs4281_state *s);
107 #undef OSS_DOCUMENTED_MIXER_SEMANTICS
108
109 // ---------------------------------------------------------------------
110
111 #ifndef PCI_VENDOR_ID_CIRRUS
112 #define PCI_VENDOR_ID_CIRRUS 0x1013
113 #endif
114 #ifndef PCI_DEVICE_ID_CRYSTAL_CS4281
115 #define PCI_DEVICE_ID_CRYSTAL_CS4281 0x6005
116 #endif
117
118 #ifndef SS_ID_TOSHIBA_1640CDT
119 #define SS_ID_TOSHIBA_1640CDT 0xff00
120 #endif
121
122 #ifndef PCI_VENDOR_ID_TOSHIBA
123 #define PCI_VENDOR_ID_TOSHIBA 0x1179
124 #endif
125
126 #define CS4281_MAGIC ((PCI_DEVICE_ID_CRYSTAL_CS4281<<16) | PCI_VENDOR_ID_CIRRUS)
127 #define CS4281_CFLR_DEFAULT 0x00000001 /* CFLR must be in AC97 link mode */
128 #define CS4281_BA0_CPWR_DEFAULT 0x4281
129
130 /* buffer order determines the size of the dma buffer for the driver.
131 * under Linux, a smaller buffer allows more responsiveness from many of the
132 * applications (e.g. games). A larger buffer allows some of the apps (esound)
133 * to not underrun the dma buffer as easily. As default, use 32k (order=3)
134 * rather than 64k as some of the games work more responsively.
135 * (2^N) * PAGE_SIZE = allocated buffer size
136 *
137 * also added fractional "defaultorder" inputs. if >100 then use
138 * defaultorder-100 as power of 2 for the buffer size. example:
139 * 106 = 2^(106-100) = 2^6 = 64 bytes for the buffer size.
140 * games are even MORE responsive now, but prone to underruns.
141 */
142 static unsigned long defaultorder = 3;
143 MODULE_PARM(defaultorder, "i");
144
145 /*
146 * use this module parm to invalidate recording sources
147 * as on some machines (Toshiba Satellites... again) setting to LINE
148 * causes an error and some of the mixers (gmix) to not load.
149 */
150 static unsigned long recsrc_invalid = 0;
151 MODULE_PARM(recsrc_invalid, "i");
152 //
153 // Turn on/off debugging compilation by commenting out "#define CSDEBUG"
154 //
155 #define CSDEBUG 1
156 #if CSDEBUG
157 #define CSDEBUG_INTERFACE 1
158 #else
159 #undef CSDEBUG_INTERFACE
160 #endif
161 //
162 // cs_debugmask areas
163 //
164 #define CS_INIT 0x00000001 // initialization and probe functions
165 #define CS_ERROR 0x00000002 // tmp debugging bit placeholder
166 #define CS_INTERRUPT 0x00000004 // interrupt handler (separate from all other)
167 #define CS_FUNCTION 0x00000008 // enter/leave functions
168 #define CS_WAVE_WRITE 0x00000010 // write information for wave
169 #define CS_WAVE_READ 0x00000020 // read information for wave
170 #define CS_MIDI_WRITE 0x00000040 // write information for midi
171 #define CS_MIDI_READ 0x00000080 // read information for midi
172 #define CS_MPU401_WRITE 0x00000100 // write information for mpu401
173 #define CS_MPU401_READ 0x00000200 // read information for mpu401
174 #define CS_OPEN 0x00000400 // all open functions in the driver
175 #define CS_RELEASE 0x00000800 // all release functions in the driver
176 #define CS_PARMS 0x00001000 // functional and operational parameters
177 #define CS_IOCTL 0x00002000 // ioctl (non-mixer)
178 #define CS_PM 0x00004000 // power management
179 #define CS_TMP 0x10000000 // tmp debug mask bit
180
181 #define CS_IOCTL_CMD_SUSPEND 0x1 // suspend
182 #define CS_IOCTL_CMD_RESUME 0x2 // resume
183 //
184 // CSDEBUG is usual mode is set to 1, then use the
185 // cs_debuglevel and cs_debugmask to turn on or off debugging.
186 // Debug level of 1 has been defined to be kernel errors and info
187 // that should be printed on any released driver.
188 //
189 #if CSDEBUG
190 #define CS_DBGOUT(mask,level,x) if((cs_debuglevel >= (level)) && ((mask) & cs_debugmask) ) {x;}
191 #else
192 #define CS_DBGOUT(mask,level,x)
193 #endif
194
195 #if CSDEBUG
196 static unsigned long cs_debuglevel = 1; // levels range from 1-9
197 static unsigned long cs_debugmask = CS_INIT | CS_ERROR; // use CS_DBGOUT with various mask values
198 MODULE_PARM(cs_debuglevel, "i");
199 MODULE_PARM(cs_debugmask, "i");
200 #endif
201 #define CS_TRUE 1
202 #define CS_FALSE 0
203
204 // MIDI buffer sizes
205 #define MIDIINBUF 500
206 #define MIDIOUTBUF 500
207
208 #define FMODE_MIDI_SHIFT 3
209 #define FMODE_MIDI_READ (FMODE_READ << FMODE_MIDI_SHIFT)
210 #define FMODE_MIDI_WRITE (FMODE_WRITE << FMODE_MIDI_SHIFT)
211
212 #define CS4281_MAJOR_VERSION 1
213 #define CS4281_MINOR_VERSION 30
214 #ifdef __ia64__
215 #define CS4281_ARCH 64 //architecture key
216 #else
217 #define CS4281_ARCH 32 //architecture key
218 #endif
219
220 #define CS_TYPE_ADC 0
221 #define CS_TYPE_DAC 1
222
223 static const char invalid_magic[] =
224 KERN_CRIT "cs4281: invalid magic value\n";
225
226 #define VALIDATE_STATE(s) \
227 ({ \
228 if (!(s) || (s)->magic != CS4281_MAGIC) { \
229 printk(invalid_magic); \
230 return -ENXIO; \
231 } \
232 })
233
234 struct list_head cs4281_devs = { &cs4281_devs, &cs4281_devs };
235
236 struct cs4281_state {
237 // magic
238 unsigned int magic;
239 u16 ss_id, ss_vendor; /* subsystem and vendor IDs from pci space */
240
241 // we keep the cards in a linked list
242 struct cs4281_state *next;
243
244 // pcidev is needed to turn off the DDMA controller at driver shutdown
245 struct pci_dev *pcidev;
246 struct list_head list;
247
248 // soundcore stuff
249 int dev_audio;
250 int dev_mixer;
251 int dev_midi;
252
253 // hardware resources
254 unsigned int pBA0phys, pBA1phys;
255 char *pBA0, *pBA1;
256 unsigned int irq;
257 unsigned recsrc;
258
259 // mixer registers
260 struct {
261 unsigned short vol[10];
262 unsigned int recsrc;
263 unsigned int modcnt;
264 unsigned short micpreamp;
265 } mix;
266
267 // wave stuff
268 struct properties {
269 unsigned fmt;
270 unsigned fmt_original; // original requested format
271 unsigned channels;
272 unsigned rate;
273 unsigned char clkdiv;
274 } prop_dac, prop_adc;
275 unsigned conversion:1; // conversion from 16 to 8 bit in progress
276 void *tmpbuff; // tmp buffer for sample conversions
277 unsigned ena;
278 spinlock_t lock;
279 struct semaphore open_sem;
280 struct semaphore open_sem_adc;
281 struct semaphore open_sem_dac;
282 mode_t open_mode;
283 wait_queue_head_t open_wait;
284 wait_queue_head_t open_wait_adc;
285 wait_queue_head_t open_wait_dac;
286
287 dma_addr_t dmaaddr_tmpbuff;
288 unsigned buforder_tmpbuff; // Log base 2 of 'rawbuf' size in bytes..
289 struct dmabuf {
290 void *rawbuf; // Physical address of
291 dma_addr_t dmaaddr;
292 unsigned buforder; // Log base 2 of 'rawbuf' size in bytes..
293 unsigned numfrag; // # of 'fragments' in the buffer.
294 unsigned fragshift; // Log base 2 of fragment size.
295 unsigned hwptr, swptr;
296 unsigned total_bytes; // # bytes process since open.
297 unsigned blocks; // last returned blocks value GETOPTR
298 unsigned wakeup; // interrupt occurred on block
299 int count;
300 unsigned underrun; // underrun flag
301 unsigned error; // over/underrun
302 wait_queue_head_t wait;
303 // redundant, but makes calculations easier
304 unsigned fragsize; // 2**fragshift..
305 unsigned dmasize; // 2**buforder.
306 unsigned fragsamples;
307 // OSS stuff
308 unsigned mapped:1; // Buffer mapped in cs4281_mmap()?
309 unsigned ready:1; // prog_dmabuf_dac()/adc() successful?
310 unsigned endcleared:1;
311 unsigned type:1; // adc or dac buffer (CS_TYPE_XXX)
312 unsigned ossfragshift;
313 int ossmaxfrags;
314 unsigned subdivision;
315 } dma_dac, dma_adc;
316
317 // midi stuff
318 struct {
319 unsigned ird, iwr, icnt;
320 unsigned ord, owr, ocnt;
321 wait_queue_head_t iwait;
322 wait_queue_head_t owait;
323 struct timer_list timer;
324 unsigned char ibuf[MIDIINBUF];
325 unsigned char obuf[MIDIOUTBUF];
326 } midi;
327
328 #ifndef NOT_CS4281_PM
329 struct cs4281_pm pm;
330 struct cs4281_pipeline pl[CS4281_NUMBER_OF_PIPELINES];
331 #endif
332 };
333
334 #if CSDEBUG
335
336 // DEBUG ROUTINES
337
338 #define SOUND_MIXER_CS_GETDBGLEVEL _SIOWR('M',120, int)
339 #define SOUND_MIXER_CS_SETDBGLEVEL _SIOWR('M',121, int)
340 #define SOUND_MIXER_CS_GETDBGMASK _SIOWR('M',122, int)
341 #define SOUND_MIXER_CS_SETDBGMASK _SIOWR('M',123, int)
342
343 #define SOUND_MIXER_CS_APM _SIOWR('M',124, int)
344
345
cs_printioctl(unsigned int x)346 static void cs_printioctl(unsigned int x)
347 {
348 unsigned int i;
349 unsigned char vidx;
350 // Index of mixtable1[] member is Device ID
351 // and must be <= SOUND_MIXER_NRDEVICES.
352 // Value of array member is index into s->mix.vol[]
353 static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = {
354 [SOUND_MIXER_PCM] = 1, // voice
355 [SOUND_MIXER_LINE1] = 2, // AUX
356 [SOUND_MIXER_CD] = 3, // CD
357 [SOUND_MIXER_LINE] = 4, // Line
358 [SOUND_MIXER_SYNTH] = 5, // FM
359 [SOUND_MIXER_MIC] = 6, // Mic
360 [SOUND_MIXER_SPEAKER] = 7, // Speaker
361 [SOUND_MIXER_RECLEV] = 8, // Recording level
362 [SOUND_MIXER_VOLUME] = 9 // Master Volume
363 };
364
365 switch (x) {
366 case SOUND_MIXER_CS_GETDBGMASK:
367 CS_DBGOUT(CS_IOCTL, 4,
368 printk("SOUND_MIXER_CS_GETDBGMASK:\n"));
369 break;
370 case SOUND_MIXER_CS_GETDBGLEVEL:
371 CS_DBGOUT(CS_IOCTL, 4,
372 printk("SOUND_MIXER_CS_GETDBGLEVEL:\n"));
373 break;
374 case SOUND_MIXER_CS_SETDBGMASK:
375 CS_DBGOUT(CS_IOCTL, 4,
376 printk("SOUND_MIXER_CS_SETDBGMASK:\n"));
377 break;
378 case SOUND_MIXER_CS_SETDBGLEVEL:
379 CS_DBGOUT(CS_IOCTL, 4,
380 printk("SOUND_MIXER_CS_SETDBGLEVEL:\n"));
381 break;
382 case OSS_GETVERSION:
383 CS_DBGOUT(CS_IOCTL, 4, printk("OSS_GETVERSION:\n"));
384 break;
385 case SNDCTL_DSP_SYNC:
386 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SYNC:\n"));
387 break;
388 case SNDCTL_DSP_SETDUPLEX:
389 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETDUPLEX:\n"));
390 break;
391 case SNDCTL_DSP_GETCAPS:
392 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETCAPS:\n"));
393 break;
394 case SNDCTL_DSP_RESET:
395 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_RESET:\n"));
396 break;
397 case SNDCTL_DSP_SPEED:
398 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SPEED:\n"));
399 break;
400 case SNDCTL_DSP_STEREO:
401 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_STEREO:\n"));
402 break;
403 case SNDCTL_DSP_CHANNELS:
404 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_CHANNELS:\n"));
405 break;
406 case SNDCTL_DSP_GETFMTS:
407 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETFMTS:\n"));
408 break;
409 case SNDCTL_DSP_SETFMT:
410 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETFMT:\n"));
411 break;
412 case SNDCTL_DSP_POST:
413 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_POST:\n"));
414 break;
415 case SNDCTL_DSP_GETTRIGGER:
416 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETTRIGGER:\n"));
417 break;
418 case SNDCTL_DSP_SETTRIGGER:
419 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETTRIGGER:\n"));
420 break;
421 case SNDCTL_DSP_GETOSPACE:
422 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOSPACE:\n"));
423 break;
424 case SNDCTL_DSP_GETISPACE:
425 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETISPACE:\n"));
426 break;
427 case SNDCTL_DSP_NONBLOCK:
428 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_NONBLOCK:\n"));
429 break;
430 case SNDCTL_DSP_GETODELAY:
431 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETODELAY:\n"));
432 break;
433 case SNDCTL_DSP_GETIPTR:
434 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETIPTR:\n"));
435 break;
436 case SNDCTL_DSP_GETOPTR:
437 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOPTR:\n"));
438 break;
439 case SNDCTL_DSP_GETBLKSIZE:
440 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETBLKSIZE:\n"));
441 break;
442 case SNDCTL_DSP_SETFRAGMENT:
443 CS_DBGOUT(CS_IOCTL, 4,
444 printk("SNDCTL_DSP_SETFRAGMENT:\n"));
445 break;
446 case SNDCTL_DSP_SUBDIVIDE:
447 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SUBDIVIDE:\n"));
448 break;
449 case SOUND_PCM_READ_RATE:
450 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_RATE:\n"));
451 break;
452 case SOUND_PCM_READ_CHANNELS:
453 CS_DBGOUT(CS_IOCTL, 4,
454 printk("SOUND_PCM_READ_CHANNELS:\n"));
455 break;
456 case SOUND_PCM_READ_BITS:
457 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_BITS:\n"));
458 break;
459 case SOUND_PCM_WRITE_FILTER:
460 CS_DBGOUT(CS_IOCTL, 4,
461 printk("SOUND_PCM_WRITE_FILTER:\n"));
462 break;
463 case SNDCTL_DSP_SETSYNCRO:
464 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETSYNCRO:\n"));
465 break;
466 case SOUND_PCM_READ_FILTER:
467 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_FILTER:\n"));
468 break;
469 case SOUND_MIXER_PRIVATE1:
470 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE1:\n"));
471 break;
472 case SOUND_MIXER_PRIVATE2:
473 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE2:\n"));
474 break;
475 case SOUND_MIXER_PRIVATE3:
476 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE3:\n"));
477 break;
478 case SOUND_MIXER_PRIVATE4:
479 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE4:\n"));
480 break;
481 case SOUND_MIXER_PRIVATE5:
482 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE5:\n"));
483 break;
484 case SOUND_MIXER_INFO:
485 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_INFO:\n"));
486 break;
487 case SOUND_OLD_MIXER_INFO:
488 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_OLD_MIXER_INFO:\n"));
489 break;
490
491 default:
492 switch (_IOC_NR(x)) {
493 case SOUND_MIXER_VOLUME:
494 CS_DBGOUT(CS_IOCTL, 4,
495 printk("SOUND_MIXER_VOLUME:\n"));
496 break;
497 case SOUND_MIXER_SPEAKER:
498 CS_DBGOUT(CS_IOCTL, 4,
499 printk("SOUND_MIXER_SPEAKER:\n"));
500 break;
501 case SOUND_MIXER_RECLEV:
502 CS_DBGOUT(CS_IOCTL, 4,
503 printk("SOUND_MIXER_RECLEV:\n"));
504 break;
505 case SOUND_MIXER_MIC:
506 CS_DBGOUT(CS_IOCTL, 4,
507 printk("SOUND_MIXER_MIC:\n"));
508 break;
509 case SOUND_MIXER_SYNTH:
510 CS_DBGOUT(CS_IOCTL, 4,
511 printk("SOUND_MIXER_SYNTH:\n"));
512 break;
513 case SOUND_MIXER_RECSRC:
514 CS_DBGOUT(CS_IOCTL, 4,
515 printk("SOUND_MIXER_RECSRC:\n"));
516 break;
517 case SOUND_MIXER_DEVMASK:
518 CS_DBGOUT(CS_IOCTL, 4,
519 printk("SOUND_MIXER_DEVMASK:\n"));
520 break;
521 case SOUND_MIXER_RECMASK:
522 CS_DBGOUT(CS_IOCTL, 4,
523 printk("SOUND_MIXER_RECMASK:\n"));
524 break;
525 case SOUND_MIXER_STEREODEVS:
526 CS_DBGOUT(CS_IOCTL, 4,
527 printk("SOUND_MIXER_STEREODEVS:\n"));
528 break;
529 case SOUND_MIXER_CAPS:
530 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CAPS:\n"));
531 break;
532 default:
533 i = _IOC_NR(x);
534 if (i >= SOUND_MIXER_NRDEVICES
535 || !(vidx = mixtable1[i])) {
536 CS_DBGOUT(CS_IOCTL, 4, printk
537 ("UNKNOWN IOCTL: 0x%.8x NR=%d\n",
538 x, i));
539 } else {
540 CS_DBGOUT(CS_IOCTL, 4, printk
541 ("SOUND_MIXER_IOCTL AC9x: 0x%.8x NR=%d\n",
542 x, i));
543 }
544 break;
545 }
546 }
547 }
548 #endif
549 static int prog_dmabuf_adc(struct cs4281_state *s);
550 static void prog_codec(struct cs4281_state *s, unsigned type);
551
552 // ---------------------------------------------------------------------
553 //
554 // Hardware Interfaces For the CS4281
555 //
556
557
558 //******************************************************************************
559 // "delayus()-- Delay for the specified # of microseconds.
560 //******************************************************************************
delayus(struct cs4281_state * s,u32 delay)561 static void delayus(struct cs4281_state *s, u32 delay)
562 {
563 u32 j;
564 if ((delay > 9999)
565 #ifndef NOT_CS4281_PM
566 && (s->pm.flags & CS4281_PM_IDLE))
567 #else
568 )
569 #endif
570 {
571 j = (delay * HZ) / 1000000; /* calculate delay in jiffies */
572 if (j < 1)
573 j = 1; /* minimum one jiffy. */
574 current->state = TASK_UNINTERRUPTIBLE;
575 schedule_timeout(j);
576 } else
577 udelay(delay);
578 return;
579 }
580
581
582 //******************************************************************************
583 // "cs4281_read_ac97" -- Reads a word from the specified location in the
584 // CS4281's address space(based on the BA0 register).
585 //
586 // 1. Write ACCAD = Command Address Register = 46Ch for AC97 register address
587 // 2. Write ACCDA = Command Data Register = 470h for data to write to AC97 register,
588 // 0h for reads.
589 // 3. Write ACCTL = Control Register = 460h for initiating the write
590 // 4. Read ACCTL = 460h, DCV should be reset by now and 460h = 17h
591 // 5. if DCV not cleared, break and return error
592 // 6. Read ACSTS = Status Register = 464h, check VSTS bit
593 //****************************************************************************
cs4281_read_ac97(struct cs4281_state * card,u32 offset,u32 * value)594 static int cs4281_read_ac97(struct cs4281_state *card, u32 offset,
595 u32 * value)
596 {
597 u32 count, status;
598
599 // Make sure that there is not data sitting
600 // around from a previous uncompleted access.
601 // ACSDA = Status Data Register = 47Ch
602 status = readl(card->pBA0 + BA0_ACSDA);
603
604 // Setup the AC97 control registers on the CS4281 to send the
605 // appropriate command to the AC97 to perform the read.
606 // ACCAD = Command Address Register = 46Ch
607 // ACCDA = Command Data Register = 470h
608 // ACCTL = Control Register = 460h
609 // bit DCV - will clear when process completed
610 // bit CRW - Read command
611 // bit VFRM - valid frame enabled
612 // bit ESYN - ASYNC generation enabled
613
614 // Get the actual AC97 register from the offset
615 writel(offset - BA0_AC97_RESET, card->pBA0 + BA0_ACCAD);
616 writel(0, card->pBA0 + BA0_ACCDA);
617 writel(ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN,
618 card->pBA0 + BA0_ACCTL);
619
620 // Wait for the read to occur.
621 for (count = 0; count < 100; count++) {
622 // First, we want to wait for a short time.
623 udelay(25);
624
625 // Now, check to see if the read has completed.
626 // ACCTL = 460h, DCV should be reset by now and 460h = 17h
627 if (!(readl(card->pBA0 + BA0_ACCTL) & ACCTL_DCV))
628 break;
629 }
630
631 // Make sure the read completed.
632 if (readl(card->pBA0 + BA0_ACCTL) & ACCTL_DCV)
633 return 1;
634
635 // Wait for the valid status bit to go active.
636 for (count = 0; count < 100; count++) {
637 // Read the AC97 status register.
638 // ACSTS = Status Register = 464h
639 status = readl(card->pBA0 + BA0_ACSTS);
640
641 // See if we have valid status.
642 // VSTS - Valid Status
643 if (status & ACSTS_VSTS)
644 break;
645 // Wait for a short while.
646 udelay(25);
647 }
648
649 // Make sure we got valid status.
650 if (!(status & ACSTS_VSTS))
651 return 1;
652
653 // Read the data returned from the AC97 register.
654 // ACSDA = Status Data Register = 474h
655 *value = readl(card->pBA0 + BA0_ACSDA);
656
657 // Success.
658 return (0);
659 }
660
661
662 //****************************************************************************
663 //
664 // "cs4281_write_ac97()"-- writes a word to the specified location in the
665 // CS461x's address space (based on the part's base address zero register).
666 //
667 // 1. Write ACCAD = Command Address Register = 46Ch for AC97 register address
668 // 2. Write ACCDA = Command Data Register = 470h for data to write to AC97 reg.
669 // 3. Write ACCTL = Control Register = 460h for initiating the write
670 // 4. Read ACCTL = 460h, DCV should be reset by now and 460h = 07h
671 // 5. if DCV not cleared, break and return error
672 //
673 //****************************************************************************
cs4281_write_ac97(struct cs4281_state * card,u32 offset,u32 value)674 static int cs4281_write_ac97(struct cs4281_state *card, u32 offset,
675 u32 value)
676 {
677 u32 count, status=0;
678
679 CS_DBGOUT(CS_FUNCTION, 2,
680 printk(KERN_INFO "cs4281: cs_4281_write_ac97()+ \n"));
681
682 // Setup the AC97 control registers on the CS4281 to send the
683 // appropriate command to the AC97 to perform the read.
684 // ACCAD = Command Address Register = 46Ch
685 // ACCDA = Command Data Register = 470h
686 // ACCTL = Control Register = 460h
687 // set DCV - will clear when process completed
688 // reset CRW - Write command
689 // set VFRM - valid frame enabled
690 // set ESYN - ASYNC generation enabled
691 // set RSTN - ARST# inactive, AC97 codec not reset
692
693 // Get the actual AC97 register from the offset
694
695 writel(offset - BA0_AC97_RESET, card->pBA0 + BA0_ACCAD);
696 writel(value, card->pBA0 + BA0_ACCDA);
697 writel(ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN,
698 card->pBA0 + BA0_ACCTL);
699
700 // Wait for the write to occur.
701 for (count = 0; count < 100; count++) {
702 // First, we want to wait for a short time.
703 udelay(25);
704 // Now, check to see if the write has completed.
705 // ACCTL = 460h, DCV should be reset by now and 460h = 07h
706 status = readl(card->pBA0 + BA0_ACCTL);
707 if (!(status & ACCTL_DCV))
708 break;
709 }
710
711 // Make sure the write completed.
712 if (status & ACCTL_DCV) {
713 CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO
714 "cs4281: cs_4281_write_ac97()- unable to write. ACCTL_DCV active\n"));
715 return 1;
716 }
717 CS_DBGOUT(CS_FUNCTION, 2,
718 printk(KERN_INFO "cs4281: cs_4281_write_ac97()- 0\n"));
719 // Success.
720 return 0;
721 }
722
723
724 //******************************************************************************
725 // "Init4281()" -- Bring up the part.
726 //******************************************************************************
cs4281_hw_init(struct cs4281_state * card)727 static __devinit int cs4281_hw_init(struct cs4281_state *card)
728 {
729 u32 ac97_slotid;
730 u32 temp1, temp2;
731
732 CS_DBGOUT(CS_FUNCTION, 2,
733 printk(KERN_INFO "cs4281: cs4281_hw_init()+ \n"));
734 #ifndef NOT_CS4281_PM
735 if(!card)
736 return 1;
737 #endif
738 temp2 = readl(card->pBA0 + BA0_CFLR);
739 CS_DBGOUT(CS_INIT | CS_ERROR | CS_PARMS, 4, printk(KERN_INFO
740 "cs4281: cs4281_hw_init() CFLR 0x%x\n", temp2));
741 if(temp2 != CS4281_CFLR_DEFAULT)
742 {
743 CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_INFO
744 "cs4281: cs4281_hw_init() CFLR invalid - resetting from 0x%x to 0x%x\n",
745 temp2,CS4281_CFLR_DEFAULT));
746 temp2 = readl(card->pBA0 + BA0_CWPR);
747 if(temp2 != CS4281_BA0_CPWR_DEFAULT)
748 {
749 writel(CS4281_BA0_CPWR_DEFAULT, card->pBA0 + BA0_CWPR);
750 temp2 = readl(card->pBA0 + BA0_CWPR);
751 if(temp2 != CS4281_BA0_CPWR_DEFAULT)
752 {
753 CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_INFO
754 "cs4281: cs4281_hw_init() Invalid hardware - unable to configure CPWR (0x%x)\n",
755 temp2));
756 return 1;
757 }
758 }
759 writel(CS4281_CFLR_DEFAULT, card->pBA0 + BA0_CFLR);
760 temp2 = readl(card->pBA0 + BA0_CFLR);
761 if(temp2 != CS4281_CFLR_DEFAULT)
762 {
763 CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_INFO
764 "cs4281: cs4281_hw_init() Invalid hardware - unable to configure CFLR (0x%x)\n",
765 temp2));
766 return 1;
767 }
768 }
769
770 //***************************************7
771 // Set up the Sound System Configuration
772 //***************************************
773
774 // Set the 'Configuration Write Protect' register
775 // to 4281h. Allows vendor-defined configuration
776 // space between 0e4h and 0ffh to be written.
777
778 writel(0x4281, card->pBA0 + BA0_CWPR); // (3e0h)
779
780 // (0), Blast the clock control register to zero so that the
781 // PLL starts out in a known state, and blast the master serial
782 // port control register to zero so that the serial ports also
783 // start out in a known state.
784
785 writel(0, card->pBA0 + BA0_CLKCR1); // (400h)
786 writel(0, card->pBA0 + BA0_SERMC); // (420h)
787
788
789 // (1), Make ESYN go to zero to turn off
790 // the Sync pulse on the AC97 link.
791
792 writel(0, card->pBA0 + BA0_ACCTL);
793 udelay(50);
794
795
796 // (2) Drive the ARST# pin low for a minimum of 1uS (as defined in
797 // the AC97 spec) and then drive it high. This is done for non
798 // AC97 modes since there might be logic external to the CS461x
799 // that uses the ARST# line for a reset.
800
801 writel(0, card->pBA0 + BA0_SPMC); // (3ech)
802 udelay(100);
803 writel(SPMC_RSTN, card->pBA0 + BA0_SPMC);
804 delayus(card,50000); // Wait 50 ms for ABITCLK to become stable.
805
806 // (3) Turn on the Sound System Clocks.
807 writel(CLKCR1_PLLP, card->pBA0 + BA0_CLKCR1); // (400h)
808 delayus(card,50000); // Wait for the PLL to stabilize.
809 // Turn on clocking of the core (CLKCR1(400h) = 0x00000030)
810 writel(CLKCR1_PLLP | CLKCR1_SWCE, card->pBA0 + BA0_CLKCR1);
811
812 // (4) Power on everything for now..
813 writel(0x7E, card->pBA0 + BA0_SSPM); // (740h)
814
815 // (5) Wait for clock stabilization.
816 for (temp1 = 0; temp1 < 1000; temp1++) {
817 udelay(1000);
818 if (readl(card->pBA0 + BA0_CLKCR1) & CLKCR1_DLLRDY)
819 break;
820 }
821 if (!(readl(card->pBA0 + BA0_CLKCR1) & CLKCR1_DLLRDY)) {
822 CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
823 "cs4281: DLLRDY failed!\n"));
824 return -EIO;
825 }
826 // (6) Enable ASYNC generation.
827 writel(ACCTL_ESYN, card->pBA0 + BA0_ACCTL); // (460h)
828
829 // Now wait 'for a short while' to allow the AC97
830 // part to start generating bit clock. (so we don't
831 // Try to start the PLL without an input clock.)
832 delayus(card,50000);
833
834 // Set the serial port timing configuration, so that the
835 // clock control circuit gets its clock from the right place.
836 writel(SERMC_PTC_AC97, card->pBA0 + BA0_SERMC); // (420h)=2.
837
838 // (7) Wait for the codec ready signal from the AC97 codec.
839
840 for (temp1 = 0; temp1 < 1000; temp1++) {
841 // Delay a mil to let things settle out and
842 // to prevent retrying the read too quickly.
843 udelay(1000);
844 if (readl(card->pBA0 + BA0_ACSTS) & ACSTS_CRDY) // If ready, (464h)
845 break; // exit the 'for' loop.
846 }
847 if (!(readl(card->pBA0 + BA0_ACSTS) & ACSTS_CRDY)) // If never came ready,
848 {
849 CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_ERR
850 "cs4281: ACSTS never came ready!\n"));
851 return -EIO; // exit initialization.
852 }
853 // (8) Assert the 'valid frame' signal so we can
854 // begin sending commands to the AC97 codec.
855 writel(ACCTL_VFRM | ACCTL_ESYN, card->pBA0 + BA0_ACCTL); // (460h)
856
857 // (9), Wait until CODEC calibration is finished.
858 // Print an error message if it doesn't.
859 for (temp1 = 0; temp1 < 1000; temp1++) {
860 delayus(card,10000);
861 // Read the AC97 Powerdown Control/Status Register.
862 cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp2);
863 if ((temp2 & 0x0000000F) == 0x0000000F)
864 break;
865 }
866 if ((temp2 & 0x0000000F) != 0x0000000F) {
867 CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_ERR
868 "cs4281: Codec failed to calibrate. Status = %.8x.\n",
869 temp2));
870 return -EIO;
871 }
872 // (10), Set the serial port timing configuration, so that the
873 // clock control circuit gets its clock from the right place.
874 writel(SERMC_PTC_AC97, card->pBA0 + BA0_SERMC); // (420h)=2.
875
876
877 // (11) Wait until we've sampled input slots 3 & 4 as valid, meaning
878 // that the codec is pumping ADC data across the AC link.
879 for (temp1 = 0; temp1 < 1000; temp1++) {
880 // Delay a mil to let things settle out and
881 // to prevent retrying the read too quickly.
882 delayus(card,1000); //(test)
883
884 // Read the input slot valid register; See
885 // if input slots 3 and 4 are valid yet.
886 if (
887 (readl(card->pBA0 + BA0_ACISV) &
888 (ACISV_ISV3 | ACISV_ISV4)) ==
889 (ACISV_ISV3 | ACISV_ISV4)) break; // Exit the 'for' if slots are valid.
890 }
891 // If we never got valid data, exit initialization.
892 if ((readl(card->pBA0 + BA0_ACISV) & (ACISV_ISV3 | ACISV_ISV4))
893 != (ACISV_ISV3 | ACISV_ISV4)) {
894 CS_DBGOUT(CS_FUNCTION, 2,
895 printk(KERN_ERR
896 "cs4281: Never got valid data!\n"));
897 return -EIO; // If no valid data, exit initialization.
898 }
899 // (12), Start digital data transfer of audio data to the codec.
900 writel(ACOSV_SLV3 | ACOSV_SLV4, card->pBA0 + BA0_ACOSV); // (468h)
901
902
903 //**************************************
904 // Unmute the Master and Alternate
905 // (headphone) volumes. Set to max.
906 //**************************************
907 cs4281_write_ac97(card, BA0_AC97_HEADPHONE_VOLUME, 0);
908 cs4281_write_ac97(card, BA0_AC97_MASTER_VOLUME, 0);
909
910 //******************************************
911 // Power on the DAC(AddDACUser()from main())
912 //******************************************
913 cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp1);
914 cs4281_write_ac97(card, BA0_AC97_POWERDOWN, temp1 &= 0xfdff);
915
916 // Wait until we sample a DAC ready state.
917 for (temp2 = 0; temp2 < 32; temp2++) {
918 // Let's wait a mil to let things settle.
919 delayus(card,1000);
920 // Read the current state of the power control reg.
921 cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp1);
922 // If the DAC ready state bit is set, stop waiting.
923 if (temp1 & 0x2)
924 break;
925 }
926
927 //******************************************
928 // Power on the ADC(AddADCUser()from main())
929 //******************************************
930 cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp1);
931 cs4281_write_ac97(card, BA0_AC97_POWERDOWN, temp1 &= 0xfeff);
932
933 // Wait until we sample ADC ready state.
934 for (temp2 = 0; temp2 < 32; temp2++) {
935 // Let's wait a mil to let things settle.
936 delayus(card,1000);
937 // Read the current state of the power control reg.
938 cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp1);
939 // If the ADC ready state bit is set, stop waiting.
940 if (temp1 & 0x1)
941 break;
942 }
943 // Set up 4281 Register contents that
944 // don't change for boot duration.
945
946 // For playback, we map AC97 slot 3 and 4(Left
947 // & Right PCM playback) to DMA Channel 0.
948 // Set the fifo to be 15 bytes at offset zero.
949
950 ac97_slotid = 0x01000f00; // FCR0.RS[4:0]=1(=>slot4, right PCM playback).
951 // FCR0.LS[4:0]=0(=>slot3, left PCM playback).
952 // FCR0.SZ[6-0]=15; FCR0.OF[6-0]=0.
953 writel(ac97_slotid, card->pBA0 + BA0_FCR0); // (180h)
954 writel(ac97_slotid | FCRn_FEN, card->pBA0 + BA0_FCR0); // Turn on FIFO Enable.
955
956 // For capture, we map AC97 slot 10 and 11(Left
957 // and Right PCM Record) to DMA Channel 1.
958 // Set the fifo to be 15 bytes at offset sixteen.
959 ac97_slotid = 0x0B0A0f10; // FCR1.RS[4:0]=11(=>slot11, right PCM record).
960 // FCR1.LS[4:0]=10(=>slot10, left PCM record).
961 // FCR1.SZ[6-0]=15; FCR1.OF[6-0]=16.
962 writel(ac97_slotid | FCRn_PSH, card->pBA0 + BA0_FCR1); // (184h)
963 writel(ac97_slotid | FCRn_FEN, card->pBA0 + BA0_FCR1); // Turn on FIFO Enable.
964
965 // Map the Playback SRC to the same AC97 slots(3 & 4--
966 // --Playback left & right)as DMA channel 0.
967 // Map the record SRC to the same AC97 slots(10 & 11--
968 // -- Record left & right) as DMA channel 1.
969
970 ac97_slotid = 0x0b0a0100; // SCRSA.PRSS[4:0]=1(=>slot4, right PCM playback).
971 // SCRSA.PLSS[4:0]=0(=>slot3, left PCM playback).
972 // SCRSA.CRSS[4:0]=11(=>slot11, right PCM record)
973 // SCRSA.CLSS[4:0]=10(=>slot10, left PCM record).
974 writel(ac97_slotid, card->pBA0 + BA0_SRCSA); // (75ch)
975
976 // Set 'Half Terminal Count Interrupt Enable' and 'Terminal
977 // Count Interrupt Enable' in DMA Control Registers 0 & 1.
978 // Set 'MSK' flag to 1 to keep the DMA engines paused.
979 temp1 = (DCRn_HTCIE | DCRn_TCIE | DCRn_MSK); // (00030001h)
980 writel(temp1, card->pBA0 + BA0_DCR0); // (154h
981 writel(temp1, card->pBA0 + BA0_DCR1); // (15ch)
982
983 // Set 'Auto-Initialize Control' to 'enabled'; For playback,
984 // set 'Transfer Type Control'(TR[1:0]) to 'read transfer',
985 // for record, set Transfer Type Control to 'write transfer'.
986 // All other bits set to zero; Some will be changed @ transfer start.
987 temp1 = (DMRn_DMA | DMRn_AUTO | DMRn_TR_READ); // (20000018h)
988 writel(temp1, card->pBA0 + BA0_DMR0); // (150h)
989 temp1 = (DMRn_DMA | DMRn_AUTO | DMRn_TR_WRITE); // (20000014h)
990 writel(temp1, card->pBA0 + BA0_DMR1); // (158h)
991
992 // Enable DMA interrupts generally, and
993 // DMA0 & DMA1 interrupts specifically.
994 temp1 = readl(card->pBA0 + BA0_HIMR) & 0xfffbfcff;
995 writel(temp1, card->pBA0 + BA0_HIMR);
996
997 CS_DBGOUT(CS_FUNCTION, 2,
998 printk(KERN_INFO "cs4281: cs4281_hw_init()- 0\n"));
999 return 0;
1000 }
1001
1002 #ifndef NOT_CS4281_PM
printpm(struct cs4281_state * s)1003 static void printpm(struct cs4281_state *s)
1004 {
1005 CS_DBGOUT(CS_PM, 9, printk("pm struct:\n"));
1006 CS_DBGOUT(CS_PM, 9, printk("flags:0x%x u32CLKCR1_SAVE: 0%x u32SSPMValue: 0x%x\n",
1007 (unsigned)s->pm.flags,s->pm.u32CLKCR1_SAVE,s->pm.u32SSPMValue));
1008 CS_DBGOUT(CS_PM, 9, printk("u32PPLVCvalue: 0x%x u32PPRVCvalue: 0x%x\n",
1009 s->pm.u32PPLVCvalue,s->pm.u32PPRVCvalue));
1010 CS_DBGOUT(CS_PM, 9, printk("u32FMLVCvalue: 0x%x u32FMRVCvalue: 0x%x\n",
1011 s->pm.u32FMLVCvalue,s->pm.u32FMRVCvalue));
1012 CS_DBGOUT(CS_PM, 9, printk("u32GPIORvalue: 0x%x u32JSCTLvalue: 0x%x\n",
1013 s->pm.u32GPIORvalue,s->pm.u32JSCTLvalue));
1014 CS_DBGOUT(CS_PM, 9, printk("u32SSCR: 0x%x u32SRCSA: 0x%x\n",
1015 s->pm.u32SSCR,s->pm.u32SRCSA));
1016 CS_DBGOUT(CS_PM, 9, printk("u32DacASR: 0x%x u32AdcASR: 0x%x\n",
1017 s->pm.u32DacASR,s->pm.u32AdcASR));
1018 CS_DBGOUT(CS_PM, 9, printk("u32DacSR: 0x%x u32AdcSR: 0x%x\n",
1019 s->pm.u32DacSR,s->pm.u32AdcSR));
1020 CS_DBGOUT(CS_PM, 9, printk("u32MIDCR_Save: 0x%x\n",
1021 s->pm.u32MIDCR_Save));
1022
1023 }
printpipe(struct cs4281_pipeline * pl)1024 static void printpipe(struct cs4281_pipeline *pl)
1025 {
1026
1027 CS_DBGOUT(CS_PM, 9, printk("pm struct:\n"));
1028 CS_DBGOUT(CS_PM, 9, printk("flags:0x%x number: 0%x\n",
1029 (unsigned)pl->flags,pl->number));
1030 CS_DBGOUT(CS_PM, 9, printk("u32DBAnValue: 0%x u32DBCnValue: 0x%x\n",
1031 pl->u32DBAnValue,pl->u32DBCnValue));
1032 CS_DBGOUT(CS_PM, 9, printk("u32DMRnValue: 0x%x u32DCRnValue: 0x%x\n",
1033 pl->u32DMRnValue,pl->u32DCRnValue));
1034 CS_DBGOUT(CS_PM, 9, printk("u32DBAnAddress: 0x%x u32DBCnAddress: 0x%x\n",
1035 pl->u32DBAnAddress,pl->u32DBCnAddress));
1036 CS_DBGOUT(CS_PM, 9, printk("u32DCAnAddress: 0x%x u32DCCnAddress: 0x%x\n",
1037 pl->u32DCCnAddress,pl->u32DCCnAddress));
1038 CS_DBGOUT(CS_PM, 9, printk("u32DMRnAddress: 0x%x u32DCRnAddress: 0x%x\n",
1039 pl->u32DMRnAddress,pl->u32DCRnAddress));
1040 CS_DBGOUT(CS_PM, 9, printk("u32HDSRnAddress: 0x%x u32DBAn_Save: 0x%x\n",
1041 pl->u32HDSRnAddress,pl->u32DBAn_Save));
1042 CS_DBGOUT(CS_PM, 9, printk("u32DBCn_Save: 0x%x u32DMRn_Save: 0x%x\n",
1043 pl->u32DBCn_Save,pl->u32DMRn_Save));
1044 CS_DBGOUT(CS_PM, 9, printk("u32DCRn_Save: 0x%x u32DCCn_Save: 0x%x\n",
1045 pl->u32DCRn_Save,pl->u32DCCn_Save));
1046 CS_DBGOUT(CS_PM, 9, printk("u32DCAn_Save: 0x%x\n",
1047 pl->u32DCAn_Save));
1048 CS_DBGOUT(CS_PM, 9, printk("u32FCRn_Save: 0x%x u32FSICn_Save: 0x%x\n",
1049 pl->u32FCRn_Save,pl->u32FSICn_Save));
1050 CS_DBGOUT(CS_PM, 9, printk("u32FCRnValue: 0x%x u32FSICnValue: 0x%x\n",
1051 pl->u32FCRnValue,pl->u32FSICnValue));
1052 CS_DBGOUT(CS_PM, 9, printk("u32FCRnAddress: 0x%x u32FSICnAddress: 0x%x\n",
1053 pl->u32FCRnAddress,pl->u32FSICnAddress));
1054 CS_DBGOUT(CS_PM, 9, printk("u32FPDRnValue: 0x%x u32FPDRnAddress: 0x%x\n",
1055 pl->u32FPDRnValue,pl->u32FPDRnAddress));
1056 }
printpipelines(struct cs4281_state * s)1057 static void printpipelines(struct cs4281_state *s)
1058 {
1059 int i;
1060 for(i=0;i<CS4281_NUMBER_OF_PIPELINES;i++)
1061 {
1062 if(s->pl[i].flags & CS4281_PIPELINE_VALID)
1063 {
1064 printpipe(&s->pl[i]);
1065 }
1066 }
1067 }
1068 /****************************************************************************
1069 *
1070 * Suspend - save the ac97 regs, mute the outputs and power down the part.
1071 *
1072 ****************************************************************************/
cs4281_ac97_suspend(struct cs4281_state * s)1073 void cs4281_ac97_suspend(struct cs4281_state *s)
1074 {
1075 int Count,i;
1076
1077 CS_DBGOUT(CS_PM, 9, printk("cs4281: cs4281_ac97_suspend()+\n"));
1078
1079 for(Count = 0x2, i=0; (Count <= CS4281_AC97_HIGHESTREGTORESTORE)
1080 && (i < CS4281_AC97_NUMBER_RESTORE_REGS);
1081 Count += 2, i++)
1082 {
1083 cs4281_read_ac97(s, BA0_AC97_RESET + Count, &s->pm.ac97[i]);
1084 }
1085 /*
1086 * Save the ac97 volume registers as well as the current powerdown state.
1087 * Now, mute the all the outputs (master, headphone, and mono), as well
1088 * as the PCM volume, in preparation for powering down the entire part.
1089 */
1090 cs4281_read_ac97(s, BA0_AC97_MASTER_VOLUME, &s->pm.u32AC97_master_volume);
1091 cs4281_read_ac97(s, BA0_AC97_HEADPHONE_VOLUME, &s->pm.u32AC97_headphone_volume);
1092 cs4281_read_ac97(s, BA0_AC97_MASTER_VOLUME_MONO, &s->pm.u32AC97_master_volume_mono);
1093 cs4281_read_ac97(s, BA0_AC97_PCM_OUT_VOLUME, &s->pm.u32AC97_pcm_out_volume);
1094
1095 cs4281_write_ac97(s, BA0_AC97_MASTER_VOLUME, 0x8000);
1096 cs4281_write_ac97(s, BA0_AC97_HEADPHONE_VOLUME, 0x8000);
1097 cs4281_write_ac97(s, BA0_AC97_MASTER_VOLUME_MONO, 0x8000);
1098 cs4281_write_ac97(s, BA0_AC97_PCM_OUT_VOLUME, 0x8000);
1099
1100 cs4281_read_ac97(s, BA0_AC97_POWERDOWN, &s->pm.u32AC97_powerdown);
1101 cs4281_read_ac97(s, BA0_AC97_GENERAL_PURPOSE, &s->pm.u32AC97_general_purpose);
1102
1103 /*
1104 * And power down everything on the AC97 codec.
1105 */
1106 cs4281_write_ac97(s, BA0_AC97_POWERDOWN, 0xff00);
1107 CS_DBGOUT(CS_PM, 9, printk("cs4281: cs4281_ac97_suspend()-\n"));
1108 }
1109
1110 /****************************************************************************
1111 *
1112 * Resume - power up the part and restore its registers..
1113 *
1114 ****************************************************************************/
cs4281_ac97_resume(struct cs4281_state * s)1115 void cs4281_ac97_resume(struct cs4281_state *s)
1116 {
1117 int Count,i;
1118
1119 CS_DBGOUT(CS_PM, 9, printk("cs4281: cs4281_ac97_resume()+\n"));
1120
1121 /* do not save the power state registers at this time
1122 //
1123 // If we saved away the power control registers, write them into the
1124 // shadows so those saved values get restored instead of the current
1125 // shadowed value.
1126 //
1127 if( bPowerStateSaved )
1128 {
1129 PokeShadow( 0x26, ulSaveReg0x26 );
1130 bPowerStateSaved = FALSE;
1131 }
1132 */
1133
1134 //
1135 // First, we restore the state of the general purpose register. This
1136 // contains the mic select (mic1 or mic2) and if we restore this after
1137 // we restore the mic volume/boost state and mic2 was selected at
1138 // suspend time, we will end up with a brief period of time where mic1
1139 // is selected with the volume/boost settings for mic2, causing
1140 // acoustic feedback. So we restore the general purpose register
1141 // first, thereby getting the correct mic selected before we restore
1142 // the mic volume/boost.
1143 //
1144 cs4281_write_ac97(s, BA0_AC97_GENERAL_PURPOSE, s->pm.u32AC97_general_purpose);
1145
1146 //
1147 // Now, while the outputs are still muted, restore the state of power
1148 // on the AC97 part.
1149 //
1150 cs4281_write_ac97(s, BA0_AC97_POWERDOWN, s->pm.u32AC97_powerdown);
1151
1152 /*
1153 * Restore just the first set of registers, from register number
1154 * 0x02 to the register number that ulHighestRegToRestore specifies.
1155 */
1156 for( Count = 0x2, i=0;
1157 (Count <= CS4281_AC97_HIGHESTREGTORESTORE)
1158 && (i < CS4281_AC97_NUMBER_RESTORE_REGS);
1159 Count += 2, i++)
1160 {
1161 cs4281_write_ac97(s, BA0_AC97_RESET + Count, s->pm.ac97[i]);
1162 }
1163 CS_DBGOUT(CS_PM, 9, printk("cs4281: cs4281_ac97_resume()-\n"));
1164 }
1165
1166 /* do not save the power state registers at this time
1167 ****************************************************************************
1168 *
1169 * SavePowerState - Save the power registers away.
1170 *
1171 ****************************************************************************
1172 void
1173 HWAC97codec::SavePowerState(void)
1174 {
1175 ENTRY(TM_OBJECTCALLS, "HWAC97codec::SavePowerState()\r\n");
1176
1177 ulSaveReg0x26 = PeekShadow(0x26);
1178
1179 //
1180 // Note that we have saved registers that need to be restored during a
1181 // resume instead of ulAC97Regs[].
1182 //
1183 bPowerStateSaved = TRUE;
1184
1185 } // SavePowerState
1186 */
1187
cs4281_SuspendFIFO(struct cs4281_state * s,struct cs4281_pipeline * pl)1188 void cs4281_SuspendFIFO(struct cs4281_state *s, struct cs4281_pipeline *pl)
1189 {
1190 /*
1191 * We need to save the contents of the BASIC FIFO Registers.
1192 */
1193 pl->u32FCRn_Save = readl(s->pBA0 + pl->u32FCRnAddress);
1194 pl->u32FSICn_Save = readl(s->pBA0 + pl->u32FSICnAddress);
1195 }
cs4281_ResumeFIFO(struct cs4281_state * s,struct cs4281_pipeline * pl)1196 void cs4281_ResumeFIFO(struct cs4281_state *s, struct cs4281_pipeline *pl)
1197 {
1198 /*
1199 * We need to restore the contents of the BASIC FIFO Registers.
1200 */
1201 writel(pl->u32FCRn_Save,s->pBA0 + pl->u32FCRnAddress);
1202 writel(pl->u32FSICn_Save,s->pBA0 + pl->u32FSICnAddress);
1203 }
cs4281_SuspendDMAengine(struct cs4281_state * s,struct cs4281_pipeline * pl)1204 void cs4281_SuspendDMAengine(struct cs4281_state *s, struct cs4281_pipeline *pl)
1205 {
1206 //
1207 // We need to save the contents of the BASIC DMA Registers.
1208 //
1209 pl->u32DBAn_Save = readl(s->pBA0 + pl->u32DBAnAddress);
1210 pl->u32DBCn_Save = readl(s->pBA0 + pl->u32DBCnAddress);
1211 pl->u32DMRn_Save = readl(s->pBA0 + pl->u32DMRnAddress);
1212 pl->u32DCRn_Save = readl(s->pBA0 + pl->u32DCRnAddress);
1213 pl->u32DCCn_Save = readl(s->pBA0 + pl->u32DCCnAddress);
1214 pl->u32DCAn_Save = readl(s->pBA0 + pl->u32DCAnAddress);
1215 }
cs4281_ResumeDMAengine(struct cs4281_state * s,struct cs4281_pipeline * pl)1216 void cs4281_ResumeDMAengine(struct cs4281_state *s, struct cs4281_pipeline *pl)
1217 {
1218 //
1219 // We need to save the contents of the BASIC DMA Registers.
1220 //
1221 writel( pl->u32DBAn_Save, s->pBA0 + pl->u32DBAnAddress);
1222 writel( pl->u32DBCn_Save, s->pBA0 + pl->u32DBCnAddress);
1223 writel( pl->u32DMRn_Save, s->pBA0 + pl->u32DMRnAddress);
1224 writel( pl->u32DCRn_Save, s->pBA0 + pl->u32DCRnAddress);
1225 writel( pl->u32DCCn_Save, s->pBA0 + pl->u32DCCnAddress);
1226 writel( pl->u32DCAn_Save, s->pBA0 + pl->u32DCAnAddress);
1227 }
1228
cs4281_suspend(struct cs4281_state * s)1229 int cs4281_suspend(struct cs4281_state *s)
1230 {
1231 int i;
1232 u32 u32CLKCR1;
1233 struct cs4281_pm *pm = &s->pm;
1234 CS_DBGOUT(CS_PM | CS_FUNCTION, 9,
1235 printk("cs4281: cs4281_suspend()+ flags=%d\n",
1236 (unsigned)s->pm.flags));
1237 /*
1238 * check the current state, only suspend if IDLE
1239 */
1240 if(!(s->pm.flags & CS4281_PM_IDLE))
1241 {
1242 CS_DBGOUT(CS_PM | CS_ERROR, 2,
1243 printk("cs4281: cs4281_suspend() unable to suspend, not IDLE\n"));
1244 return 1;
1245 }
1246 s->pm.flags &= ~CS4281_PM_IDLE;
1247 s->pm.flags |= CS4281_PM_SUSPENDING;
1248
1249 //
1250 // Gershwin CLKRUN - Set CKRA
1251 //
1252 u32CLKCR1 = readl(s->pBA0 + BA0_CLKCR1);
1253
1254 pm->u32CLKCR1_SAVE = u32CLKCR1;
1255 if(!(u32CLKCR1 & 0x00010000 ) )
1256 writel(u32CLKCR1 | 0x00010000, s->pBA0 + BA0_CLKCR1);
1257
1258 //
1259 // First, turn on the clocks (yikes) to the devices, so that they will
1260 // respond when we try to save their state.
1261 //
1262 if(!(u32CLKCR1 & CLKCR1_SWCE))
1263 {
1264 writel(u32CLKCR1 | CLKCR1_SWCE , s->pBA0 + BA0_CLKCR1);
1265 }
1266
1267 //
1268 // Save the power state
1269 //
1270 pm->u32SSPMValue = readl(s->pBA0 + BA0_SSPM);
1271
1272 //
1273 // Disable interrupts.
1274 //
1275 writel(HICR_CHGM, s->pBA0 + BA0_HICR);
1276
1277 //
1278 // Save the PCM Playback Left and Right Volume Control.
1279 //
1280 pm->u32PPLVCvalue = readl(s->pBA0 + BA0_PPLVC);
1281 pm->u32PPRVCvalue = readl(s->pBA0 + BA0_PPRVC);
1282
1283 //
1284 // Save the FM Synthesis Left and Right Volume Control.
1285 //
1286 pm->u32FMLVCvalue = readl(s->pBA0 + BA0_FMLVC);
1287 pm->u32FMRVCvalue = readl(s->pBA0 + BA0_FMRVC);
1288
1289 //
1290 // Save the GPIOR value.
1291 //
1292 pm->u32GPIORvalue = readl(s->pBA0 + BA0_GPIOR);
1293
1294 //
1295 // Save the JSCTL value.
1296 //
1297 pm->u32JSCTLvalue = readl(s->pBA0 + BA0_GPIOR);
1298
1299 //
1300 // Save Sound System Control Register
1301 //
1302 pm->u32SSCR = readl(s->pBA0 + BA0_SSCR);
1303
1304 //
1305 // Save SRC Slot Assinment register
1306 //
1307 pm->u32SRCSA = readl(s->pBA0 + BA0_SRCSA);
1308
1309 //
1310 // Save sample rate
1311 //
1312 pm->u32DacASR = readl(s->pBA0 + BA0_PASR);
1313 pm->u32AdcASR = readl(s->pBA0 + BA0_CASR);
1314 pm->u32DacSR = readl(s->pBA0 + BA0_DACSR);
1315 pm->u32AdcSR = readl(s->pBA0 + BA0_ADCSR);
1316
1317 /*
1318 * save the current hwptr, then stop the dac/adc
1319 */
1320 pm->u32hwptr_playback = readl(s->pBA0 + BA0_DCA0);
1321 pm->u32hwptr_capture = readl(s->pBA0 + BA0_DCA1);
1322 stop_dac(s);
1323 stop_adc(s);
1324
1325 //
1326 // Loop through all of the PipeLines
1327 //
1328 for(i = 0; i < CS4281_NUMBER_OF_PIPELINES; i++)
1329 {
1330 if(s->pl[i].flags & CS4281_PIPELINE_VALID)
1331 {
1332 //
1333 // Ask the DMAengines and FIFOs to Suspend.
1334 //
1335 cs4281_SuspendDMAengine(s,&s->pl[i]);
1336 cs4281_SuspendFIFO(s,&s->pl[i]);
1337 }
1338 }
1339 //
1340 // We need to save the contents of the Midi Control Register.
1341 //
1342 pm->u32MIDCR_Save = readl(s->pBA0 + BA0_MIDCR);
1343 /*
1344 * save off the AC97 part information
1345 */
1346 cs4281_ac97_suspend(s);
1347
1348 //
1349 // Turn off the serial ports.
1350 //
1351 writel(0, s->pBA0 + BA0_SERMC);
1352
1353 //
1354 // Power off FM, Joystick, AC link,
1355 //
1356 writel(0, s->pBA0 + BA0_SSPM);
1357
1358 //
1359 // DLL off.
1360 //
1361 writel(0, s->pBA0 + BA0_CLKCR1);
1362
1363 //
1364 // AC link off.
1365 //
1366 writel(0, s->pBA0 + BA0_SPMC);
1367
1368 //
1369 // Put the chip into D3(hot) state.
1370 //
1371 // PokeBA0(BA0_PMCS, 0x00000003);
1372
1373 //
1374 // Gershwin CLKRUN - Clear CKRA
1375 //
1376 u32CLKCR1 = readl(s->pBA0 + BA0_CLKCR1);
1377 writel(u32CLKCR1 & 0xFFFEFFFF, s->pBA0 + BA0_CLKCR1);
1378
1379 #ifdef CSDEBUG
1380 printpm(s);
1381 printpipelines(s);
1382 #endif
1383
1384 s->pm.flags &= ~CS4281_PM_SUSPENDING;
1385 s->pm.flags |= CS4281_PM_SUSPENDED;
1386
1387 CS_DBGOUT(CS_PM | CS_FUNCTION, 9,
1388 printk("cs4281: cs4281_suspend()- flags=%d\n",
1389 (unsigned)s->pm.flags));
1390 return 0;
1391 }
1392
cs4281_resume(struct cs4281_state * s)1393 int cs4281_resume(struct cs4281_state *s)
1394 {
1395 int i;
1396 unsigned temp1;
1397 u32 u32CLKCR1;
1398 struct cs4281_pm *pm = &s->pm;
1399 CS_DBGOUT(CS_PM | CS_FUNCTION, 4,
1400 printk( "cs4281: cs4281_resume()+ flags=%d\n",
1401 (unsigned)s->pm.flags));
1402 if(!(s->pm.flags & CS4281_PM_SUSPENDED))
1403 {
1404 CS_DBGOUT(CS_PM | CS_ERROR, 2,
1405 printk("cs4281: cs4281_resume() unable to resume, not SUSPENDED\n"));
1406 return 1;
1407 }
1408 s->pm.flags &= ~CS4281_PM_SUSPENDED;
1409 s->pm.flags |= CS4281_PM_RESUMING;
1410
1411 //
1412 // Gershwin CLKRUN - Set CKRA
1413 //
1414 u32CLKCR1 = readl(s->pBA0 + BA0_CLKCR1);
1415 writel(u32CLKCR1 | 0x00010000, s->pBA0 + BA0_CLKCR1);
1416
1417 //
1418 // set the power state.
1419 //
1420 //old PokeBA0(BA0_PMCS, 0);
1421
1422 //
1423 // Program the clock circuit and serial ports.
1424 //
1425 temp1 = cs4281_hw_init(s);
1426 if (temp1) {
1427 CS_DBGOUT(CS_ERROR | CS_INIT, 1,
1428 printk(KERN_ERR
1429 "cs4281: resume cs4281_hw_init() error.\n"));
1430 return -1;
1431 }
1432
1433 //
1434 // restore the Power state
1435 //
1436 writel(pm->u32SSPMValue, s->pBA0 + BA0_SSPM);
1437
1438 //
1439 // Set post SRC mix setting (FM or ALT48K)
1440 //
1441 writel(pm->u32SSPM_BITS, s->pBA0 + BA0_SSPM);
1442
1443 //
1444 // Loop through all of the PipeLines
1445 //
1446 for(i = 0; i < CS4281_NUMBER_OF_PIPELINES; i++)
1447 {
1448 if(s->pl[i].flags & CS4281_PIPELINE_VALID)
1449 {
1450 //
1451 // Ask the DMAengines and FIFOs to Resume.
1452 //
1453 cs4281_ResumeDMAengine(s,&s->pl[i]);
1454 cs4281_ResumeFIFO(s,&s->pl[i]);
1455 }
1456 }
1457 //
1458 // We need to restore the contents of the Midi Control Register.
1459 //
1460 writel(pm->u32MIDCR_Save, s->pBA0 + BA0_MIDCR);
1461
1462 cs4281_ac97_resume(s);
1463 //
1464 // Restore the PCM Playback Left and Right Volume Control.
1465 //
1466 writel(pm->u32PPLVCvalue, s->pBA0 + BA0_PPLVC);
1467 writel(pm->u32PPRVCvalue, s->pBA0 + BA0_PPRVC);
1468
1469 //
1470 // Restore the FM Synthesis Left and Right Volume Control.
1471 //
1472 writel(pm->u32FMLVCvalue, s->pBA0 + BA0_FMLVC);
1473 writel(pm->u32FMRVCvalue, s->pBA0 + BA0_FMRVC);
1474
1475 //
1476 // Restore the JSCTL value.
1477 //
1478 writel(pm->u32JSCTLvalue, s->pBA0 + BA0_JSCTL);
1479
1480 //
1481 // Restore the GPIOR register value.
1482 //
1483 writel(pm->u32GPIORvalue, s->pBA0 + BA0_GPIOR);
1484
1485 //
1486 // Restore Sound System Control Register
1487 //
1488 writel(pm->u32SSCR, s->pBA0 + BA0_SSCR);
1489
1490 //
1491 // Restore SRC Slot Assignment register
1492 //
1493 writel(pm->u32SRCSA, s->pBA0 + BA0_SRCSA);
1494
1495 //
1496 // Restore sample rate
1497 //
1498 writel(pm->u32DacASR, s->pBA0 + BA0_PASR);
1499 writel(pm->u32AdcASR, s->pBA0 + BA0_CASR);
1500 writel(pm->u32DacSR, s->pBA0 + BA0_DACSR);
1501 writel(pm->u32AdcSR, s->pBA0 + BA0_ADCSR);
1502
1503 //
1504 // Restore CFL1/2 registers we saved to compensate for OEM bugs.
1505 //
1506 // PokeBA0(BA0_CFLR, ulConfig);
1507
1508 //
1509 // Gershwin CLKRUN - Clear CKRA
1510 //
1511 writel(pm->u32CLKCR1_SAVE, s->pBA0 + BA0_CLKCR1);
1512
1513 //
1514 // Enable interrupts on the part.
1515 //
1516 writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR);
1517
1518 #ifdef CSDEBUG
1519 printpm(s);
1520 printpipelines(s);
1521 #endif
1522 /*
1523 * change the state, restore the current hwptrs, then stop the dac/adc
1524 */
1525 s->pm.flags |= CS4281_PM_IDLE;
1526 s->pm.flags &= ~(CS4281_PM_SUSPENDING | CS4281_PM_SUSPENDED
1527 | CS4281_PM_RESUMING | CS4281_PM_RESUMED);
1528
1529 writel(s->pm.u32hwptr_playback, s->pBA0 + BA0_DCA0);
1530 writel(s->pm.u32hwptr_capture, s->pBA0 + BA0_DCA1);
1531 start_dac(s);
1532 start_adc(s);
1533
1534 CS_DBGOUT(CS_PM | CS_FUNCTION, 9, printk("cs4281: cs4281_resume()- flags=%d\n",
1535 (unsigned)s->pm.flags));
1536 return 0;
1537 }
1538
1539 #endif
1540
1541 //******************************************************************************
1542 // "cs4281_play_rate()" --
1543 //******************************************************************************
cs4281_play_rate(struct cs4281_state * card,u32 playrate)1544 static void cs4281_play_rate(struct cs4281_state *card, u32 playrate)
1545 {
1546 u32 DACSRvalue = 1;
1547
1548 // Based on the sample rate, program the DACSR register.
1549 if (playrate == 8000)
1550 DACSRvalue = 5;
1551 if (playrate == 11025)
1552 DACSRvalue = 4;
1553 else if (playrate == 22050)
1554 DACSRvalue = 2;
1555 else if (playrate == 44100)
1556 DACSRvalue = 1;
1557 else if ((playrate <= 48000) && (playrate >= 6023))
1558 DACSRvalue = 24576000 / (playrate * 16);
1559 else if (playrate < 6023)
1560 // Not allowed by open.
1561 return;
1562 else if (playrate > 48000)
1563 // Not allowed by open.
1564 return;
1565 CS_DBGOUT(CS_WAVE_WRITE | CS_PARMS, 2, printk(KERN_INFO
1566 "cs4281: cs4281_play_rate(): DACSRvalue=0x%.8x playrate=%d\n",
1567 DACSRvalue, playrate));
1568 // Write the 'sample rate select code'
1569 // to the 'DAC Sample Rate' register.
1570 writel(DACSRvalue, card->pBA0 + BA0_DACSR); // (744h)
1571 }
1572
1573 //******************************************************************************
1574 // "cs4281_record_rate()" -- Initialize the record sample rate converter.
1575 //******************************************************************************
cs4281_record_rate(struct cs4281_state * card,u32 outrate)1576 static void cs4281_record_rate(struct cs4281_state *card, u32 outrate)
1577 {
1578 u32 ADCSRvalue = 1;
1579
1580 //
1581 // Based on the sample rate, program the ADCSR register
1582 //
1583 if (outrate == 8000)
1584 ADCSRvalue = 5;
1585 if (outrate == 11025)
1586 ADCSRvalue = 4;
1587 else if (outrate == 22050)
1588 ADCSRvalue = 2;
1589 else if (outrate == 44100)
1590 ADCSRvalue = 1;
1591 else if ((outrate <= 48000) && (outrate >= 6023))
1592 ADCSRvalue = 24576000 / (outrate * 16);
1593 else if (outrate < 6023) {
1594 // Not allowed by open.
1595 return;
1596 } else if (outrate > 48000) {
1597 // Not allowed by open.
1598 return;
1599 }
1600 CS_DBGOUT(CS_WAVE_READ | CS_PARMS, 2, printk(KERN_INFO
1601 "cs4281: cs4281_record_rate(): ADCSRvalue=0x%.8x outrate=%d\n",
1602 ADCSRvalue, outrate));
1603 // Write the 'sample rate select code
1604 // to the 'ADC Sample Rate' register.
1605 writel(ADCSRvalue, card->pBA0 + BA0_ADCSR); // (748h)
1606 }
1607
1608
1609
stop_dac(struct cs4281_state * s)1610 static void stop_dac(struct cs4281_state *s)
1611 {
1612 unsigned long flags;
1613 unsigned temp1;
1614
1615 CS_DBGOUT(CS_WAVE_WRITE, 3, printk(KERN_INFO "cs4281: stop_dac():\n"));
1616 spin_lock_irqsave(&s->lock, flags);
1617 s->ena &= ~FMODE_WRITE;
1618 temp1 = readl(s->pBA0 + BA0_DCR0) | DCRn_MSK;
1619 writel(temp1, s->pBA0 + BA0_DCR0);
1620
1621 spin_unlock_irqrestore(&s->lock, flags);
1622 }
1623
1624
start_dac(struct cs4281_state * s)1625 static void start_dac(struct cs4281_state *s)
1626 {
1627 unsigned long flags;
1628 unsigned temp1;
1629
1630 CS_DBGOUT(CS_FUNCTION, 3, printk(KERN_INFO "cs4281: start_dac()+\n"));
1631 spin_lock_irqsave(&s->lock, flags);
1632 if (!(s->ena & FMODE_WRITE) && (s->dma_dac.mapped ||
1633 (s->dma_dac.count > 0
1634 && s->dma_dac.ready))
1635 #ifndef NOT_CS4281_PM
1636 && (s->pm.flags & CS4281_PM_IDLE))
1637 #else
1638 )
1639 #endif
1640 {
1641 s->ena |= FMODE_WRITE;
1642 temp1 = readl(s->pBA0 + BA0_DCR0) & ~DCRn_MSK; // Clear DMA0 channel mask.
1643 writel(temp1, s->pBA0 + BA0_DCR0); // Start DMA'ing.
1644 writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR); // Enable interrupts.
1645
1646 writel(7, s->pBA0 + BA0_PPRVC);
1647 writel(7, s->pBA0 + BA0_PPLVC);
1648 CS_DBGOUT(CS_WAVE_WRITE | CS_PARMS, 8, printk(KERN_INFO
1649 "cs4281: start_dac(): writel 0x%x start dma\n", temp1));
1650
1651 }
1652 spin_unlock_irqrestore(&s->lock, flags);
1653 CS_DBGOUT(CS_FUNCTION, 3,
1654 printk(KERN_INFO "cs4281: start_dac()-\n"));
1655 }
1656
1657
stop_adc(struct cs4281_state * s)1658 static void stop_adc(struct cs4281_state *s)
1659 {
1660 unsigned long flags;
1661 unsigned temp1;
1662
1663 CS_DBGOUT(CS_FUNCTION, 3,
1664 printk(KERN_INFO "cs4281: stop_adc()+\n"));
1665
1666 spin_lock_irqsave(&s->lock, flags);
1667 s->ena &= ~FMODE_READ;
1668
1669 if (s->conversion == 1) {
1670 s->conversion = 0;
1671 s->prop_adc.fmt = s->prop_adc.fmt_original;
1672 }
1673 temp1 = readl(s->pBA0 + BA0_DCR1) | DCRn_MSK;
1674 writel(temp1, s->pBA0 + BA0_DCR1);
1675 spin_unlock_irqrestore(&s->lock, flags);
1676 CS_DBGOUT(CS_FUNCTION, 3,
1677 printk(KERN_INFO "cs4281: stop_adc()-\n"));
1678 }
1679
1680
start_adc(struct cs4281_state * s)1681 static void start_adc(struct cs4281_state *s)
1682 {
1683 unsigned long flags;
1684 unsigned temp1;
1685
1686 CS_DBGOUT(CS_FUNCTION, 2,
1687 printk(KERN_INFO "cs4281: start_adc()+\n"));
1688
1689 if (!(s->ena & FMODE_READ) &&
1690 (s->dma_adc.mapped || s->dma_adc.count <=
1691 (signed) (s->dma_adc.dmasize - 2 * s->dma_adc.fragsize))
1692 && s->dma_adc.ready
1693 #ifndef NOT_CS4281_PM
1694 && (s->pm.flags & CS4281_PM_IDLE))
1695 #else
1696 )
1697 #endif
1698 {
1699 if (s->prop_adc.fmt & AFMT_S8 || s->prop_adc.fmt & AFMT_U8) {
1700 //
1701 // now only use 16 bit capture, due to truncation issue
1702 // in the chip, noticable distortion occurs.
1703 // allocate buffer and then convert from 16 bit to
1704 // 8 bit for the user buffer.
1705 //
1706 s->prop_adc.fmt_original = s->prop_adc.fmt;
1707 if (s->prop_adc.fmt & AFMT_S8) {
1708 s->prop_adc.fmt &= ~AFMT_S8;
1709 s->prop_adc.fmt |= AFMT_S16_LE;
1710 }
1711 if (s->prop_adc.fmt & AFMT_U8) {
1712 s->prop_adc.fmt &= ~AFMT_U8;
1713 s->prop_adc.fmt |= AFMT_U16_LE;
1714 }
1715 //
1716 // prog_dmabuf_adc performs a stop_adc() but that is
1717 // ok since we really haven't started the DMA yet.
1718 //
1719 prog_codec(s, CS_TYPE_ADC);
1720
1721 if (prog_dmabuf_adc(s) != 0) {
1722 CS_DBGOUT(CS_ERROR, 2, printk(KERN_INFO
1723 "cs4281: start_adc(): error in prog_dmabuf_adc\n"));
1724 }
1725 s->conversion = 1;
1726 }
1727 spin_lock_irqsave(&s->lock, flags);
1728 s->ena |= FMODE_READ;
1729 temp1 = readl(s->pBA0 + BA0_DCR1) & ~DCRn_MSK; // Clear DMA1 channel mask bit.
1730 writel(temp1, s->pBA0 + BA0_DCR1); // Start recording
1731 writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR); // Enable interrupts.
1732 spin_unlock_irqrestore(&s->lock, flags);
1733
1734 CS_DBGOUT(CS_PARMS, 6, printk(KERN_INFO
1735 "cs4281: start_adc(): writel 0x%x \n", temp1));
1736 }
1737 CS_DBGOUT(CS_FUNCTION, 2,
1738 printk(KERN_INFO "cs4281: start_adc()-\n"));
1739
1740 }
1741
1742
1743 // ---------------------------------------------------------------------
1744
1745 #define DMABUF_MINORDER 0 // ==> min buffer size = 8K.
1746
1747
dealloc_dmabuf(struct cs4281_state * s,struct dmabuf * db)1748 extern void dealloc_dmabuf(struct cs4281_state *s, struct dmabuf *db)
1749 {
1750 struct page *map, *mapend;
1751
1752 if (db->rawbuf) {
1753 // Undo prog_dmabuf()'s marking the pages as reserved
1754 mapend = virt_to_page(db->rawbuf +
1755 (PAGE_SIZE << db->buforder) - 1);
1756 for (map = virt_to_page(db->rawbuf); map <= mapend; map++)
1757 cs4x_mem_map_unreserve(map);
1758 pci_free_consistent(s->pcidev, PAGE_SIZE << db->buforder,
1759 db->rawbuf, db->dmaaddr);
1760 }
1761 if (s->tmpbuff && (db->type == CS_TYPE_ADC)) {
1762 // Undo prog_dmabuf()'s marking the pages as reserved
1763 mapend = virt_to_page(s->tmpbuff +
1764 (PAGE_SIZE << s->buforder_tmpbuff) - 1);
1765 for (map = virt_to_page(s->tmpbuff); map <= mapend; map++)
1766 cs4x_mem_map_unreserve(map);
1767 pci_free_consistent(s->pcidev, PAGE_SIZE << s->buforder_tmpbuff,
1768 s->tmpbuff, s->dmaaddr_tmpbuff);
1769 }
1770 s->tmpbuff = NULL;
1771 db->rawbuf = NULL;
1772 db->mapped = db->ready = 0;
1773 }
1774
prog_dmabuf(struct cs4281_state * s,struct dmabuf * db)1775 static int prog_dmabuf(struct cs4281_state *s, struct dmabuf *db)
1776 {
1777 int order;
1778 unsigned bytespersec, temp1;
1779 unsigned bufs, sample_shift = 0;
1780 struct page *map, *mapend;
1781 unsigned long df;
1782
1783 CS_DBGOUT(CS_FUNCTION, 2,
1784 printk(KERN_INFO "cs4281: prog_dmabuf()+\n"));
1785 db->hwptr = db->swptr = db->total_bytes = db->count = db->error =
1786 db->endcleared = db->blocks = db->wakeup = db->underrun = 0;
1787 /*
1788 * check for order within limits, but do not overwrite value, check
1789 * later for a fractional defaultorder (i.e. 100+).
1790 */
1791 if((defaultorder >= 0) && (defaultorder < 12))
1792 df = defaultorder;
1793 else
1794 df = 1;
1795
1796 if (!db->rawbuf) {
1797 db->ready = db->mapped = 0;
1798 for (order = df; order >= DMABUF_MINORDER; order--)
1799 if ( (db->rawbuf = (void *) pci_alloc_consistent(
1800 s->pcidev, PAGE_SIZE << order, &db->dmaaddr)))
1801 break;
1802 if (!db->rawbuf) {
1803 CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
1804 "cs4281: prog_dmabuf(): unable to allocate rawbuf\n"));
1805 return -ENOMEM;
1806 }
1807 db->buforder = order;
1808 // Now mark the pages as reserved; otherwise the
1809 // remap_page_range() in cs4281_mmap doesn't work.
1810 // 1. get index to last page in mem_map array for rawbuf.
1811 mapend = virt_to_page(db->rawbuf +
1812 (PAGE_SIZE << db->buforder) - 1);
1813
1814 // 2. mark each physical page in range as 'reserved'.
1815 for (map = virt_to_page(db->rawbuf); map <= mapend; map++)
1816 cs4x_mem_map_reserve(map);
1817 }
1818 if (!s->tmpbuff && (db->type == CS_TYPE_ADC)) {
1819 for (order = df; order >= DMABUF_MINORDER;
1820 order--)
1821 if ( (s->tmpbuff = (void *) pci_alloc_consistent(
1822 s->pcidev, PAGE_SIZE << order,
1823 &s->dmaaddr_tmpbuff)))
1824 break;
1825 if (!s->tmpbuff) {
1826 CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
1827 "cs4281: prog_dmabuf(): unable to allocate tmpbuff\n"));
1828 return -ENOMEM;
1829 }
1830 s->buforder_tmpbuff = order;
1831 // Now mark the pages as reserved; otherwise the
1832 // remap_page_range() in cs4281_mmap doesn't work.
1833 // 1. get index to last page in mem_map array for rawbuf.
1834 mapend = virt_to_page(s->tmpbuff +
1835 (PAGE_SIZE << s->buforder_tmpbuff) - 1);
1836
1837 // 2. mark each physical page in range as 'reserved'.
1838 for (map = virt_to_page(s->tmpbuff); map <= mapend; map++)
1839 cs4x_mem_map_reserve(map);
1840 }
1841 if (db->type == CS_TYPE_DAC) {
1842 if (s->prop_dac.fmt & (AFMT_S16_LE | AFMT_U16_LE))
1843 sample_shift++;
1844 if (s->prop_dac.channels > 1)
1845 sample_shift++;
1846 bytespersec = s->prop_dac.rate << sample_shift;
1847 } else // CS_TYPE_ADC
1848 {
1849 if (s->prop_adc.fmt & (AFMT_S16_LE | AFMT_U16_LE))
1850 sample_shift++;
1851 if (s->prop_adc.channels > 1)
1852 sample_shift++;
1853 bytespersec = s->prop_adc.rate << sample_shift;
1854 }
1855 bufs = PAGE_SIZE << db->buforder;
1856
1857 /*
1858 * added fractional "defaultorder" inputs. if >100 then use
1859 * defaultorder-100 as power of 2 for the buffer size. example:
1860 * 106 = 2^(106-100) = 2^6 = 64 bytes for the buffer size.
1861 */
1862 if(defaultorder >= 100)
1863 {
1864 bufs = 1 << (defaultorder-100);
1865 }
1866
1867 #define INTERRUPT_RATE_MS 100 // Interrupt rate in milliseconds.
1868 db->numfrag = 2;
1869 /*
1870 * Nominal frag size(bytes/interrupt)
1871 */
1872 temp1 = bytespersec / (1000 / INTERRUPT_RATE_MS);
1873 db->fragshift = 8; // Min 256 bytes.
1874 while (1 << db->fragshift < temp1) // Calc power of 2 frag size.
1875 db->fragshift += 1;
1876 db->fragsize = 1 << db->fragshift;
1877 db->dmasize = db->fragsize * 2;
1878 db->fragsamples = db->fragsize >> sample_shift; // # samples/fragment.
1879
1880 // If the calculated size is larger than the allocated
1881 // buffer, divide the allocated buffer into 2 fragments.
1882 if (db->dmasize > bufs) {
1883
1884 db->numfrag = 2; // Two fragments.
1885 db->fragsize = bufs >> 1; // Each 1/2 the alloc'ed buffer.
1886 db->fragsamples = db->fragsize >> sample_shift; // # samples/fragment.
1887 db->dmasize = bufs; // Use all the alloc'ed buffer.
1888
1889 db->fragshift = 0; // Calculate 'fragshift'.
1890 temp1 = db->fragsize; // update_ptr() uses it
1891 while ((temp1 >>= 1) > 1) // to calc 'total-bytes'
1892 db->fragshift += 1; // returned in DSP_GETI/OPTR.
1893 }
1894 CS_DBGOUT(CS_PARMS, 3, printk(KERN_INFO
1895 "cs4281: prog_dmabuf(): numfrag=%d fragsize=%d fragsamples=%d fragshift=%d bufs=%d fmt=0x%x ch=%d\n",
1896 db->numfrag, db->fragsize, db->fragsamples,
1897 db->fragshift, bufs,
1898 (db->type == CS_TYPE_DAC) ? s->prop_dac.fmt :
1899 s->prop_adc.fmt,
1900 (db->type == CS_TYPE_DAC) ? s->prop_dac.channels :
1901 s->prop_adc.channels));
1902 CS_DBGOUT(CS_FUNCTION, 2,
1903 printk(KERN_INFO "cs4281: prog_dmabuf()-\n"));
1904 return 0;
1905 }
1906
1907
prog_dmabuf_adc(struct cs4281_state * s)1908 static int prog_dmabuf_adc(struct cs4281_state *s)
1909 {
1910 unsigned long va;
1911 unsigned count;
1912 int c;
1913 stop_adc(s);
1914 s->dma_adc.type = CS_TYPE_ADC;
1915 if ((c = prog_dmabuf(s, &s->dma_adc)))
1916 return c;
1917
1918 if (s->dma_adc.rawbuf) {
1919 memset(s->dma_adc.rawbuf,
1920 (s->prop_adc.
1921 fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0,
1922 s->dma_adc.dmasize);
1923 }
1924 if (s->tmpbuff) {
1925 memset(s->tmpbuff,
1926 (s->prop_adc.
1927 fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0,
1928 PAGE_SIZE << s->buforder_tmpbuff);
1929 }
1930
1931 va = virt_to_bus(s->dma_adc.rawbuf);
1932
1933 count = s->dma_adc.dmasize;
1934
1935 if (s->prop_adc.
1936 fmt & (AFMT_S16_LE | AFMT_U16_LE | AFMT_S16_BE | AFMT_U16_BE))
1937 count /= 2; // 16-bit.
1938
1939 if (s->prop_adc.channels > 1)
1940 count /= 2; // Assume stereo.
1941
1942 CS_DBGOUT(CS_WAVE_READ, 3, printk(KERN_INFO
1943 "cs4281: prog_dmabuf_adc(): count=%d va=0x%.8x\n",
1944 count, (unsigned) va));
1945
1946 writel(va, s->pBA0 + BA0_DBA1); // Set buffer start address.
1947 writel(count - 1, s->pBA0 + BA0_DBC1); // Set count.
1948 s->dma_adc.ready = 1;
1949 return 0;
1950 }
1951
1952
prog_dmabuf_dac(struct cs4281_state * s)1953 static int prog_dmabuf_dac(struct cs4281_state *s)
1954 {
1955 unsigned long va;
1956 unsigned count;
1957 int c;
1958 stop_dac(s);
1959 s->dma_dac.type = CS_TYPE_DAC;
1960 if ((c = prog_dmabuf(s, &s->dma_dac)))
1961 return c;
1962 memset(s->dma_dac.rawbuf,
1963 (s->prop_dac.fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0,
1964 s->dma_dac.dmasize);
1965
1966 va = virt_to_bus(s->dma_dac.rawbuf);
1967
1968 count = s->dma_dac.dmasize;
1969 if (s->prop_dac.
1970 fmt & (AFMT_S16_LE | AFMT_U16_LE | AFMT_S16_BE | AFMT_U16_BE))
1971 count /= 2; // 16-bit.
1972
1973 if (s->prop_dac.channels > 1)
1974 count /= 2; // Assume stereo.
1975
1976 writel(va, s->pBA0 + BA0_DBA0); // Set buffer start address.
1977 writel(count - 1, s->pBA0 + BA0_DBC0); // Set count.
1978
1979 CS_DBGOUT(CS_WAVE_WRITE, 3, printk(KERN_INFO
1980 "cs4281: prog_dmabuf_dac(): count=%d va=0x%.8x\n",
1981 count, (unsigned) va));
1982
1983 s->dma_dac.ready = 1;
1984 return 0;
1985 }
1986
1987
clear_advance(void * buf,unsigned bsize,unsigned bptr,unsigned len,unsigned char c)1988 static void clear_advance(void *buf, unsigned bsize, unsigned bptr,
1989 unsigned len, unsigned char c)
1990 {
1991 if (bptr + len > bsize) {
1992 unsigned x = bsize - bptr;
1993 memset(((char *) buf) + bptr, c, x);
1994 bptr = 0;
1995 len -= x;
1996 }
1997 CS_DBGOUT(CS_WAVE_WRITE, 4, printk(KERN_INFO
1998 "cs4281: clear_advance(): memset %d at 0x%.8x for %d size \n",
1999 (unsigned)c, (unsigned)((char *) buf) + bptr, len));
2000 memset(((char *) buf) + bptr, c, len);
2001 }
2002
2003
2004
2005 // call with spinlock held!
cs4281_update_ptr(struct cs4281_state * s,int intflag)2006 static void cs4281_update_ptr(struct cs4281_state *s, int intflag)
2007 {
2008 int diff;
2009 unsigned hwptr, va;
2010
2011 // update ADC pointer
2012 if (s->ena & FMODE_READ) {
2013 hwptr = readl(s->pBA0 + BA0_DCA1); // Read capture DMA address.
2014 va = virt_to_bus(s->dma_adc.rawbuf);
2015 hwptr -= (unsigned) va;
2016 diff =
2017 (s->dma_adc.dmasize + hwptr -
2018 s->dma_adc.hwptr) % s->dma_adc.dmasize;
2019 s->dma_adc.hwptr = hwptr;
2020 s->dma_adc.total_bytes += diff;
2021 s->dma_adc.count += diff;
2022 if (s->dma_adc.count > s->dma_adc.dmasize)
2023 s->dma_adc.count = s->dma_adc.dmasize;
2024 if (s->dma_adc.mapped) {
2025 if (s->dma_adc.count >= (signed) s->dma_adc.fragsize)
2026 wake_up(&s->dma_adc.wait);
2027 } else {
2028 if (s->dma_adc.count > 0)
2029 wake_up(&s->dma_adc.wait);
2030 }
2031 CS_DBGOUT(CS_PARMS, 8, printk(KERN_INFO
2032 "cs4281: cs4281_update_ptr(): s=0x%.8x hwptr=%d total_bytes=%d count=%d \n",
2033 (unsigned)s, s->dma_adc.hwptr,
2034 s->dma_adc.total_bytes, s->dma_adc.count));
2035 }
2036 // update DAC pointer
2037 //
2038 // check for end of buffer, means that we are going to wait for another interrupt
2039 // to allow silence to fill the fifos on the part, to keep pops down to a minimum.
2040 //
2041 if (s->ena & FMODE_WRITE) {
2042 hwptr = readl(s->pBA0 + BA0_DCA0); // Read play DMA address.
2043 va = virt_to_bus(s->dma_dac.rawbuf);
2044 hwptr -= (unsigned) va;
2045 diff = (s->dma_dac.dmasize + hwptr -
2046 s->dma_dac.hwptr) % s->dma_dac.dmasize;
2047 s->dma_dac.hwptr = hwptr;
2048 s->dma_dac.total_bytes += diff;
2049 if (s->dma_dac.mapped) {
2050 s->dma_dac.count += diff;
2051 if (s->dma_dac.count >= s->dma_dac.fragsize) {
2052 s->dma_dac.wakeup = 1;
2053 wake_up(&s->dma_dac.wait);
2054 if (s->dma_dac.count > s->dma_dac.dmasize)
2055 s->dma_dac.count &=
2056 s->dma_dac.dmasize - 1;
2057 }
2058 } else {
2059 s->dma_dac.count -= diff;
2060 if (s->dma_dac.count <= 0) {
2061 //
2062 // fill with silence, and do not shut down the DAC.
2063 // Continue to play silence until the _release.
2064 //
2065 CS_DBGOUT(CS_WAVE_WRITE, 6, printk(KERN_INFO
2066 "cs4281: cs4281_update_ptr(): memset %d at 0x%.8x for %d size \n",
2067 (unsigned)(s->prop_dac.fmt &
2068 (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0,
2069 (unsigned)s->dma_dac.rawbuf,
2070 s->dma_dac.dmasize));
2071 memset(s->dma_dac.rawbuf,
2072 (s->prop_dac.
2073 fmt & (AFMT_U8 | AFMT_U16_LE)) ?
2074 0x80 : 0, s->dma_dac.dmasize);
2075 if (s->dma_dac.count < 0) {
2076 s->dma_dac.underrun = 1;
2077 s->dma_dac.count = 0;
2078 CS_DBGOUT(CS_ERROR, 9, printk(KERN_INFO
2079 "cs4281: cs4281_update_ptr(): underrun\n"));
2080 }
2081 } else if (s->dma_dac.count <=
2082 (signed) s->dma_dac.fragsize
2083 && !s->dma_dac.endcleared) {
2084 clear_advance(s->dma_dac.rawbuf,
2085 s->dma_dac.dmasize,
2086 s->dma_dac.swptr,
2087 s->dma_dac.fragsize,
2088 (s->prop_dac.
2089 fmt & (AFMT_U8 |
2090 AFMT_U16_LE)) ? 0x80
2091 : 0);
2092 s->dma_dac.endcleared = 1;
2093 }
2094 if ( (s->dma_dac.count <= (signed) s->dma_dac.dmasize/2) ||
2095 intflag)
2096 {
2097 wake_up(&s->dma_dac.wait);
2098 }
2099 }
2100 CS_DBGOUT(CS_PARMS, 8, printk(KERN_INFO
2101 "cs4281: cs4281_update_ptr(): s=0x%.8x hwptr=%d total_bytes=%d count=%d \n",
2102 (unsigned) s, s->dma_dac.hwptr,
2103 s->dma_dac.total_bytes, s->dma_dac.count));
2104 }
2105 }
2106
2107
2108 // ---------------------------------------------------------------------
2109
prog_codec(struct cs4281_state * s,unsigned type)2110 static void prog_codec(struct cs4281_state *s, unsigned type)
2111 {
2112 unsigned long flags;
2113 unsigned temp1, format;
2114
2115 CS_DBGOUT(CS_FUNCTION, 2,
2116 printk(KERN_INFO "cs4281: prog_codec()+ \n"));
2117
2118 spin_lock_irqsave(&s->lock, flags);
2119 if (type == CS_TYPE_ADC) {
2120 temp1 = readl(s->pBA0 + BA0_DCR1);
2121 writel(temp1 | DCRn_MSK, s->pBA0 + BA0_DCR1); // Stop capture DMA, if active.
2122
2123 // program sampling rates
2124 // Note, for CS4281, capture & play rates can be set independently.
2125 cs4281_record_rate(s, s->prop_adc.rate);
2126
2127 // program ADC parameters
2128 format = DMRn_DMA | DMRn_AUTO | DMRn_TR_WRITE;
2129 if (s->prop_adc.
2130 fmt & (AFMT_S16_LE | AFMT_U16_LE | AFMT_S16_BE | AFMT_U16_BE)) { // 16-bit
2131 if (s->prop_adc.fmt & (AFMT_S16_BE | AFMT_U16_BE)) // Big-endian?
2132 format |= DMRn_BEND;
2133 if (s->prop_adc.fmt & (AFMT_U16_LE | AFMT_U16_BE))
2134 format |= DMRn_USIGN; // Unsigned.
2135 } else
2136 format |= DMRn_SIZE8 | DMRn_USIGN; // 8-bit, unsigned
2137 if (s->prop_adc.channels < 2)
2138 format |= DMRn_MONO;
2139
2140 writel(format, s->pBA0 + BA0_DMR1);
2141
2142 CS_DBGOUT(CS_PARMS, 2, printk(KERN_INFO
2143 "cs4281: prog_codec(): adc %s %s %s rate=%d DMR0 format=0x%.8x\n",
2144 (format & DMRn_SIZE8) ? "8" : "16",
2145 (format & DMRn_USIGN) ? "Unsigned" : "Signed",
2146 (format & DMRn_MONO) ? "Mono" : "Stereo",
2147 s->prop_adc.rate, format));
2148
2149 s->ena &= ~FMODE_READ; // not capturing data yet
2150 }
2151
2152
2153 if (type == CS_TYPE_DAC) {
2154 temp1 = readl(s->pBA0 + BA0_DCR0);
2155 writel(temp1 | DCRn_MSK, s->pBA0 + BA0_DCR0); // Stop play DMA, if active.
2156
2157 // program sampling rates
2158 // Note, for CS4281, capture & play rates can be set independently.
2159 cs4281_play_rate(s, s->prop_dac.rate);
2160
2161 // program DAC parameters
2162 format = DMRn_DMA | DMRn_AUTO | DMRn_TR_READ;
2163 if (s->prop_dac.
2164 fmt & (AFMT_S16_LE | AFMT_U16_LE | AFMT_S16_BE | AFMT_U16_BE)) { // 16-bit
2165 if (s->prop_dac.fmt & (AFMT_S16_BE | AFMT_U16_BE))
2166 format |= DMRn_BEND; // Big Endian.
2167 if (s->prop_dac.fmt & (AFMT_U16_LE | AFMT_U16_BE))
2168 format |= DMRn_USIGN; // Unsigned.
2169 } else
2170 format |= DMRn_SIZE8 | DMRn_USIGN; // 8-bit, unsigned
2171
2172 if (s->prop_dac.channels < 2)
2173 format |= DMRn_MONO;
2174
2175 writel(format, s->pBA0 + BA0_DMR0);
2176
2177
2178 CS_DBGOUT(CS_PARMS, 2, printk(KERN_INFO
2179 "cs4281: prog_codec(): dac %s %s %s rate=%d DMR0 format=0x%.8x\n",
2180 (format & DMRn_SIZE8) ? "8" : "16",
2181 (format & DMRn_USIGN) ? "Unsigned" : "Signed",
2182 (format & DMRn_MONO) ? "Mono" : "Stereo",
2183 s->prop_dac.rate, format));
2184
2185 s->ena &= ~FMODE_WRITE; // not capturing data yet
2186
2187 }
2188 spin_unlock_irqrestore(&s->lock, flags);
2189 CS_DBGOUT(CS_FUNCTION, 2,
2190 printk(KERN_INFO "cs4281: prog_codec()- \n"));
2191 }
2192
2193
mixer_ioctl(struct cs4281_state * s,unsigned int cmd,unsigned long arg)2194 static int mixer_ioctl(struct cs4281_state *s, unsigned int cmd,
2195 unsigned long arg)
2196 {
2197 int return_mask=0;
2198 // Index to mixer_src[] is value of AC97 Input Mux Select Reg.
2199 // Value of array member is recording source Device ID Mask.
2200 static const unsigned int mixer_src[8] = {
2201 SOUND_MASK_MIC, SOUND_MASK_CD, 0, SOUND_MASK_LINE1,
2202 SOUND_MASK_LINE, SOUND_MASK_VOLUME, 0, 0
2203 };
2204
2205 // Index of mixtable1[] member is Device ID
2206 // and must be <= SOUND_MIXER_NRDEVICES.
2207 // Value of array member is index into s->mix.vol[]
2208 static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = {
2209 [SOUND_MIXER_PCM] = 1, // voice
2210 [SOUND_MIXER_LINE1] = 2, // AUX
2211 [SOUND_MIXER_CD] = 3, // CD
2212 [SOUND_MIXER_LINE] = 4, // Line
2213 [SOUND_MIXER_SYNTH] = 5, // FM
2214 [SOUND_MIXER_MIC] = 6, // Mic
2215 [SOUND_MIXER_SPEAKER] = 7, // Speaker
2216 [SOUND_MIXER_RECLEV] = 8, // Recording level
2217 [SOUND_MIXER_VOLUME] = 9 // Master Volume
2218 };
2219
2220
2221 static const unsigned mixreg[] = {
2222 BA0_AC97_PCM_OUT_VOLUME,
2223 BA0_AC97_AUX_VOLUME,
2224 BA0_AC97_CD_VOLUME,
2225 BA0_AC97_LINE_IN_VOLUME
2226 };
2227 unsigned char l, r, rl, rr, vidx;
2228 unsigned char attentbl[11] =
2229 { 63, 42, 26, 17, 14, 11, 8, 6, 4, 2, 0 };
2230 unsigned temp1;
2231 int i, val;
2232
2233 VALIDATE_STATE(s);
2234 CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO
2235 "cs4281: mixer_ioctl(): s=0x%.8x cmd=0x%.8x\n",
2236 (unsigned) s, cmd));
2237 #if CSDEBUG
2238 cs_printioctl(cmd);
2239 #endif
2240 #if CSDEBUG_INTERFACE
2241
2242 if ((cmd == SOUND_MIXER_CS_GETDBGMASK) ||
2243 (cmd == SOUND_MIXER_CS_SETDBGMASK) ||
2244 (cmd == SOUND_MIXER_CS_GETDBGLEVEL) ||
2245 (cmd == SOUND_MIXER_CS_SETDBGLEVEL) ||
2246 (cmd == SOUND_MIXER_CS_APM))
2247 {
2248 switch (cmd) {
2249
2250 case SOUND_MIXER_CS_GETDBGMASK:
2251 return put_user(cs_debugmask,
2252 (unsigned long *) arg);
2253
2254 case SOUND_MIXER_CS_GETDBGLEVEL:
2255 return put_user(cs_debuglevel,
2256 (unsigned long *) arg);
2257
2258 case SOUND_MIXER_CS_SETDBGMASK:
2259 if (get_user(val, (unsigned long *) arg))
2260 return -EFAULT;
2261 cs_debugmask = val;
2262 return 0;
2263
2264 case SOUND_MIXER_CS_SETDBGLEVEL:
2265 if (get_user(val, (unsigned long *) arg))
2266 return -EFAULT;
2267 cs_debuglevel = val;
2268 return 0;
2269 #ifndef NOT_CS4281_PM
2270 case SOUND_MIXER_CS_APM:
2271 if (get_user(val, (unsigned long *) arg))
2272 return -EFAULT;
2273 if(val == CS_IOCTL_CMD_SUSPEND)
2274 cs4281_suspend(s);
2275 else if(val == CS_IOCTL_CMD_RESUME)
2276 cs4281_resume(s);
2277 else
2278 {
2279 CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO
2280 "cs4281: mixer_ioctl(): invalid APM cmd (%d)\n",
2281 val));
2282 }
2283 return 0;
2284 #endif
2285 default:
2286 CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO
2287 "cs4281: mixer_ioctl(): ERROR unknown debug cmd\n"));
2288 return 0;
2289 }
2290 }
2291 #endif
2292
2293 if (cmd == SOUND_MIXER_PRIVATE1) {
2294 // enable/disable/query mixer preamp
2295 if (get_user(val, (int *) arg))
2296 return -EFAULT;
2297 if (val != -1) {
2298 cs4281_read_ac97(s, BA0_AC97_MIC_VOLUME, &temp1);
2299 temp1 = val ? (temp1 | 0x40) : (temp1 & 0xffbf);
2300 cs4281_write_ac97(s, BA0_AC97_MIC_VOLUME, temp1);
2301 }
2302 cs4281_read_ac97(s, BA0_AC97_MIC_VOLUME, &temp1);
2303 val = (temp1 & 0x40) ? 1 : 0;
2304 return put_user(val, (int *) arg);
2305 }
2306 if (cmd == SOUND_MIXER_PRIVATE2) {
2307 // enable/disable/query spatializer
2308 if (get_user(val, (int *) arg))
2309 return -EFAULT;
2310 if (val != -1) {
2311 temp1 = (val & 0x3f) >> 2;
2312 cs4281_write_ac97(s, BA0_AC97_3D_CONTROL, temp1);
2313 cs4281_read_ac97(s, BA0_AC97_GENERAL_PURPOSE,
2314 &temp1);
2315 cs4281_write_ac97(s, BA0_AC97_GENERAL_PURPOSE,
2316 temp1 | 0x2000);
2317 }
2318 cs4281_read_ac97(s, BA0_AC97_3D_CONTROL, &temp1);
2319 return put_user((temp1 << 2) | 3, (int *) arg);
2320 }
2321 if (cmd == SOUND_MIXER_INFO) {
2322 mixer_info info;
2323 strncpy(info.id, "CS4281", sizeof(info.id));
2324 strncpy(info.name, "Crystal CS4281", sizeof(info.name));
2325 info.modify_counter = s->mix.modcnt;
2326 if (copy_to_user((void *) arg, &info, sizeof(info)))
2327 return -EFAULT;
2328 return 0;
2329 }
2330 if (cmd == SOUND_OLD_MIXER_INFO) {
2331 _old_mixer_info info;
2332 strncpy(info.id, "CS4281", sizeof(info.id));
2333 strncpy(info.name, "Crystal CS4281", sizeof(info.name));
2334 if (copy_to_user((void *) arg, &info, sizeof(info)))
2335 return -EFAULT;
2336 return 0;
2337 }
2338 if (cmd == OSS_GETVERSION)
2339 return put_user(SOUND_VERSION, (int *) arg);
2340
2341 if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int))
2342 return -EINVAL;
2343
2344 // If ioctl has only the SIOC_READ bit(bit 31)
2345 // on, process the only-read commands.
2346 if (_SIOC_DIR(cmd) == _SIOC_READ) {
2347 switch (_IOC_NR(cmd)) {
2348 case SOUND_MIXER_RECSRC: // Arg contains a bit for each recording source
2349 cs4281_read_ac97(s, BA0_AC97_RECORD_SELECT,
2350 &temp1);
2351 return put_user(mixer_src[temp1 & 7], (int *) arg);
2352
2353 case SOUND_MIXER_DEVMASK: // Arg contains a bit for each supported device
2354 return put_user(SOUND_MASK_PCM | SOUND_MASK_SYNTH |
2355 SOUND_MASK_CD | SOUND_MASK_LINE |
2356 SOUND_MASK_LINE1 | SOUND_MASK_MIC |
2357 SOUND_MASK_VOLUME |
2358 SOUND_MASK_RECLEV |
2359 SOUND_MASK_SPEAKER, (int *) arg);
2360
2361 case SOUND_MIXER_RECMASK: // Arg contains a bit for each supported recording source
2362 return_mask = (((SOUND_MASK_LINE | SOUND_MASK_MIC |
2363 SOUND_MASK_CD | SOUND_MASK_VOLUME |
2364 SOUND_MASK_LINE1) ) & ~recsrc_invalid);
2365
2366 CS_DBGOUT(CS_PARMS, 6, printk(KERN_INFO
2367 "cs4281: mixer_ioctl(): return_mask=0x%x recsrc_invalid=0x%x\n",
2368 (unsigned)return_mask,(unsigned)recsrc_invalid));
2369 return put_user(return_mask, (int *) arg);
2370
2371 case SOUND_MIXER_STEREODEVS: // Mixer channels supporting stereo
2372 return put_user(SOUND_MASK_PCM | SOUND_MASK_SYNTH |
2373 SOUND_MASK_CD | SOUND_MASK_LINE |
2374 SOUND_MASK_LINE1 | SOUND_MASK_MIC |
2375 SOUND_MASK_VOLUME |
2376 SOUND_MASK_RECLEV, (int *) arg);
2377
2378 case SOUND_MIXER_CAPS:
2379 return put_user(SOUND_CAP_EXCL_INPUT, (int *) arg);
2380
2381 default:
2382 i = _IOC_NR(cmd);
2383 if (i >= SOUND_MIXER_NRDEVICES
2384 || !(vidx = mixtable1[i]))
2385 return -EINVAL;
2386 return put_user(s->mix.vol[vidx - 1], (int *) arg);
2387 }
2388 }
2389 // If ioctl doesn't have both the SIOC_READ and
2390 // the SIOC_WRITE bit set, return invalid.
2391 if (_SIOC_DIR(cmd) != (_SIOC_READ | _SIOC_WRITE))
2392 return -EINVAL;
2393
2394 // Increment the count of volume writes.
2395 s->mix.modcnt++;
2396
2397 // Isolate the command; it must be a write.
2398 switch (_IOC_NR(cmd)) {
2399
2400 case SOUND_MIXER_RECSRC: // Arg contains a bit for each recording source
2401 if (get_user(val, (int *) arg))
2402 return -EFAULT;
2403 i = hweight32(val); // i = # bits on in val.
2404 if (i != 1) // One & only 1 bit must be on.
2405 return 0;
2406 if(val & recsrc_invalid)
2407 {
2408 CS_DBGOUT(CS_ERROR, 2, printk(KERN_INFO
2409 "cs4281: mixer_ioctl(): REC SOURCE select error - record source invalid on this system (0x%x)\n",
2410 val));
2411 return -EINVAL;
2412 }
2413 for (i = 0; i < sizeof(mixer_src) / sizeof(int); i++) {
2414 if (val == mixer_src[i]) {
2415 temp1 = (i << 8) | i;
2416 cs4281_write_ac97(s,
2417 BA0_AC97_RECORD_SELECT,
2418 temp1);
2419 return 0;
2420 }
2421 }
2422 return 0;
2423
2424 case SOUND_MIXER_VOLUME:
2425 if (get_user(val, (int *) arg))
2426 return -EFAULT;
2427 l = val & 0xff;
2428 if (l > 100)
2429 l = 100; // Max soundcard.h vol is 100.
2430 if (l < 6) {
2431 rl = 63;
2432 l = 0;
2433 } else
2434 rl = attentbl[(10 * l) / 100]; // Convert 0-100 vol to 63-0 atten.
2435
2436 r = (val >> 8) & 0xff;
2437 if (r > 100)
2438 r = 100; // Max right volume is 100, too
2439 if (r < 6) {
2440 rr = 63;
2441 r = 0;
2442 } else
2443 rr = attentbl[(10 * r) / 100]; // Convert volume to attenuation.
2444
2445 if ((rl > 60) && (rr > 60)) // If both l & r are 'low',
2446 temp1 = 0x8000; // turn on the mute bit.
2447 else
2448 temp1 = 0;
2449
2450 temp1 |= (rl << 8) | rr;
2451
2452 cs4281_write_ac97(s, BA0_AC97_MASTER_VOLUME, temp1);
2453 cs4281_write_ac97(s, BA0_AC97_HEADPHONE_VOLUME, temp1);
2454
2455 #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
2456 s->mix.vol[8] = ((unsigned int) r << 8) | l;
2457 #else
2458 s->mix.vol[8] = val;
2459 #endif
2460 return put_user(s->mix.vol[8], (int *) arg);
2461
2462 case SOUND_MIXER_SPEAKER:
2463 if (get_user(val, (int *) arg))
2464 return -EFAULT;
2465 l = val & 0xff;
2466 if (l > 100)
2467 l = 100;
2468 if (l < 3) {
2469 rl = 0;
2470 l = 0;
2471 } else {
2472 rl = (l * 2 - 5) / 13; // Convert 0-100 range to 0-15.
2473 l = (rl * 13 + 5) / 2;
2474 }
2475
2476 if (rl < 3) {
2477 temp1 = 0x8000;
2478 rl = 0;
2479 } else
2480 temp1 = 0;
2481 rl = 15 - rl; // Convert volume to attenuation.
2482 temp1 |= rl << 1;
2483 cs4281_write_ac97(s, BA0_AC97_PC_BEEP_VOLUME, temp1);
2484
2485 #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
2486 s->mix.vol[6] = l << 8;
2487 #else
2488 s->mix.vol[6] = val;
2489 #endif
2490 return put_user(s->mix.vol[6], (int *) arg);
2491
2492 case SOUND_MIXER_RECLEV:
2493 if (get_user(val, (int *) arg))
2494 return -EFAULT;
2495 l = val & 0xff;
2496 if (l > 100)
2497 l = 100;
2498 r = (val >> 8) & 0xff;
2499 if (r > 100)
2500 r = 100;
2501 rl = (l * 2 - 5) / 13; // Convert 0-100 scale to 0-15.
2502 rr = (r * 2 - 5) / 13;
2503 if (rl < 3 && rr < 3)
2504 temp1 = 0x8000;
2505 else
2506 temp1 = 0;
2507
2508 temp1 = temp1 | (rl << 8) | rr;
2509 cs4281_write_ac97(s, BA0_AC97_RECORD_GAIN, temp1);
2510
2511 #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
2512 s->mix.vol[7] = ((unsigned int) r << 8) | l;
2513 #else
2514 s->mix.vol[7] = val;
2515 #endif
2516 return put_user(s->mix.vol[7], (int *) arg);
2517
2518 case SOUND_MIXER_MIC:
2519 if (get_user(val, (int *) arg))
2520 return -EFAULT;
2521 l = val & 0xff;
2522 if (l > 100)
2523 l = 100;
2524 if (l < 1) {
2525 l = 0;
2526 rl = 0;
2527 } else {
2528 rl = ((unsigned) l * 5 - 4) / 16; // Convert 0-100 range to 0-31.
2529 l = (rl * 16 + 4) / 5;
2530 }
2531 cs4281_read_ac97(s, BA0_AC97_MIC_VOLUME, &temp1);
2532 temp1 &= 0x40; // Isolate 20db gain bit.
2533 if (rl < 3) {
2534 temp1 |= 0x8000;
2535 rl = 0;
2536 }
2537 rl = 31 - rl; // Convert volume to attenuation.
2538 temp1 |= rl;
2539 cs4281_write_ac97(s, BA0_AC97_MIC_VOLUME, temp1);
2540
2541 #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
2542 s->mix.vol[5] = val << 8;
2543 #else
2544 s->mix.vol[5] = val;
2545 #endif
2546 return put_user(s->mix.vol[5], (int *) arg);
2547
2548
2549 case SOUND_MIXER_SYNTH:
2550 if (get_user(val, (int *) arg))
2551 return -EFAULT;
2552 l = val & 0xff;
2553 if (l > 100)
2554 l = 100;
2555 if (get_user(val, (int *) arg))
2556 return -EFAULT;
2557 r = (val >> 8) & 0xff;
2558 if (r > 100)
2559 r = 100;
2560 rl = (l * 2 - 11) / 3; // Convert 0-100 range to 0-63.
2561 rr = (r * 2 - 11) / 3;
2562 if (rl < 3) // If l is low, turn on
2563 temp1 = 0x0080; // the mute bit.
2564 else
2565 temp1 = 0;
2566
2567 rl = 63 - rl; // Convert vol to attenuation.
2568 writel(temp1 | rl, s->pBA0 + BA0_FMLVC);
2569 if (rr < 3) // If rr is low, turn on
2570 temp1 = 0x0080; // the mute bit.
2571 else
2572 temp1 = 0;
2573 rr = 63 - rr; // Convert vol to attenuation.
2574 writel(temp1 | rr, s->pBA0 + BA0_FMRVC);
2575
2576 #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
2577 s->mix.vol[4] = (r << 8) | l;
2578 #else
2579 s->mix.vol[4] = val;
2580 #endif
2581 return put_user(s->mix.vol[4], (int *) arg);
2582
2583
2584 default:
2585 CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
2586 "cs4281: mixer_ioctl(): default\n"));
2587
2588 i = _IOC_NR(cmd);
2589 if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i]))
2590 return -EINVAL;
2591 if (get_user(val, (int *) arg))
2592 return -EFAULT;
2593 l = val & 0xff;
2594 if (l > 100)
2595 l = 100;
2596 if (l < 1) {
2597 l = 0;
2598 rl = 31;
2599 } else
2600 rl = (attentbl[(l * 10) / 100]) >> 1;
2601
2602 r = (val >> 8) & 0xff;
2603 if (r > 100)
2604 r = 100;
2605 if (r < 1) {
2606 r = 0;
2607 rr = 31;
2608 } else
2609 rr = (attentbl[(r * 10) / 100]) >> 1;
2610 if ((rl > 30) && (rr > 30))
2611 temp1 = 0x8000;
2612 else
2613 temp1 = 0;
2614 temp1 = temp1 | (rl << 8) | rr;
2615 cs4281_write_ac97(s, mixreg[vidx - 1], temp1);
2616
2617 #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
2618 s->mix.vol[vidx - 1] = ((unsigned int) r << 8) | l;
2619 #else
2620 s->mix.vol[vidx - 1] = val;
2621 #endif
2622 #ifndef NOT_CS4281_PM
2623 CS_DBGOUT(CS_PM, 9, printk(KERN_INFO
2624 "write ac97 mixreg[%d]=0x%x mix.vol[]=0x%x\n",
2625 vidx-1,temp1,s->mix.vol[vidx-1]));
2626 #endif
2627 return put_user(s->mix.vol[vidx - 1], (int *) arg);
2628 }
2629 }
2630
cs4281_open_mixdev(struct inode * inode,struct file * file)2631 static int cs4281_open_mixdev(struct inode *inode, struct file *file)
2632 {
2633 int minor = MINOR(inode->i_rdev);
2634 struct cs4281_state *s=NULL;
2635 struct list_head *entry;
2636
2637 CS_DBGOUT(CS_FUNCTION | CS_OPEN, 4,
2638 printk(KERN_INFO "cs4281: cs4281_open_mixdev()+\n"));
2639
2640 list_for_each(entry, &cs4281_devs)
2641 {
2642 s = list_entry(entry, struct cs4281_state, list);
2643 if(s->dev_mixer == minor)
2644 break;
2645 }
2646 if (!s)
2647 {
2648 CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2,
2649 printk(KERN_INFO "cs4281: cs4281_open_mixdev()- -ENODEV\n"));
2650 return -ENODEV;
2651 }
2652 VALIDATE_STATE(s);
2653 file->private_data = s;
2654 MOD_INC_USE_COUNT;
2655
2656 CS_DBGOUT(CS_FUNCTION | CS_OPEN, 4,
2657 printk(KERN_INFO "cs4281: cs4281_open_mixdev()- 0\n"));
2658
2659 return 0;
2660 }
2661
2662
cs4281_release_mixdev(struct inode * inode,struct file * file)2663 static int cs4281_release_mixdev(struct inode *inode, struct file *file)
2664 {
2665 struct cs4281_state *s =
2666 (struct cs4281_state *) file->private_data;
2667
2668 VALIDATE_STATE(s);
2669 MOD_DEC_USE_COUNT;
2670 return 0;
2671 }
2672
2673
cs4281_ioctl_mixdev(struct inode * inode,struct file * file,unsigned int cmd,unsigned long arg)2674 static int cs4281_ioctl_mixdev(struct inode *inode, struct file *file,
2675 unsigned int cmd, unsigned long arg)
2676 {
2677 return mixer_ioctl((struct cs4281_state *) file->private_data, cmd,
2678 arg);
2679 }
2680
2681
2682 // ******************************************************************************************
2683 // Mixer file operations struct.
2684 // ******************************************************************************************
2685 static /*const */ struct file_operations cs4281_mixer_fops = {
2686 llseek:no_llseek,
2687 ioctl:cs4281_ioctl_mixdev,
2688 open:cs4281_open_mixdev,
2689 release:cs4281_release_mixdev,
2690 };
2691
2692 // ---------------------------------------------------------------------
2693
2694
drain_adc(struct cs4281_state * s,int nonblock)2695 static int drain_adc(struct cs4281_state *s, int nonblock)
2696 {
2697 DECLARE_WAITQUEUE(wait, current);
2698 unsigned long flags;
2699 int count;
2700 unsigned tmo;
2701
2702 if (s->dma_adc.mapped)
2703 return 0;
2704 add_wait_queue(&s->dma_adc.wait, &wait);
2705 for (;;) {
2706 set_current_state(TASK_INTERRUPTIBLE);
2707 spin_lock_irqsave(&s->lock, flags);
2708 count = s->dma_adc.count;
2709 CS_DBGOUT(CS_FUNCTION, 2,
2710 printk(KERN_INFO "cs4281: drain_adc() %d\n", count));
2711 spin_unlock_irqrestore(&s->lock, flags);
2712 if (count <= 0) {
2713 CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO
2714 "cs4281: drain_adc() count<0\n"));
2715 break;
2716 }
2717 if (signal_pending(current))
2718 break;
2719 if (nonblock) {
2720 remove_wait_queue(&s->dma_adc.wait, &wait);
2721 current->state = TASK_RUNNING;
2722 return -EBUSY;
2723 }
2724 tmo =
2725 3 * HZ * (count +
2726 s->dma_adc.fragsize) / 2 / s->prop_adc.rate;
2727 if (s->prop_adc.fmt & (AFMT_S16_LE | AFMT_U16_LE))
2728 tmo >>= 1;
2729 if (s->prop_adc.channels > 1)
2730 tmo >>= 1;
2731 if (!schedule_timeout(tmo + 1))
2732 printk(KERN_DEBUG "cs4281: dma timed out??\n");
2733 }
2734 remove_wait_queue(&s->dma_adc.wait, &wait);
2735 current->state = TASK_RUNNING;
2736 if (signal_pending(current))
2737 return -ERESTARTSYS;
2738 return 0;
2739 }
2740
drain_dac(struct cs4281_state * s,int nonblock)2741 static int drain_dac(struct cs4281_state *s, int nonblock)
2742 {
2743 DECLARE_WAITQUEUE(wait, current);
2744 unsigned long flags;
2745 int count;
2746 unsigned tmo;
2747
2748 CS_DBGOUT(CS_FUNCTION, 2,
2749 printk(KERN_INFO "cs4281: drain_dac()+\n"));
2750 if (s->dma_dac.mapped)
2751 {
2752 CS_DBGOUT(CS_FUNCTION, 2,
2753 printk(KERN_INFO "cs4281: drain_dac()- (mmap) 0\n"));
2754 return 0;
2755 }
2756 if (s->ena & FMODE_WRITE)
2757 add_wait_queue(&s->dma_dac.wait, &wait);
2758 else
2759 return 0;
2760 for (;;) {
2761 set_current_state(TASK_INTERRUPTIBLE);
2762 spin_lock_irqsave(&s->lock, flags);
2763 count = s->dma_dac.count;
2764 spin_unlock_irqrestore(&s->lock, flags);
2765 if (count <= 0)
2766 break;
2767 if (signal_pending(current))
2768 break;
2769 if (nonblock) {
2770 remove_wait_queue(&s->dma_dac.wait, &wait);
2771 current->state = TASK_RUNNING;
2772 CS_DBGOUT(CS_FUNCTION, 2,
2773 printk(KERN_INFO "cs4281: drain_dac()- -EBUSY\n"));
2774 return -EBUSY;
2775 }
2776 tmo =
2777 3 * HZ * (count +
2778 s->dma_dac.fragsize) / 2 / s->prop_dac.rate;
2779 if (s->prop_dac.fmt & (AFMT_S16_LE | AFMT_U16_LE))
2780 tmo >>= 1;
2781 if (s->prop_dac.channels > 1)
2782 tmo >>= 1;
2783 if (!schedule_timeout(tmo + 1))
2784 printk(KERN_DEBUG "cs4281: dma timed out??\n");
2785 }
2786 remove_wait_queue(&s->dma_dac.wait, &wait);
2787 current->state = TASK_RUNNING;
2788 if (signal_pending(current))
2789 {
2790 CS_DBGOUT(CS_FUNCTION, 2,
2791 printk(KERN_INFO "cs4281: drain_dac()- -ERESTARTSYS\n"));
2792 return -ERESTARTSYS;
2793 }
2794 CS_DBGOUT(CS_FUNCTION, 2,
2795 printk(KERN_INFO "cs4281: drain_dac()- 0\n"));
2796 return 0;
2797 }
2798
2799 //****************************************************************************
2800 //
2801 // CopySamples copies 16-bit stereo samples from the source to the
2802 // destination, possibly converting down to either 8-bit or mono or both.
2803 // count specifies the number of output bytes to write.
2804 //
2805 // Arguments:
2806 //
2807 // dst - Pointer to a destination buffer.
2808 // src - Pointer to a source buffer
2809 // count - The number of bytes to copy into the destination buffer.
2810 // iChannels - Stereo - 2
2811 // Mono - 1
2812 // fmt - AFMT_xxx (soundcard.h formats)
2813 //
2814 // NOTES: only call this routine for conversion to 8bit from 16bit
2815 //
2816 //****************************************************************************
CopySamples(char * dst,char * src,int count,int iChannels,unsigned fmt)2817 static void CopySamples(char *dst, char *src, int count, int iChannels,
2818 unsigned fmt)
2819 {
2820
2821 unsigned short *psSrc;
2822 long lAudioSample;
2823
2824 CS_DBGOUT(CS_FUNCTION, 2,
2825 printk(KERN_INFO "cs4281: CopySamples()+ "));
2826 CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO
2827 " dst=0x%x src=0x%x count=%d iChannels=%d fmt=0x%x\n",
2828 (unsigned) dst, (unsigned) src, (unsigned) count,
2829 (unsigned) iChannels, (unsigned) fmt));
2830
2831 // Gershwin does format conversion in hardware so normally
2832 // we don't do any host based coversion. The data formatter
2833 // truncates 16 bit data to 8 bit and that causes some hiss.
2834 // We have already forced the HW to do 16 bit sampling and
2835 // 2 channel so that we can use software to round instead
2836 // of truncate
2837
2838 //
2839 // See if the data should be output as 8-bit unsigned stereo.
2840 // or if the data should be output at 8-bit unsigned mono.
2841 //
2842 if ( ((iChannels == 2) && (fmt & AFMT_U8)) ||
2843 ((iChannels == 1) && (fmt & AFMT_U8)) ) {
2844 //
2845 // Convert each 16-bit unsigned stereo sample to 8-bit unsigned
2846 // stereo using rounding.
2847 //
2848 psSrc = (unsigned short *) src;
2849 count = count / 2;
2850 while (count--) {
2851 lAudioSample = (long) psSrc[count] + (long) 0x80;
2852 if (lAudioSample > 0xffff) {
2853 lAudioSample = 0xffff;
2854 }
2855 dst[count] = (char) (lAudioSample >> 8);
2856 }
2857 }
2858 //
2859 // check for 8-bit signed stereo.
2860 //
2861 else if ((iChannels == 2) && (fmt & AFMT_S8)) {
2862 //
2863 // Convert each 16-bit stereo sample to 8-bit stereo using rounding.
2864 //
2865 psSrc = (short *) src;
2866 while (count--) {
2867 lAudioSample =
2868 (((long) psSrc[0] + (long) psSrc[1]) / 2);
2869 psSrc += 2;
2870 *dst++ = (char) ((short) lAudioSample >> 8);
2871 }
2872 }
2873 //
2874 // Otherwise, the data should be output as 8-bit signed mono.
2875 //
2876 else if ((iChannels == 1) && (fmt & AFMT_S8)) {
2877 //
2878 // Convert each 16-bit signed mono sample to 8-bit signed mono
2879 // using rounding.
2880 //
2881 psSrc = (short *) src;
2882 count = count / 2;
2883 while (count--) {
2884 lAudioSample =
2885 (((long) psSrc[0] + (long) psSrc[1]) / 2);
2886 if (lAudioSample > 0x7fff) {
2887 lAudioSample = 0x7fff;
2888 }
2889 psSrc += 2;
2890 *dst++ = (char) ((short) lAudioSample >> 8);
2891 }
2892 }
2893 }
2894
2895 //
2896 // cs_copy_to_user()
2897 // replacement for the standard copy_to_user, to allow for a conversion from
2898 // 16 bit to 8 bit if the record conversion is active. the cs4281 has some
2899 // issues with 8 bit capture, so the driver always captures data in 16 bit
2900 // and then if the user requested 8 bit, converts from 16 to 8 bit.
2901 //
cs_copy_to_user(struct cs4281_state * s,void * dest,unsigned * hwsrc,unsigned cnt,unsigned * copied)2902 static unsigned cs_copy_to_user(struct cs4281_state *s, void *dest,
2903 unsigned *hwsrc, unsigned cnt,
2904 unsigned *copied)
2905 {
2906 void *src = hwsrc; //default to the standard destination buffer addr
2907
2908 CS_DBGOUT(CS_FUNCTION, 6, printk(KERN_INFO
2909 "cs_copy_to_user()+ fmt=0x%x fmt_o=0x%x cnt=%d dest=0x%.8x\n",
2910 s->prop_adc.fmt, s->prop_adc.fmt_original,
2911 (unsigned) cnt, (unsigned) dest));
2912
2913 if (cnt > s->dma_adc.dmasize) {
2914 cnt = s->dma_adc.dmasize;
2915 }
2916 if (!cnt) {
2917 *copied = 0;
2918 return 0;
2919 }
2920 if (s->conversion) {
2921 if (!s->tmpbuff) {
2922 *copied = cnt / 2;
2923 return 0;
2924 }
2925 CopySamples(s->tmpbuff, (void *) hwsrc, cnt,
2926 (unsigned) s->prop_adc.channels,
2927 s->prop_adc.fmt_original);
2928 src = s->tmpbuff;
2929 cnt = cnt / 2;
2930 }
2931
2932 if (copy_to_user(dest, src, cnt)) {
2933 *copied = 0;
2934 return -EFAULT;
2935 }
2936 *copied = cnt;
2937 CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO
2938 "cs4281: cs_copy_to_user()- copied bytes is %d \n", cnt));
2939 return 0;
2940 }
2941
2942 // ---------------------------------------------------------------------
2943
cs4281_read(struct file * file,char * buffer,size_t count,loff_t * ppos)2944 static ssize_t cs4281_read(struct file *file, char *buffer, size_t count,
2945 loff_t * ppos)
2946 {
2947 struct cs4281_state *s =
2948 (struct cs4281_state *) file->private_data;
2949 ssize_t ret;
2950 unsigned long flags;
2951 unsigned swptr;
2952 int cnt;
2953 unsigned copied = 0;
2954
2955 CS_DBGOUT(CS_FUNCTION | CS_WAVE_READ, 2,
2956 printk(KERN_INFO "cs4281: cs4281_read()+ %d \n", count));
2957
2958 VALIDATE_STATE(s);
2959 if (ppos != &file->f_pos)
2960 return -ESPIPE;
2961 if (s->dma_adc.mapped)
2962 return -ENXIO;
2963 if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s)))
2964 return ret;
2965 if (!access_ok(VERIFY_WRITE, buffer, count))
2966 return -EFAULT;
2967 ret = 0;
2968 //
2969 // "count" is the amount of bytes to read (from app), is decremented each loop
2970 // by the amount of bytes that have been returned to the user buffer.
2971 // "cnt" is the running total of each read from the buffer (changes each loop)
2972 // "buffer" points to the app's buffer
2973 // "ret" keeps a running total of the amount of bytes that have been copied
2974 // to the user buffer.
2975 // "copied" is the total bytes copied into the user buffer for each loop.
2976 //
2977 while (count > 0) {
2978 CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO
2979 "_read() count>0 count=%d .count=%d .swptr=%d .hwptr=%d \n",
2980 count, s->dma_adc.count,
2981 s->dma_adc.swptr, s->dma_adc.hwptr));
2982 spin_lock_irqsave(&s->lock, flags);
2983
2984 // get the current copy point of the sw buffer
2985 swptr = s->dma_adc.swptr;
2986
2987 // cnt is the amount of unread bytes from the end of the
2988 // hw buffer to the current sw pointer
2989 cnt = s->dma_adc.dmasize - swptr;
2990
2991 // dma_adc.count is the current total bytes that have not been read.
2992 // if the amount of unread bytes from the current sw pointer to the
2993 // end of the buffer is greater than the current total bytes that
2994 // have not been read, then set the "cnt" (unread bytes) to the
2995 // amount of unread bytes.
2996
2997 if (s->dma_adc.count < cnt)
2998 cnt = s->dma_adc.count;
2999 spin_unlock_irqrestore(&s->lock, flags);
3000 //
3001 // if we are converting from 8/16 then we need to copy
3002 // twice the number of 16 bit bytes then 8 bit bytes.
3003 //
3004 if (s->conversion) {
3005 if (cnt > (count * 2))
3006 cnt = (count * 2);
3007 } else {
3008 if (cnt > count)
3009 cnt = count;
3010 }
3011 //
3012 // "cnt" NOW is the smaller of the amount that will be read,
3013 // and the amount that is requested in this read (or partial).
3014 // if there are no bytes in the buffer to read, then start the
3015 // ADC and wait for the interrupt handler to wake us up.
3016 //
3017 if (cnt <= 0) {
3018
3019 // start up the dma engine and then continue back to the top of
3020 // the loop when wake up occurs.
3021 start_adc(s);
3022 if (file->f_flags & O_NONBLOCK)
3023 return ret ? ret : -EAGAIN;
3024 interruptible_sleep_on(&s->dma_adc.wait);
3025 if (signal_pending(current))
3026 return ret ? ret : -ERESTARTSYS;
3027 continue;
3028 }
3029 // there are bytes in the buffer to read.
3030 // copy from the hw buffer over to the user buffer.
3031 // user buffer is designated by "buffer"
3032 // virtual address to copy from is rawbuf+swptr
3033 // the "cnt" is the number of bytes to read.
3034
3035 CS_DBGOUT(CS_WAVE_READ, 2, printk(KERN_INFO
3036 "_read() copy_to cnt=%d count=%d ", cnt, count));
3037 CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO
3038 " .dmasize=%d .count=%d buffer=0x%.8x ret=%d\n",
3039 s->dma_adc.dmasize, s->dma_adc.count,
3040 (unsigned) buffer, ret));
3041
3042 if (cs_copy_to_user
3043 (s, buffer, s->dma_adc.rawbuf + swptr, cnt, &copied))
3044 return ret ? ret : -EFAULT;
3045 swptr = (swptr + cnt) % s->dma_adc.dmasize;
3046 spin_lock_irqsave(&s->lock, flags);
3047 s->dma_adc.swptr = swptr;
3048 s->dma_adc.count -= cnt;
3049 spin_unlock_irqrestore(&s->lock, flags);
3050 count -= copied;
3051 buffer += copied;
3052 ret += copied;
3053 start_adc(s);
3054 }
3055 CS_DBGOUT(CS_FUNCTION | CS_WAVE_READ, 2,
3056 printk(KERN_INFO "cs4281: cs4281_read()- %d\n", ret));
3057 return ret;
3058 }
3059
3060
cs4281_write(struct file * file,const char * buffer,size_t count,loff_t * ppos)3061 static ssize_t cs4281_write(struct file *file, const char *buffer,
3062 size_t count, loff_t * ppos)
3063 {
3064 struct cs4281_state *s =
3065 (struct cs4281_state *) file->private_data;
3066 ssize_t ret;
3067 unsigned long flags;
3068 unsigned swptr, hwptr, busaddr;
3069 int cnt;
3070
3071 CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE, 2,
3072 printk(KERN_INFO "cs4281: cs4281_write()+ count=%d\n",
3073 count));
3074 VALIDATE_STATE(s);
3075
3076 if (ppos != &file->f_pos)
3077 return -ESPIPE;
3078 if (s->dma_dac.mapped)
3079 return -ENXIO;
3080 if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s)))
3081 return ret;
3082 if (!access_ok(VERIFY_READ, buffer, count))
3083 return -EFAULT;
3084 ret = 0;
3085 while (count > 0) {
3086 spin_lock_irqsave(&s->lock, flags);
3087 if (s->dma_dac.count < 0) {
3088 s->dma_dac.count = 0;
3089 s->dma_dac.swptr = s->dma_dac.hwptr;
3090 }
3091 if (s->dma_dac.underrun) {
3092 s->dma_dac.underrun = 0;
3093 hwptr = readl(s->pBA0 + BA0_DCA0);
3094 busaddr = virt_to_bus(s->dma_dac.rawbuf);
3095 hwptr -= (unsigned) busaddr;
3096 s->dma_dac.swptr = s->dma_dac.hwptr = hwptr;
3097 }
3098 swptr = s->dma_dac.swptr;
3099 cnt = s->dma_dac.dmasize - swptr;
3100 if (s->dma_dac.count + cnt > s->dma_dac.dmasize)
3101 cnt = s->dma_dac.dmasize - s->dma_dac.count;
3102 spin_unlock_irqrestore(&s->lock, flags);
3103 if (cnt > count)
3104 cnt = count;
3105 if (cnt <= 0) {
3106 start_dac(s);
3107 if (file->f_flags & O_NONBLOCK)
3108 return ret ? ret : -EAGAIN;
3109 interruptible_sleep_on(&s->dma_dac.wait);
3110 if (signal_pending(current))
3111 return ret ? ret : -ERESTARTSYS;
3112 continue;
3113 }
3114 if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt))
3115 return ret ? ret : -EFAULT;
3116 swptr = (swptr + cnt) % s->dma_dac.dmasize;
3117 spin_lock_irqsave(&s->lock, flags);
3118 s->dma_dac.swptr = swptr;
3119 s->dma_dac.count += cnt;
3120 s->dma_dac.endcleared = 0;
3121 spin_unlock_irqrestore(&s->lock, flags);
3122 count -= cnt;
3123 buffer += cnt;
3124 ret += cnt;
3125 start_dac(s);
3126 }
3127 CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE, 2,
3128 printk(KERN_INFO "cs4281: cs4281_write()- %d\n", ret));
3129 return ret;
3130 }
3131
3132 /*
3133 * cs4281_poll(struct file *file, struct poll_table_struct *wait)
3134 */
3135
cs4281_poll(struct file * file,struct poll_table_struct * wait)3136 static unsigned int cs4281_poll(struct file *file,
3137 struct poll_table_struct *wait)
3138 {
3139 struct cs4281_state *s =
3140 (struct cs4281_state *) file->private_data;
3141 unsigned long flags;
3142 unsigned int mask = 0;
3143
3144 CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
3145 printk(KERN_INFO "cs4281: cs4281_poll()+ wait=0x%x\n", (unsigned)wait));
3146 VALIDATE_STATE(s);
3147 if (file->f_mode & FMODE_WRITE) {
3148 CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
3149 printk(KERN_INFO
3150 "cs4281: cs4281_poll() wait on FMODE_WRITE\n"));
3151 if(!s->dma_dac.ready && prog_dmabuf_dac(s))
3152 return 0;
3153 poll_wait(file, &s->dma_dac.wait, wait);
3154
3155 } else if (file->f_mode & FMODE_READ) {
3156 CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
3157 printk(KERN_INFO
3158 "cs4281: cs4281_poll() wait on FMODE_READ\n"));
3159 if(!s->dma_adc.ready && prog_dmabuf_adc(s))
3160 return 0;
3161 poll_wait(file, &s->dma_adc.wait, wait);
3162
3163 }
3164 spin_lock_irqsave(&s->lock, flags);
3165 if (file->f_mode & FMODE_WRITE) {
3166 if (s->dma_dac.mapped) {
3167 if (s->dma_dac.count >=
3168 (signed) s->dma_dac.fragsize) {
3169 if (s->dma_dac.wakeup)
3170 mask |= POLLOUT | POLLWRNORM;
3171 else
3172 mask = 0;
3173 s->dma_dac.wakeup = 0;
3174 }
3175 } else {
3176 if ((signed) (s->dma_dac.dmasize/2) >= s->dma_dac.count)
3177 mask |= POLLOUT | POLLWRNORM;
3178 }
3179 } else if (file->f_mode & FMODE_READ) {
3180 if (s->dma_adc.mapped) {
3181 if (s->dma_adc.count >= (signed) s->dma_adc.fragsize)
3182 mask |= POLLIN | POLLRDNORM;
3183 } else {
3184 if (s->dma_adc.count > 0)
3185 mask |= POLLIN | POLLRDNORM;
3186 }
3187 }
3188 spin_unlock_irqrestore(&s->lock, flags);
3189 CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
3190 printk(KERN_INFO "cs4281: cs4281_poll()- 0x%.8x\n",
3191 mask));
3192 return mask;
3193 }
3194
3195
cs4281_mmap(struct file * file,struct vm_area_struct * vma)3196 static int cs4281_mmap(struct file *file, struct vm_area_struct *vma)
3197 {
3198 struct cs4281_state *s =
3199 (struct cs4281_state *) file->private_data;
3200 struct dmabuf *db;
3201 int ret;
3202 unsigned long size;
3203
3204 CS_DBGOUT(CS_FUNCTION | CS_PARMS | CS_OPEN, 4,
3205 printk(KERN_INFO "cs4281: cs4281_mmap()+\n"));
3206
3207 VALIDATE_STATE(s);
3208 if (vma->vm_flags & VM_WRITE) {
3209 if ((ret = prog_dmabuf_dac(s)) != 0)
3210 return ret;
3211 db = &s->dma_dac;
3212 } else if (vma->vm_flags & VM_READ) {
3213 if ((ret = prog_dmabuf_adc(s)) != 0)
3214 return ret;
3215 db = &s->dma_adc;
3216 } else
3217 return -EINVAL;
3218 //
3219 // only support PLAYBACK for now
3220 //
3221 db = &s->dma_dac;
3222
3223 if ((vma->vm_pgoff) != 0)
3224 return -EINVAL;
3225 size = vma->vm_end - vma->vm_start;
3226 if (size > (PAGE_SIZE << db->buforder))
3227 return -EINVAL;
3228 if (remap_page_range
3229 (vma->vm_start, virt_to_phys(db->rawbuf), size,
3230 vma->vm_page_prot)) return -EAGAIN;
3231 db->mapped = 1;
3232
3233 CS_DBGOUT(CS_FUNCTION | CS_PARMS | CS_OPEN, 4,
3234 printk(KERN_INFO "cs4281: cs4281_mmap()- 0 size=%d\n",
3235 (unsigned) size));
3236
3237 return 0;
3238 }
3239
3240
cs4281_ioctl(struct inode * inode,struct file * file,unsigned int cmd,unsigned long arg)3241 static int cs4281_ioctl(struct inode *inode, struct file *file,
3242 unsigned int cmd, unsigned long arg)
3243 {
3244 struct cs4281_state *s =
3245 (struct cs4281_state *) file->private_data;
3246 unsigned long flags;
3247 audio_buf_info abinfo;
3248 count_info cinfo;
3249 int val, mapped, ret;
3250
3251 CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO
3252 "cs4281: cs4281_ioctl(): file=0x%.8x cmd=0x%.8x\n",
3253 (unsigned) file, cmd));
3254 #if CSDEBUG
3255 cs_printioctl(cmd);
3256 #endif
3257 VALIDATE_STATE(s);
3258 mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
3259 ((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
3260 switch (cmd) {
3261 case OSS_GETVERSION:
3262 CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
3263 "cs4281: cs4281_ioctl(): SOUND_VERSION=0x%.8x\n",
3264 SOUND_VERSION));
3265 return put_user(SOUND_VERSION, (int *) arg);
3266
3267 case SNDCTL_DSP_SYNC:
3268 CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
3269 "cs4281: cs4281_ioctl(): DSP_SYNC\n"));
3270 if (file->f_mode & FMODE_WRITE)
3271 return drain_dac(s,
3272 0 /*file->f_flags & O_NONBLOCK */
3273 );
3274 return 0;
3275
3276 case SNDCTL_DSP_SETDUPLEX:
3277 return 0;
3278
3279 case SNDCTL_DSP_GETCAPS:
3280 return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME |
3281 DSP_CAP_TRIGGER | DSP_CAP_MMAP,
3282 (int *) arg);
3283
3284 case SNDCTL_DSP_RESET:
3285 CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
3286 "cs4281: cs4281_ioctl(): DSP_RESET\n"));
3287 if (file->f_mode & FMODE_WRITE) {
3288 stop_dac(s);
3289 synchronize_irq();
3290 s->dma_dac.swptr = s->dma_dac.hwptr =
3291 s->dma_dac.count = s->dma_dac.total_bytes =
3292 s->dma_dac.blocks = s->dma_dac.wakeup = 0;
3293 prog_codec(s, CS_TYPE_DAC);
3294 }
3295 if (file->f_mode & FMODE_READ) {
3296 stop_adc(s);
3297 synchronize_irq();
3298 s->dma_adc.swptr = s->dma_adc.hwptr =
3299 s->dma_adc.count = s->dma_adc.total_bytes =
3300 s->dma_adc.blocks = s->dma_dac.wakeup = 0;
3301 prog_codec(s, CS_TYPE_ADC);
3302 }
3303 return 0;
3304
3305 case SNDCTL_DSP_SPEED:
3306 if (get_user(val, (int *) arg))
3307 return -EFAULT;
3308 CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
3309 "cs4281: cs4281_ioctl(): DSP_SPEED val=%d\n", val));
3310 //
3311 // support independent capture and playback channels
3312 // assume that the file mode bit determines the
3313 // direction of the data flow.
3314 //
3315 if (file->f_mode & FMODE_READ) {
3316 if (val >= 0) {
3317 stop_adc(s);
3318 s->dma_adc.ready = 0;
3319 // program sampling rates
3320 if (val > 48000)
3321 val = 48000;
3322 if (val < 6300)
3323 val = 6300;
3324 s->prop_adc.rate = val;
3325 prog_codec(s, CS_TYPE_ADC);
3326 }
3327 }
3328 if (file->f_mode & FMODE_WRITE) {
3329 if (val >= 0) {
3330 stop_dac(s);
3331 s->dma_dac.ready = 0;
3332 // program sampling rates
3333 if (val > 48000)
3334 val = 48000;
3335 if (val < 6300)
3336 val = 6300;
3337 s->prop_dac.rate = val;
3338 prog_codec(s, CS_TYPE_DAC);
3339 }
3340 }
3341
3342 if (file->f_mode & FMODE_WRITE)
3343 val = s->prop_dac.rate;
3344 else if (file->f_mode & FMODE_READ)
3345 val = s->prop_adc.rate;
3346
3347 return put_user(val, (int *) arg);
3348
3349 case SNDCTL_DSP_STEREO:
3350 if (get_user(val, (int *) arg))
3351 return -EFAULT;
3352 CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
3353 "cs4281: cs4281_ioctl(): DSP_STEREO val=%d\n", val));
3354 if (file->f_mode & FMODE_READ) {
3355 stop_adc(s);
3356 s->dma_adc.ready = 0;
3357 s->prop_adc.channels = val ? 2 : 1;
3358 prog_codec(s, CS_TYPE_ADC);
3359 }
3360 if (file->f_mode & FMODE_WRITE) {
3361 stop_dac(s);
3362 s->dma_dac.ready = 0;
3363 s->prop_dac.channels = val ? 2 : 1;
3364 prog_codec(s, CS_TYPE_DAC);
3365 }
3366 return 0;
3367
3368 case SNDCTL_DSP_CHANNELS:
3369 if (get_user(val, (int *) arg))
3370 return -EFAULT;
3371 CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
3372 "cs4281: cs4281_ioctl(): DSP_CHANNELS val=%d\n",
3373 val));
3374 if (val != 0) {
3375 if (file->f_mode & FMODE_READ) {
3376 stop_adc(s);
3377 s->dma_adc.ready = 0;
3378 if (val >= 2)
3379 s->prop_adc.channels = 2;
3380 else
3381 s->prop_adc.channels = 1;
3382 prog_codec(s, CS_TYPE_ADC);
3383 }
3384 if (file->f_mode & FMODE_WRITE) {
3385 stop_dac(s);
3386 s->dma_dac.ready = 0;
3387 if (val >= 2)
3388 s->prop_dac.channels = 2;
3389 else
3390 s->prop_dac.channels = 1;
3391 prog_codec(s, CS_TYPE_DAC);
3392 }
3393 }
3394
3395 if (file->f_mode & FMODE_WRITE)
3396 val = s->prop_dac.channels;
3397 else if (file->f_mode & FMODE_READ)
3398 val = s->prop_adc.channels;
3399
3400 return put_user(val, (int *) arg);
3401
3402 case SNDCTL_DSP_GETFMTS: // Returns a mask
3403 CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
3404 "cs4281: cs4281_ioctl(): DSP_GETFMT val=0x%.8x\n",
3405 AFMT_S16_LE | AFMT_U16_LE | AFMT_S8 |
3406 AFMT_U8));
3407 return put_user(AFMT_S16_LE | AFMT_U16_LE | AFMT_S8 |
3408 AFMT_U8, (int *) arg);
3409
3410 case SNDCTL_DSP_SETFMT:
3411 if (get_user(val, (int *) arg))
3412 return -EFAULT;
3413 CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
3414 "cs4281: cs4281_ioctl(): DSP_SETFMT val=0x%.8x\n",
3415 val));
3416 if (val != AFMT_QUERY) {
3417 if (file->f_mode & FMODE_READ) {
3418 stop_adc(s);
3419 s->dma_adc.ready = 0;
3420 if (val != AFMT_S16_LE
3421 && val != AFMT_U16_LE && val != AFMT_S8
3422 && val != AFMT_U8)
3423 val = AFMT_U8;
3424 s->prop_adc.fmt = val;
3425 s->prop_adc.fmt_original = s->prop_adc.fmt;
3426 prog_codec(s, CS_TYPE_ADC);
3427 }
3428 if (file->f_mode & FMODE_WRITE) {
3429 stop_dac(s);
3430 s->dma_dac.ready = 0;
3431 if (val != AFMT_S16_LE
3432 && val != AFMT_U16_LE && val != AFMT_S8
3433 && val != AFMT_U8)
3434 val = AFMT_U8;
3435 s->prop_dac.fmt = val;
3436 s->prop_dac.fmt_original = s->prop_dac.fmt;
3437 prog_codec(s, CS_TYPE_DAC);
3438 }
3439 } else {
3440 if (file->f_mode & FMODE_WRITE)
3441 val = s->prop_dac.fmt_original;
3442 else if (file->f_mode & FMODE_READ)
3443 val = s->prop_adc.fmt_original;
3444 }
3445 CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
3446 "cs4281: cs4281_ioctl(): DSP_SETFMT return val=0x%.8x\n",
3447 val));
3448 return put_user(val, (int *) arg);
3449
3450 case SNDCTL_DSP_POST:
3451 CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
3452 "cs4281: cs4281_ioctl(): DSP_POST\n"));
3453 return 0;
3454
3455 case SNDCTL_DSP_GETTRIGGER:
3456 val = 0;
3457 if (file->f_mode & s->ena & FMODE_READ)
3458 val |= PCM_ENABLE_INPUT;
3459 if (file->f_mode & s->ena & FMODE_WRITE)
3460 val |= PCM_ENABLE_OUTPUT;
3461 return put_user(val, (int *) arg);
3462
3463 case SNDCTL_DSP_SETTRIGGER:
3464 if (get_user(val, (int *) arg))
3465 return -EFAULT;
3466 if (file->f_mode & FMODE_READ) {
3467 if (val & PCM_ENABLE_INPUT) {
3468 if (!s->dma_adc.ready
3469 && (ret = prog_dmabuf_adc(s)))
3470 return ret;
3471 start_adc(s);
3472 } else
3473 stop_adc(s);
3474 }
3475 if (file->f_mode & FMODE_WRITE) {
3476 if (val & PCM_ENABLE_OUTPUT) {
3477 if (!s->dma_dac.ready
3478 && (ret = prog_dmabuf_dac(s)))
3479 return ret;
3480 start_dac(s);
3481 } else
3482 stop_dac(s);
3483 }
3484 return 0;
3485
3486 case SNDCTL_DSP_GETOSPACE:
3487 if (!(file->f_mode & FMODE_WRITE))
3488 return -EINVAL;
3489 if (!s->dma_dac.ready && (val = prog_dmabuf_dac(s)))
3490 return val;
3491 spin_lock_irqsave(&s->lock, flags);
3492 cs4281_update_ptr(s,CS_TRUE);
3493 abinfo.fragsize = s->dma_dac.fragsize;
3494 if (s->dma_dac.mapped)
3495 abinfo.bytes = s->dma_dac.dmasize;
3496 else
3497 abinfo.bytes =
3498 s->dma_dac.dmasize - s->dma_dac.count;
3499 abinfo.fragstotal = s->dma_dac.numfrag;
3500 abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
3501 CS_DBGOUT(CS_FUNCTION | CS_PARMS, 4, printk(KERN_INFO
3502 "cs4281: cs4281_ioctl(): GETOSPACE .fragsize=%d .bytes=%d .fragstotal=%d .fragments=%d\n",
3503 abinfo.fragsize,abinfo.bytes,abinfo.fragstotal,
3504 abinfo.fragments));
3505 spin_unlock_irqrestore(&s->lock, flags);
3506 return copy_to_user((void *) arg, &abinfo,
3507 sizeof(abinfo)) ? -EFAULT : 0;
3508
3509 case SNDCTL_DSP_GETISPACE:
3510 if (!(file->f_mode & FMODE_READ))
3511 return -EINVAL;
3512 if (!s->dma_adc.ready && (val = prog_dmabuf_adc(s)))
3513 return val;
3514 spin_lock_irqsave(&s->lock, flags);
3515 cs4281_update_ptr(s,CS_TRUE);
3516 if (s->conversion) {
3517 abinfo.fragsize = s->dma_adc.fragsize / 2;
3518 abinfo.bytes = s->dma_adc.count / 2;
3519 abinfo.fragstotal = s->dma_adc.numfrag;
3520 abinfo.fragments =
3521 abinfo.bytes >> (s->dma_adc.fragshift - 1);
3522 } else {
3523 abinfo.fragsize = s->dma_adc.fragsize;
3524 abinfo.bytes = s->dma_adc.count;
3525 abinfo.fragstotal = s->dma_adc.numfrag;
3526 abinfo.fragments =
3527 abinfo.bytes >> s->dma_adc.fragshift;
3528 }
3529 spin_unlock_irqrestore(&s->lock, flags);
3530 return copy_to_user((void *) arg, &abinfo,
3531 sizeof(abinfo)) ? -EFAULT : 0;
3532
3533 case SNDCTL_DSP_NONBLOCK:
3534 file->f_flags |= O_NONBLOCK;
3535 return 0;
3536
3537 case SNDCTL_DSP_GETODELAY:
3538 if (!(file->f_mode & FMODE_WRITE))
3539 return -EINVAL;
3540 if(!s->dma_dac.ready && prog_dmabuf_dac(s))
3541 return 0;
3542 spin_lock_irqsave(&s->lock, flags);
3543 cs4281_update_ptr(s,CS_TRUE);
3544 val = s->dma_dac.count;
3545 spin_unlock_irqrestore(&s->lock, flags);
3546 return put_user(val, (int *) arg);
3547
3548 case SNDCTL_DSP_GETIPTR:
3549 if (!(file->f_mode & FMODE_READ))
3550 return -EINVAL;
3551 if(!s->dma_adc.ready && prog_dmabuf_adc(s))
3552 return 0;
3553 spin_lock_irqsave(&s->lock, flags);
3554 cs4281_update_ptr(s,CS_TRUE);
3555 cinfo.bytes = s->dma_adc.total_bytes;
3556 if (s->dma_adc.mapped) {
3557 cinfo.blocks =
3558 (cinfo.bytes >> s->dma_adc.fragshift) -
3559 s->dma_adc.blocks;
3560 s->dma_adc.blocks =
3561 cinfo.bytes >> s->dma_adc.fragshift;
3562 } else {
3563 if (s->conversion) {
3564 cinfo.blocks =
3565 s->dma_adc.count /
3566 2 >> (s->dma_adc.fragshift - 1);
3567 } else
3568 cinfo.blocks =
3569 s->dma_adc.count >> s->dma_adc.
3570 fragshift;
3571 }
3572 if (s->conversion)
3573 cinfo.ptr = s->dma_adc.hwptr / 2;
3574 else
3575 cinfo.ptr = s->dma_adc.hwptr;
3576 if (s->dma_adc.mapped)
3577 s->dma_adc.count &= s->dma_adc.fragsize - 1;
3578 spin_unlock_irqrestore(&s->lock, flags);
3579 return copy_to_user((void *) arg, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;
3580
3581 case SNDCTL_DSP_GETOPTR:
3582 if (!(file->f_mode & FMODE_WRITE))
3583 return -EINVAL;
3584 if(!s->dma_dac.ready && prog_dmabuf_dac(s))
3585 return 0;
3586 spin_lock_irqsave(&s->lock, flags);
3587 cs4281_update_ptr(s,CS_TRUE);
3588 cinfo.bytes = s->dma_dac.total_bytes;
3589 if (s->dma_dac.mapped) {
3590 cinfo.blocks =
3591 (cinfo.bytes >> s->dma_dac.fragshift) -
3592 s->dma_dac.blocks;
3593 s->dma_dac.blocks =
3594 cinfo.bytes >> s->dma_dac.fragshift;
3595 } else {
3596 cinfo.blocks =
3597 s->dma_dac.count >> s->dma_dac.fragshift;
3598 }
3599 cinfo.ptr = s->dma_dac.hwptr;
3600 if (s->dma_dac.mapped)
3601 s->dma_dac.count &= s->dma_dac.fragsize - 1;
3602 spin_unlock_irqrestore(&s->lock, flags);
3603 return copy_to_user((void *) arg, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;
3604
3605 case SNDCTL_DSP_GETBLKSIZE:
3606 if (file->f_mode & FMODE_WRITE) {
3607 if ((val = prog_dmabuf_dac(s)))
3608 return val;
3609 return put_user(s->dma_dac.fragsize, (int *) arg);
3610 }
3611 if ((val = prog_dmabuf_adc(s)))
3612 return val;
3613 if (s->conversion)
3614 return put_user(s->dma_adc.fragsize / 2,
3615 (int *) arg);
3616 else
3617 return put_user(s->dma_adc.fragsize, (int *) arg);
3618
3619 case SNDCTL_DSP_SETFRAGMENT:
3620 if (get_user(val, (int *) arg))
3621 return -EFAULT;
3622
3623 CS_DBGOUT(CS_PARMS, 4, printk(KERN_INFO
3624 "cs4281: cs4281_ioctl(): Attempt to set fragsize=%d fragnum=%d\n",
3625 1 << (val & 0xffff), (val >> 16) & 0xffff ));
3626 return 0; // Say OK, but do nothing.
3627
3628 case SNDCTL_DSP_SUBDIVIDE:
3629 if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision)
3630 || (file->f_mode & FMODE_WRITE
3631 && s->dma_dac.subdivision)) return -EINVAL;
3632 if (get_user(val, (int *) arg))
3633 return -EFAULT;
3634 if (val != 1 && val != 2 && val != 4)
3635 return -EINVAL;
3636 if (file->f_mode & FMODE_READ)
3637 s->dma_adc.subdivision = val;
3638 else if (file->f_mode & FMODE_WRITE)
3639 s->dma_dac.subdivision = val;
3640 return 0;
3641
3642 case SOUND_PCM_READ_RATE:
3643 if (file->f_mode & FMODE_READ)
3644 return put_user(s->prop_adc.rate, (int *) arg);
3645 else if (file->f_mode & FMODE_WRITE)
3646 return put_user(s->prop_dac.rate, (int *) arg);
3647
3648 case SOUND_PCM_READ_CHANNELS:
3649 if (file->f_mode & FMODE_READ)
3650 return put_user(s->prop_adc.channels, (int *) arg);
3651 else if (file->f_mode & FMODE_WRITE)
3652 return put_user(s->prop_dac.channels, (int *) arg);
3653
3654 case SOUND_PCM_READ_BITS:
3655 if (file->f_mode & FMODE_READ)
3656 return
3657 put_user(
3658 (s->prop_adc.
3659 fmt & (AFMT_S8 | AFMT_U8)) ? 8 : 16,
3660 (int *) arg);
3661 else if (file->f_mode & FMODE_WRITE)
3662 return
3663 put_user(
3664 (s->prop_dac.
3665 fmt & (AFMT_S8 | AFMT_U8)) ? 8 : 16,
3666 (int *) arg);
3667
3668 case SOUND_PCM_WRITE_FILTER:
3669 case SNDCTL_DSP_SETSYNCRO:
3670 case SOUND_PCM_READ_FILTER:
3671 return -EINVAL;
3672 }
3673 return mixer_ioctl(s, cmd, arg);
3674 }
3675
3676
cs4281_release(struct inode * inode,struct file * file)3677 static int cs4281_release(struct inode *inode, struct file *file)
3678 {
3679 struct cs4281_state *s =
3680 (struct cs4281_state *) file->private_data;
3681
3682 CS_DBGOUT(CS_FUNCTION | CS_RELEASE, 2, printk(KERN_INFO
3683 "cs4281: cs4281_release(): inode=0x%.8x file=0x%.8x f_mode=%d\n",
3684 (unsigned) inode, (unsigned) file, file->f_mode));
3685
3686 VALIDATE_STATE(s);
3687
3688 if (file->f_mode & FMODE_WRITE) {
3689 drain_dac(s, file->f_flags & O_NONBLOCK);
3690 down(&s->open_sem_dac);
3691 stop_dac(s);
3692 dealloc_dmabuf(s, &s->dma_dac);
3693 s->open_mode &= ~FMODE_WRITE;
3694 up(&s->open_sem_dac);
3695 wake_up(&s->open_wait_dac);
3696 MOD_DEC_USE_COUNT;
3697 }
3698 if (file->f_mode & FMODE_READ) {
3699 drain_adc(s, file->f_flags & O_NONBLOCK);
3700 down(&s->open_sem_adc);
3701 stop_adc(s);
3702 dealloc_dmabuf(s, &s->dma_adc);
3703 s->open_mode &= ~FMODE_READ;
3704 up(&s->open_sem_adc);
3705 wake_up(&s->open_wait_adc);
3706 MOD_DEC_USE_COUNT;
3707 }
3708 return 0;
3709 }
3710
cs4281_open(struct inode * inode,struct file * file)3711 static int cs4281_open(struct inode *inode, struct file *file)
3712 {
3713 int minor = MINOR(inode->i_rdev);
3714 struct cs4281_state *s=NULL;
3715 struct list_head *entry;
3716
3717 CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
3718 "cs4281: cs4281_open(): inode=0x%.8x file=0x%.8x f_mode=0x%x\n",
3719 (unsigned) inode, (unsigned) file, file->f_mode));
3720
3721 list_for_each(entry, &cs4281_devs)
3722 {
3723 s = list_entry(entry, struct cs4281_state, list);
3724
3725 if (!((s->dev_audio ^ minor) & ~0xf))
3726 break;
3727 }
3728 if (entry == &cs4281_devs)
3729 return -ENODEV;
3730 if (!s) {
3731 CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
3732 "cs4281: cs4281_open(): Error - unable to find audio state struct\n"));
3733 return -ENODEV;
3734 }
3735 VALIDATE_STATE(s);
3736 file->private_data = s;
3737
3738 // wait for device to become free
3739 if (!(file->f_mode & (FMODE_WRITE | FMODE_READ))) {
3740 CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2, printk(KERN_INFO
3741 "cs4281: cs4281_open(): Error - must open READ and/or WRITE\n"));
3742 return -ENODEV;
3743 }
3744 if (file->f_mode & FMODE_WRITE) {
3745 down(&s->open_sem_dac);
3746 while (s->open_mode & FMODE_WRITE) {
3747 if (file->f_flags & O_NONBLOCK) {
3748 up(&s->open_sem_dac);
3749 return -EBUSY;
3750 }
3751 up(&s->open_sem_dac);
3752 interruptible_sleep_on(&s->open_wait_dac);
3753
3754 if (signal_pending(current))
3755 return -ERESTARTSYS;
3756 down(&s->open_sem_dac);
3757 }
3758 }
3759 if (file->f_mode & FMODE_READ) {
3760 down(&s->open_sem_adc);
3761 while (s->open_mode & FMODE_READ) {
3762 if (file->f_flags & O_NONBLOCK) {
3763 up(&s->open_sem_adc);
3764 return -EBUSY;
3765 }
3766 up(&s->open_sem_adc);
3767 interruptible_sleep_on(&s->open_wait_adc);
3768
3769 if (signal_pending(current))
3770 return -ERESTARTSYS;
3771 down(&s->open_sem_adc);
3772 }
3773 }
3774 s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
3775 if (file->f_mode & FMODE_READ) {
3776 s->prop_adc.fmt = AFMT_U8;
3777 s->prop_adc.fmt_original = s->prop_adc.fmt;
3778 s->prop_adc.channels = 1;
3779 s->prop_adc.rate = 8000;
3780 s->prop_adc.clkdiv = 96 | 0x80;
3781 s->conversion = 0;
3782 s->ena &= ~FMODE_READ;
3783 s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags =
3784 s->dma_adc.subdivision = 0;
3785 up(&s->open_sem_adc);
3786 MOD_INC_USE_COUNT;
3787
3788 if (prog_dmabuf_adc(s)) {
3789 CS_DBGOUT(CS_OPEN | CS_ERROR, 2, printk(KERN_ERR
3790 "cs4281: adc Program dmabufs failed.\n"));
3791 cs4281_release(inode, file);
3792 return -ENOMEM;
3793 }
3794 prog_codec(s, CS_TYPE_ADC);
3795 }
3796 if (file->f_mode & FMODE_WRITE) {
3797 s->prop_dac.fmt = AFMT_U8;
3798 s->prop_dac.fmt_original = s->prop_dac.fmt;
3799 s->prop_dac.channels = 1;
3800 s->prop_dac.rate = 8000;
3801 s->prop_dac.clkdiv = 96 | 0x80;
3802 s->conversion = 0;
3803 s->ena &= ~FMODE_WRITE;
3804 s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags =
3805 s->dma_dac.subdivision = 0;
3806 up(&s->open_sem_dac);
3807 MOD_INC_USE_COUNT;
3808
3809 if (prog_dmabuf_dac(s)) {
3810 CS_DBGOUT(CS_OPEN | CS_ERROR, 2, printk(KERN_ERR
3811 "cs4281: dac Program dmabufs failed.\n"));
3812 cs4281_release(inode, file);
3813 return -ENOMEM;
3814 }
3815 prog_codec(s, CS_TYPE_DAC);
3816 }
3817 CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2,
3818 printk(KERN_INFO "cs4281: cs4281_open()- 0\n"));
3819 return 0;
3820 }
3821
3822
3823 // ******************************************************************************************
3824 // Wave (audio) file operations struct.
3825 // ******************************************************************************************
3826 static /*const */ struct file_operations cs4281_audio_fops = {
3827 llseek:no_llseek,
3828 read:cs4281_read,
3829 write:cs4281_write,
3830 poll:cs4281_poll,
3831 ioctl:cs4281_ioctl,
3832 mmap:cs4281_mmap,
3833 open:cs4281_open,
3834 release:cs4281_release,
3835 };
3836
3837 // ---------------------------------------------------------------------
3838
3839 // hold spinlock for the following!
cs4281_handle_midi(struct cs4281_state * s)3840 static void cs4281_handle_midi(struct cs4281_state *s)
3841 {
3842 unsigned char ch;
3843 int wake;
3844 unsigned temp1;
3845
3846 wake = 0;
3847 while (!(readl(s->pBA0 + BA0_MIDSR) & 0x80)) {
3848 ch = readl(s->pBA0 + BA0_MIDRP);
3849 if (s->midi.icnt < MIDIINBUF) {
3850 s->midi.ibuf[s->midi.iwr] = ch;
3851 s->midi.iwr = (s->midi.iwr + 1) % MIDIINBUF;
3852 s->midi.icnt++;
3853 }
3854 wake = 1;
3855 }
3856 if (wake)
3857 wake_up(&s->midi.iwait);
3858 wake = 0;
3859 while (!(readl(s->pBA0 + BA0_MIDSR) & 0x40) && s->midi.ocnt > 0) {
3860 temp1 = (s->midi.obuf[s->midi.ord]) & 0x000000ff;
3861 writel(temp1, s->pBA0 + BA0_MIDWP);
3862 s->midi.ord = (s->midi.ord + 1) % MIDIOUTBUF;
3863 s->midi.ocnt--;
3864 if (s->midi.ocnt < MIDIOUTBUF - 16)
3865 wake = 1;
3866 }
3867 if (wake)
3868 wake_up(&s->midi.owait);
3869 }
3870
3871
3872
cs4281_interrupt(int irq,void * dev_id,struct pt_regs * regs)3873 static void cs4281_interrupt(int irq, void *dev_id, struct pt_regs *regs)
3874 {
3875 struct cs4281_state *s = (struct cs4281_state *) dev_id;
3876 unsigned int temp1;
3877
3878 // fastpath out, to ease interrupt sharing
3879 temp1 = readl(s->pBA0 + BA0_HISR); // Get Int Status reg.
3880
3881 CS_DBGOUT(CS_INTERRUPT, 6, printk(KERN_INFO
3882 "cs4281: cs4281_interrupt() BA0_HISR=0x%.8x\n", temp1));
3883 /*
3884 * If not DMA or MIDI interrupt, then just return.
3885 */
3886 if (!(temp1 & (HISR_DMA0 | HISR_DMA1 | HISR_MIDI))) {
3887 writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR);
3888 CS_DBGOUT(CS_INTERRUPT, 9, printk(KERN_INFO
3889 "cs4281: cs4281_interrupt(): returning not cs4281 interrupt.\n"));
3890 return;
3891 }
3892
3893 if (temp1 & HISR_DMA0) // If play interrupt,
3894 readl(s->pBA0 + BA0_HDSR0); // clear the source.
3895
3896 if (temp1 & HISR_DMA1) // Same for play.
3897 readl(s->pBA0 + BA0_HDSR1);
3898 writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR); // Local EOI
3899
3900 spin_lock(&s->lock);
3901 cs4281_update_ptr(s,CS_TRUE);
3902 cs4281_handle_midi(s);
3903 spin_unlock(&s->lock);
3904 }
3905
3906 // **************************************************************************
3907
cs4281_midi_timer(unsigned long data)3908 static void cs4281_midi_timer(unsigned long data)
3909 {
3910 struct cs4281_state *s = (struct cs4281_state *) data;
3911 unsigned long flags;
3912
3913 spin_lock_irqsave(&s->lock, flags);
3914 cs4281_handle_midi(s);
3915 spin_unlock_irqrestore(&s->lock, flags);
3916 s->midi.timer.expires = jiffies + 1;
3917 add_timer(&s->midi.timer);
3918 }
3919
3920
3921 // ---------------------------------------------------------------------
3922
cs4281_midi_read(struct file * file,char * buffer,size_t count,loff_t * ppos)3923 static ssize_t cs4281_midi_read(struct file *file, char *buffer,
3924 size_t count, loff_t * ppos)
3925 {
3926 struct cs4281_state *s =
3927 (struct cs4281_state *) file->private_data;
3928 ssize_t ret;
3929 unsigned long flags;
3930 unsigned ptr;
3931 int cnt;
3932
3933 VALIDATE_STATE(s);
3934 if (ppos != &file->f_pos)
3935 return -ESPIPE;
3936 if (!access_ok(VERIFY_WRITE, buffer, count))
3937 return -EFAULT;
3938 ret = 0;
3939 while (count > 0) {
3940 spin_lock_irqsave(&s->lock, flags);
3941 ptr = s->midi.ird;
3942 cnt = MIDIINBUF - ptr;
3943 if (s->midi.icnt < cnt)
3944 cnt = s->midi.icnt;
3945 spin_unlock_irqrestore(&s->lock, flags);
3946 if (cnt > count)
3947 cnt = count;
3948 if (cnt <= 0) {
3949 if (file->f_flags & O_NONBLOCK)
3950 return ret ? ret : -EAGAIN;
3951 interruptible_sleep_on(&s->midi.iwait);
3952 if (signal_pending(current))
3953 return ret ? ret : -ERESTARTSYS;
3954 continue;
3955 }
3956 if (copy_to_user(buffer, s->midi.ibuf + ptr, cnt))
3957 return ret ? ret : -EFAULT;
3958 ptr = (ptr + cnt) % MIDIINBUF;
3959 spin_lock_irqsave(&s->lock, flags);
3960 s->midi.ird = ptr;
3961 s->midi.icnt -= cnt;
3962 spin_unlock_irqrestore(&s->lock, flags);
3963 count -= cnt;
3964 buffer += cnt;
3965 ret += cnt;
3966 }
3967 return ret;
3968 }
3969
3970
cs4281_midi_write(struct file * file,const char * buffer,size_t count,loff_t * ppos)3971 static ssize_t cs4281_midi_write(struct file *file, const char *buffer,
3972 size_t count, loff_t * ppos)
3973 {
3974 struct cs4281_state *s =
3975 (struct cs4281_state *) file->private_data;
3976 ssize_t ret;
3977 unsigned long flags;
3978 unsigned ptr;
3979 int cnt;
3980
3981 VALIDATE_STATE(s);
3982 if (ppos != &file->f_pos)
3983 return -ESPIPE;
3984 if (!access_ok(VERIFY_READ, buffer, count))
3985 return -EFAULT;
3986 ret = 0;
3987 while (count > 0) {
3988 spin_lock_irqsave(&s->lock, flags);
3989 ptr = s->midi.owr;
3990 cnt = MIDIOUTBUF - ptr;
3991 if (s->midi.ocnt + cnt > MIDIOUTBUF)
3992 cnt = MIDIOUTBUF - s->midi.ocnt;
3993 if (cnt <= 0)
3994 cs4281_handle_midi(s);
3995 spin_unlock_irqrestore(&s->lock, flags);
3996 if (cnt > count)
3997 cnt = count;
3998 if (cnt <= 0) {
3999 if (file->f_flags & O_NONBLOCK)
4000 return ret ? ret : -EAGAIN;
4001 interruptible_sleep_on(&s->midi.owait);
4002 if (signal_pending(current))
4003 return ret ? ret : -ERESTARTSYS;
4004 continue;
4005 }
4006 if (copy_from_user(s->midi.obuf + ptr, buffer, cnt))
4007 return ret ? ret : -EFAULT;
4008 ptr = (ptr + cnt) % MIDIOUTBUF;
4009 spin_lock_irqsave(&s->lock, flags);
4010 s->midi.owr = ptr;
4011 s->midi.ocnt += cnt;
4012 spin_unlock_irqrestore(&s->lock, flags);
4013 count -= cnt;
4014 buffer += cnt;
4015 ret += cnt;
4016 spin_lock_irqsave(&s->lock, flags);
4017 cs4281_handle_midi(s);
4018 spin_unlock_irqrestore(&s->lock, flags);
4019 }
4020 return ret;
4021 }
4022
4023
cs4281_midi_poll(struct file * file,struct poll_table_struct * wait)4024 static unsigned int cs4281_midi_poll(struct file *file,
4025 struct poll_table_struct *wait)
4026 {
4027 struct cs4281_state *s =
4028 (struct cs4281_state *) file->private_data;
4029 unsigned long flags;
4030 unsigned int mask = 0;
4031
4032 VALIDATE_STATE(s);
4033 if (file->f_flags & FMODE_WRITE)
4034 poll_wait(file, &s->midi.owait, wait);
4035 if (file->f_flags & FMODE_READ)
4036 poll_wait(file, &s->midi.iwait, wait);
4037 spin_lock_irqsave(&s->lock, flags);
4038 if (file->f_flags & FMODE_READ) {
4039 if (s->midi.icnt > 0)
4040 mask |= POLLIN | POLLRDNORM;
4041 }
4042 if (file->f_flags & FMODE_WRITE) {
4043 if (s->midi.ocnt < MIDIOUTBUF)
4044 mask |= POLLOUT | POLLWRNORM;
4045 }
4046 spin_unlock_irqrestore(&s->lock, flags);
4047 return mask;
4048 }
4049
4050
cs4281_midi_open(struct inode * inode,struct file * file)4051 static int cs4281_midi_open(struct inode *inode, struct file *file)
4052 {
4053 unsigned long flags, temp1;
4054 int minor = MINOR(inode->i_rdev);
4055 struct cs4281_state *s=NULL;
4056 struct list_head *entry;
4057 list_for_each(entry, &cs4281_devs)
4058 {
4059 s = list_entry(entry, struct cs4281_state, list);
4060
4061 if (s->dev_midi == minor)
4062 break;
4063 }
4064
4065 if (entry == &cs4281_devs)
4066 return -ENODEV;
4067 if (!s)
4068 {
4069 CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
4070 "cs4281: cs4281_open(): Error - unable to find audio state struct\n"));
4071 return -ENODEV;
4072 }
4073 VALIDATE_STATE(s);
4074 file->private_data = s;
4075 // wait for device to become free
4076 down(&s->open_sem);
4077 while (s->open_mode & (file->f_mode << FMODE_MIDI_SHIFT)) {
4078 if (file->f_flags & O_NONBLOCK) {
4079 up(&s->open_sem);
4080 return -EBUSY;
4081 }
4082 up(&s->open_sem);
4083 interruptible_sleep_on(&s->open_wait);
4084 if (signal_pending(current))
4085 return -ERESTARTSYS;
4086 down(&s->open_sem);
4087 }
4088 spin_lock_irqsave(&s->lock, flags);
4089 if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) {
4090 s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
4091 s->midi.ord = s->midi.owr = s->midi.ocnt = 0;
4092 writel(1, s->pBA0 + BA0_MIDCR); // Reset the interface.
4093 writel(0, s->pBA0 + BA0_MIDCR); // Return to normal mode.
4094 s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
4095 writel(0x0000000f, s->pBA0 + BA0_MIDCR); // Enable transmit, record, ints.
4096 temp1 = readl(s->pBA0 + BA0_HIMR);
4097 writel(temp1 & 0xffbfffff, s->pBA0 + BA0_HIMR); // Enable midi int. recognition.
4098 writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR); // Enable interrupts
4099 init_timer(&s->midi.timer);
4100 s->midi.timer.expires = jiffies + 1;
4101 s->midi.timer.data = (unsigned long) s;
4102 s->midi.timer.function = cs4281_midi_timer;
4103 add_timer(&s->midi.timer);
4104 }
4105 if (file->f_mode & FMODE_READ) {
4106 s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
4107 }
4108 if (file->f_mode & FMODE_WRITE) {
4109 s->midi.ord = s->midi.owr = s->midi.ocnt = 0;
4110 }
4111 spin_unlock_irqrestore(&s->lock, flags);
4112 s->open_mode |=
4113 (file->
4114 f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ |
4115 FMODE_MIDI_WRITE);
4116 up(&s->open_sem);
4117 MOD_INC_USE_COUNT;
4118 return 0;
4119 }
4120
4121
cs4281_midi_release(struct inode * inode,struct file * file)4122 static int cs4281_midi_release(struct inode *inode, struct file *file)
4123 {
4124 struct cs4281_state *s =
4125 (struct cs4281_state *) file->private_data;
4126 DECLARE_WAITQUEUE(wait, current);
4127 unsigned long flags;
4128 unsigned count, tmo;
4129
4130 VALIDATE_STATE(s);
4131
4132 if (file->f_mode & FMODE_WRITE) {
4133 add_wait_queue(&s->midi.owait, &wait);
4134 for (;;) {
4135 set_current_state(TASK_INTERRUPTIBLE);
4136 spin_lock_irqsave(&s->lock, flags);
4137 count = s->midi.ocnt;
4138 spin_unlock_irqrestore(&s->lock, flags);
4139 if (count <= 0)
4140 break;
4141 if (signal_pending(current))
4142 break;
4143 if (file->f_flags & O_NONBLOCK) {
4144 remove_wait_queue(&s->midi.owait, &wait);
4145 current->state = TASK_RUNNING;
4146 return -EBUSY;
4147 }
4148 tmo = (count * HZ) / 3100;
4149 if (!schedule_timeout(tmo ? : 1) && tmo)
4150 printk(KERN_DEBUG
4151 "cs4281: midi timed out??\n");
4152 }
4153 remove_wait_queue(&s->midi.owait, &wait);
4154 current->state = TASK_RUNNING;
4155 }
4156 down(&s->open_sem);
4157 s->open_mode &=
4158 (~(file->f_mode << FMODE_MIDI_SHIFT)) & (FMODE_MIDI_READ |
4159 FMODE_MIDI_WRITE);
4160 spin_lock_irqsave(&s->lock, flags);
4161 if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) {
4162 writel(0, s->pBA0 + BA0_MIDCR); // Disable Midi interrupts.
4163 del_timer(&s->midi.timer);
4164 }
4165 spin_unlock_irqrestore(&s->lock, flags);
4166 up(&s->open_sem);
4167 wake_up(&s->open_wait);
4168 MOD_DEC_USE_COUNT;
4169 return 0;
4170 }
4171
4172 // ******************************************************************************************
4173 // Midi file operations struct.
4174 // ******************************************************************************************
4175 static /*const */ struct file_operations cs4281_midi_fops = {
4176 llseek:no_llseek,
4177 read:cs4281_midi_read,
4178 write:cs4281_midi_write,
4179 poll:cs4281_midi_poll,
4180 open:cs4281_midi_open,
4181 release:cs4281_midi_release,
4182 };
4183
4184
4185 // ---------------------------------------------------------------------
4186
4187 // maximum number of devices
4188 #define NR_DEVICE 8 // Only eight devices supported currently.
4189
4190 // ---------------------------------------------------------------------
4191
4192 static struct initvol {
4193 int mixch;
4194 int vol;
4195 } initvol[] __initdata = {
4196
4197 {
4198 SOUND_MIXER_WRITE_VOLUME, 0x4040}, {
4199 SOUND_MIXER_WRITE_PCM, 0x4040}, {
4200 SOUND_MIXER_WRITE_SYNTH, 0x4040}, {
4201 SOUND_MIXER_WRITE_CD, 0x4040}, {
4202 SOUND_MIXER_WRITE_LINE, 0x4040}, {
4203 SOUND_MIXER_WRITE_LINE1, 0x4040}, {
4204 SOUND_MIXER_WRITE_RECLEV, 0x0000}, {
4205 SOUND_MIXER_WRITE_SPEAKER, 0x4040}, {
4206 SOUND_MIXER_WRITE_MIC, 0x0000}
4207 };
4208
4209
4210 #ifndef NOT_CS4281_PM
cs4281_BuildFIFO(struct cs4281_pipeline * p,struct cs4281_state * s)4211 void __devinit cs4281_BuildFIFO(
4212 struct cs4281_pipeline *p,
4213 struct cs4281_state *s)
4214 {
4215 switch(p->number)
4216 {
4217 case 0: /* playback */
4218 {
4219 p->u32FCRnAddress = BA0_FCR0;
4220 p->u32FSICnAddress = BA0_FSIC0;
4221 p->u32FPDRnAddress = BA0_FPDR0;
4222 break;
4223 }
4224 case 1: /* capture */
4225 {
4226 p->u32FCRnAddress = BA0_FCR1;
4227 p->u32FSICnAddress = BA0_FSIC1;
4228 p->u32FPDRnAddress = BA0_FPDR1;
4229 break;
4230 }
4231
4232 case 2:
4233 {
4234 p->u32FCRnAddress = BA0_FCR2;
4235 p->u32FSICnAddress = BA0_FSIC2;
4236 p->u32FPDRnAddress = BA0_FPDR2;
4237 break;
4238 }
4239 case 3:
4240 {
4241 p->u32FCRnAddress = BA0_FCR3;
4242 p->u32FSICnAddress = BA0_FSIC3;
4243 p->u32FPDRnAddress = BA0_FPDR3;
4244 break;
4245 }
4246 default:
4247 break;
4248 }
4249 //
4250 // first read the hardware to initialize the member variables
4251 //
4252 p->u32FCRnValue = readl(s->pBA0 + p->u32FCRnAddress);
4253 p->u32FSICnValue = readl(s->pBA0 + p->u32FSICnAddress);
4254 p->u32FPDRnValue = readl(s->pBA0 + p->u32FPDRnAddress);
4255
4256 }
4257
cs4281_BuildDMAengine(struct cs4281_pipeline * p,struct cs4281_state * s)4258 void __devinit cs4281_BuildDMAengine(
4259 struct cs4281_pipeline *p,
4260 struct cs4281_state *s)
4261 {
4262 /*
4263 * initialize all the addresses of this pipeline dma info.
4264 */
4265 switch(p->number)
4266 {
4267 case 0: /* playback */
4268 {
4269 p->u32DBAnAddress = BA0_DBA0;
4270 p->u32DCAnAddress = BA0_DCA0;
4271 p->u32DBCnAddress = BA0_DBC0;
4272 p->u32DCCnAddress = BA0_DCC0;
4273 p->u32DMRnAddress = BA0_DMR0;
4274 p->u32DCRnAddress = BA0_DCR0;
4275 p->u32HDSRnAddress = BA0_HDSR0;
4276 break;
4277 }
4278
4279 case 1: /* capture */
4280 {
4281 p->u32DBAnAddress = BA0_DBA1;
4282 p->u32DCAnAddress = BA0_DCA1;
4283 p->u32DBCnAddress = BA0_DBC1;
4284 p->u32DCCnAddress = BA0_DCC1;
4285 p->u32DMRnAddress = BA0_DMR1;
4286 p->u32DCRnAddress = BA0_DCR1;
4287 p->u32HDSRnAddress = BA0_HDSR1;
4288 break;
4289 }
4290
4291 case 2:
4292 {
4293 p->u32DBAnAddress = BA0_DBA2;
4294 p->u32DCAnAddress = BA0_DCA2;
4295 p->u32DBCnAddress = BA0_DBC2;
4296 p->u32DCCnAddress = BA0_DCC2;
4297 p->u32DMRnAddress = BA0_DMR2;
4298 p->u32DCRnAddress = BA0_DCR2;
4299 p->u32HDSRnAddress = BA0_HDSR2;
4300 break;
4301 }
4302
4303 case 3:
4304 {
4305 p->u32DBAnAddress = BA0_DBA3;
4306 p->u32DCAnAddress = BA0_DCA3;
4307 p->u32DBCnAddress = BA0_DBC3;
4308 p->u32DCCnAddress = BA0_DCC3;
4309 p->u32DMRnAddress = BA0_DMR3;
4310 p->u32DCRnAddress = BA0_DCR3;
4311 p->u32HDSRnAddress = BA0_HDSR3;
4312 break;
4313 }
4314 default:
4315 break;
4316 }
4317
4318 //
4319 // Initialize the dma values for this pipeline
4320 //
4321 p->u32DBAnValue = readl(s->pBA0 + p->u32DBAnAddress);
4322 p->u32DBCnValue = readl(s->pBA0 + p->u32DBCnAddress);
4323 p->u32DMRnValue = readl(s->pBA0 + p->u32DMRnAddress);
4324 p->u32DCRnValue = readl(s->pBA0 + p->u32DCRnAddress);
4325
4326 }
4327
cs4281_InitPM(struct cs4281_state * s)4328 void __devinit cs4281_InitPM(struct cs4281_state *s)
4329 {
4330 int i;
4331 struct cs4281_pipeline *p;
4332
4333 for(i=0;i<CS4281_NUMBER_OF_PIPELINES;i++)
4334 {
4335 p = &s->pl[i];
4336 p->number = i;
4337 cs4281_BuildDMAengine(p,s);
4338 cs4281_BuildFIFO(p,s);
4339 /*
4340 * currently only 2 pipelines are used
4341 * so, only set the valid bit on the playback and capture.
4342 */
4343 if( (i == CS4281_PLAYBACK_PIPELINE_NUMBER) ||
4344 (i == CS4281_CAPTURE_PIPELINE_NUMBER))
4345 p->flags |= CS4281_PIPELINE_VALID;
4346 }
4347 s->pm.u32SSPM_BITS = 0x7e; /* rev c, use 0x7c for rev a or b */
4348 }
4349 #endif
4350
4351 /*
4352 * ss_vendor and ss_id must be setup prior to calling this routine.
4353 * setup the invalid recording source bitmask,
4354 * and also return a valid default initialization value as
4355 * the return value;
4356 */
cs4281_setup_record_src(struct cs4281_state * s)4357 static int cs4281_setup_record_src(struct cs4281_state *s)
4358 {
4359 if(s->ss_vendor == PCI_VENDOR_ID_TOSHIBA)
4360 {
4361 if(s->ss_id == SS_ID_TOSHIBA_1640CDT)
4362 {
4363 CS_DBGOUT(CS_PARMS, 2, printk(KERN_INFO
4364 "cs4281: cs4281_setup_record_src(): setting LINE invalid\n"));
4365 recsrc_invalid |= SOUND_MASK_LINE;
4366 }
4367 }
4368 /*
4369 * only return a valid recsrc value here, default to something useful.
4370 */
4371 if(!(recsrc_invalid & SOUND_MASK_MIC))
4372 return(SOUND_MASK_MIC);
4373 else if(!(recsrc_invalid & SOUND_MASK_LINE))
4374 return(SOUND_MASK_LINE);
4375 else if(!(recsrc_invalid & SOUND_MASK_LINE1))
4376 return(SOUND_MASK_LINE1);
4377 return 0;
4378 }
4379
cs4281_probe(struct pci_dev * pcidev,const struct pci_device_id * pciid)4380 static int __devinit cs4281_probe(struct pci_dev *pcidev,
4381 const struct pci_device_id *pciid)
4382 {
4383 #ifndef NOT_CS4281_PM
4384 struct pm_dev *pmdev;
4385 #endif
4386 struct cs4281_state *s;
4387 dma_addr_t dma_mask;
4388 mm_segment_t fs;
4389 int i, val;
4390 unsigned int temp1, temp2;
4391
4392 CS_DBGOUT(CS_FUNCTION | CS_INIT, 2,
4393 printk(KERN_INFO "cs4281: probe()+\n"));
4394
4395 if (pci_enable_device(pcidev)) {
4396 CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
4397 "cs4281: pci_enable_device() failed\n"));
4398 return -1;
4399 }
4400 if (!(pci_resource_flags(pcidev, 0) & IORESOURCE_MEM) ||
4401 !(pci_resource_flags(pcidev, 1) & IORESOURCE_MEM)) {
4402 CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
4403 "cs4281: probe()- Memory region not assigned\n"));
4404 return -ENODEV;
4405 }
4406 if (pcidev->irq == 0) {
4407 CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
4408 "cs4281: probe() IRQ not assigned\n"));
4409 return -ENODEV;
4410 }
4411 dma_mask = 0xffffffff; /* this enables playback and recording */
4412 i = pci_set_dma_mask(pcidev, dma_mask);
4413 if (i) {
4414 CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
4415 "cs4281: probe() architecture does not support 32bit PCI busmaster DMA\n"));
4416 return i;
4417 }
4418 if (!(s = kmalloc(sizeof(struct cs4281_state), GFP_KERNEL))) {
4419 CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
4420 "cs4281: probe() no memory for state struct.\n"));
4421 return -1;
4422 }
4423 memset(s, 0, sizeof(struct cs4281_state));
4424 init_waitqueue_head(&s->dma_adc.wait);
4425 init_waitqueue_head(&s->dma_dac.wait);
4426 init_waitqueue_head(&s->open_wait);
4427 init_waitqueue_head(&s->open_wait_adc);
4428 init_waitqueue_head(&s->open_wait_dac);
4429 init_waitqueue_head(&s->midi.iwait);
4430 init_waitqueue_head(&s->midi.owait);
4431 init_MUTEX(&s->open_sem);
4432 init_MUTEX(&s->open_sem_adc);
4433 init_MUTEX(&s->open_sem_dac);
4434 spin_lock_init(&s->lock);
4435 s->pBA0phys = pci_resource_start(pcidev, 0);
4436 s->pBA1phys = pci_resource_start(pcidev, 1);
4437
4438 /* Convert phys to linear. */
4439 s->pBA0 = ioremap_nocache(s->pBA0phys, 4096);
4440 if (!s->pBA0) {
4441 CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_ERR
4442 "cs4281: BA0 I/O mapping failed. Skipping part.\n"));
4443 goto err_free;
4444 }
4445 s->pBA1 = ioremap_nocache(s->pBA1phys, 65536);
4446 if (!s->pBA1) {
4447 CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_ERR
4448 "cs4281: BA1 I/O mapping failed. Skipping part.\n"));
4449 goto err_unmap;
4450 }
4451
4452 temp1 = readl(s->pBA0 + BA0_PCICFG00);
4453 temp2 = readl(s->pBA0 + BA0_PCICFG04);
4454
4455 CS_DBGOUT(CS_INIT, 2,
4456 printk(KERN_INFO
4457 "cs4281: probe() BA0=0x%.8x BA1=0x%.8x pBA0=0x%.8x pBA1=0x%.8x \n",
4458 (unsigned) temp1, (unsigned) temp2,
4459 (unsigned) s->pBA0, (unsigned) s->pBA1));
4460
4461 CS_DBGOUT(CS_INIT, 2,
4462 printk(KERN_INFO
4463 "cs4281: probe() pBA0phys=0x%.8x pBA1phys=0x%.8x\n",
4464 (unsigned) s->pBA0phys, (unsigned) s->pBA1phys));
4465
4466 #ifndef NOT_CS4281_PM
4467 s->pm.flags = CS4281_PM_IDLE;
4468 #endif
4469 temp1 = cs4281_hw_init(s);
4470 if (temp1) {
4471 CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_ERR
4472 "cs4281: cs4281_hw_init() failed. Skipping part.\n"));
4473 goto err_irq;
4474 }
4475 s->magic = CS4281_MAGIC;
4476 s->pcidev = pcidev;
4477 s->irq = pcidev->irq;
4478 if (request_irq
4479 (s->irq, cs4281_interrupt, SA_SHIRQ, "Crystal CS4281", s)) {
4480 CS_DBGOUT(CS_INIT | CS_ERROR, 1,
4481 printk(KERN_ERR "cs4281: irq %u in use\n", s->irq));
4482 goto err_irq;
4483 }
4484 if ((s->dev_audio = register_sound_dsp(&cs4281_audio_fops, -1)) <
4485 0) {
4486 CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
4487 "cs4281: probe() register_sound_dsp() failed.\n"));
4488 goto err_dev1;
4489 }
4490 if ((s->dev_mixer = register_sound_mixer(&cs4281_mixer_fops, -1)) <
4491 0) {
4492 CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
4493 "cs4281: probe() register_sound_mixer() failed.\n"));
4494 goto err_dev2;
4495 }
4496 if ((s->dev_midi = register_sound_midi(&cs4281_midi_fops, -1)) < 0) {
4497 CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
4498 "cs4281: probe() register_sound_midi() failed.\n"));
4499 goto err_dev3;
4500 }
4501 #ifndef NOT_CS4281_PM
4502 cs4281_InitPM(s);
4503 pmdev = cs_pm_register(PM_PCI_DEV, PM_PCI_ID(pcidev), cs4281_pm_callback);
4504 if (pmdev)
4505 {
4506 CS_DBGOUT(CS_INIT | CS_PM, 4, printk(KERN_INFO
4507 "cs4281: probe() pm_register() succeeded (0x%x).\n",
4508 (unsigned)pmdev));
4509 pmdev->data = s;
4510 }
4511 else
4512 {
4513 CS_DBGOUT(CS_INIT | CS_PM | CS_ERROR, 0, printk(KERN_INFO
4514 "cs4281: probe() pm_register() failed (0x%x).\n",
4515 (unsigned)pmdev));
4516 s->pm.flags |= CS4281_PM_NOT_REGISTERED;
4517 }
4518 #endif
4519
4520 pci_set_master(pcidev); // enable bus mastering
4521 pci_read_config_word(pcidev, PCI_SUBSYSTEM_VENDOR_ID, &s->ss_vendor);
4522 pci_read_config_word(pcidev, PCI_SUBSYSTEM_ID, &s->ss_id);
4523 printk(KERN_INFO "cs4281: Subsystem vendor/id (%04X:%04X) IRQ %d\n",
4524 s->ss_vendor, s->ss_id, s->irq);
4525
4526 if(!recsrc_invalid)
4527 val = cs4281_setup_record_src(s);
4528 else
4529 val = SOUND_MASK_MIC;
4530
4531 fs = get_fs();
4532 set_fs(KERNEL_DS);
4533 mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long) &val);
4534 for (i = 0; i < sizeof(initvol) / sizeof(initvol[0]); i++) {
4535 val = initvol[i].vol;
4536 mixer_ioctl(s, initvol[i].mixch, (unsigned long) &val);
4537 }
4538 val = 1; // enable mic preamp
4539 mixer_ioctl(s, SOUND_MIXER_PRIVATE1, (unsigned long) &val);
4540 set_fs(fs);
4541
4542 pci_set_drvdata(pcidev, s);
4543 list_add(&s->list, &cs4281_devs);
4544 CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
4545 "cs4281: probe()- device allocated successfully\n"));
4546 return 0;
4547
4548 err_dev3:
4549 unregister_sound_mixer(s->dev_mixer);
4550 err_dev2:
4551 unregister_sound_dsp(s->dev_audio);
4552 err_dev1:
4553 free_irq(s->irq, s);
4554 err_irq:
4555 iounmap(s->pBA1);
4556 err_unmap:
4557 iounmap(s->pBA0);
4558 err_free:
4559 kfree(s);
4560
4561 CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_INFO
4562 "cs4281: probe()- no device allocated\n"));
4563 return -ENODEV;
4564 } // probe_cs4281
4565
4566
4567 // ---------------------------------------------------------------------
4568
cs4281_remove(struct pci_dev * pci_dev)4569 static void __devinit cs4281_remove(struct pci_dev *pci_dev)
4570 {
4571 struct cs4281_state *s = pci_get_drvdata(pci_dev);
4572 // stop DMA controller
4573 synchronize_irq();
4574 free_irq(s->irq, s);
4575 unregister_sound_dsp(s->dev_audio);
4576 unregister_sound_mixer(s->dev_mixer);
4577 unregister_sound_midi(s->dev_midi);
4578 iounmap(s->pBA1);
4579 iounmap(s->pBA0);
4580 pci_set_drvdata(pci_dev, s);
4581 list_del(&s->list);
4582 kfree(s);
4583 CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
4584 "cs4281: cs4281_remove()-: remove successful\n"));
4585 }
4586
4587 static struct pci_device_id cs4281_pci_tbl[] __devinitdata = {
4588 {PCI_VENDOR_ID_CIRRUS, PCI_DEVICE_ID_CRYSTAL_CS4281,
4589 PCI_ANY_ID, PCI_ANY_ID, 0, 0},
4590 {0,}
4591 };
4592
4593 MODULE_DEVICE_TABLE(pci, cs4281_pci_tbl);
4594
4595 struct pci_driver cs4281_pci_driver = {
4596 name:"cs4281",
4597 id_table:cs4281_pci_tbl,
4598 probe:cs4281_probe,
4599 remove:cs4281_remove,
4600 suspend:CS4281_SUSPEND_TBL,
4601 resume:CS4281_RESUME_TBL,
4602 };
4603
cs4281_init_module(void)4604 int __init cs4281_init_module(void)
4605 {
4606 int rtn = 0;
4607 CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
4608 "cs4281: cs4281_init_module()+ \n"));
4609 if (!pci_present()) { /* No PCI bus in this machine! */
4610 CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
4611 "cs4281: cs4281_init_module()- no pci bus found\n"));
4612 return -ENODEV;
4613 }
4614 printk(KERN_INFO "cs4281: version v%d.%02d.%d time " __TIME__ " "
4615 __DATE__ "\n", CS4281_MAJOR_VERSION, CS4281_MINOR_VERSION,
4616 CS4281_ARCH);
4617 rtn = pci_module_init(&cs4281_pci_driver);
4618
4619 if(rtn == -ENODEV)
4620 {
4621 CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(
4622 "cs4281: Unable to locate any cs4281 device with valid IDs 0x%x-0x%x\n",
4623 PCI_VENDOR_ID_CIRRUS, PCI_DEVICE_ID_CRYSTAL_CS4281));
4624 }
4625 CS_DBGOUT(CS_INIT | CS_FUNCTION, 2,
4626 printk(KERN_INFO "cs4281: cs4281_init_module()- (%d)\n",rtn));
4627 return rtn;
4628 }
4629
cs4281_cleanup_module(void)4630 void __exit cs4281_cleanup_module(void)
4631 {
4632 pci_unregister_driver(&cs4281_pci_driver);
4633 #ifndef NOT_CS4281_PM
4634 cs_pm_unregister_all(cs4281_pm_callback);
4635 #endif
4636 CS_DBGOUT(CS_INIT | CS_FUNCTION, 2,
4637 printk(KERN_INFO "cs4281: cleanup_cs4281() finished\n"));
4638 }
4639 // ---------------------------------------------------------------------
4640
4641 MODULE_AUTHOR("gw boynton, pcaudio@crystal.cirrus.com");
4642 MODULE_DESCRIPTION("Cirrus Logic CS4281 Driver");
4643 MODULE_LICENSE("GPL");
4644
4645 // ---------------------------------------------------------------------
4646
4647 module_init(cs4281_init_module);
4648 module_exit(cs4281_cleanup_module);
4649
4650 #ifndef MODULE
init_cs4281(void)4651 int __init init_cs4281(void)
4652 {
4653 return cs4281_init_module();
4654 }
4655 #endif
4656 #include "cs4281pm-24.c"
4657