1 /* blz1230.c: Driver for Blizzard 1230 SCSI IV Controller.
2  *
3  * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
4  *
5  * This driver is based on the CyberStorm driver, hence the occasional
6  * reference to CyberStorm.
7  */
8 
9 /* TODO:
10  *
11  * 1) Figure out how to make a cleaner merge with the sparc driver with regard
12  *    to the caches and the Sparc MMU mapping.
13  * 2) Make as few routines required outside the generic driver. A lot of the
14  *    routines in this file used to be inline!
15  */
16 
17 #include <linux/module.h>
18 
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/delay.h>
22 #include <linux/types.h>
23 #include <linux/string.h>
24 #include <linux/slab.h>
25 #include <linux/blk.h>
26 #include <linux/proc_fs.h>
27 #include <linux/stat.h>
28 
29 #include "scsi.h"
30 #include "hosts.h"
31 #include "NCR53C9x.h"
32 #include "blz1230.h"
33 
34 #include <linux/zorro.h>
35 #include <asm/irq.h>
36 #include <asm/amigaints.h>
37 #include <asm/amigahw.h>
38 
39 #include <asm/pgtable.h>
40 
41 #define MKIV 1
42 
43 static int  dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
44 static int  dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
45 static void dma_dump_state(struct NCR_ESP *esp);
46 static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length);
47 static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length);
48 static void dma_ints_off(struct NCR_ESP *esp);
49 static void dma_ints_on(struct NCR_ESP *esp);
50 static int  dma_irq_p(struct NCR_ESP *esp);
51 static int  dma_ports_p(struct NCR_ESP *esp);
52 static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
53 
54 static volatile unsigned char cmd_buffer[16];
55 				/* This is where all commands are put
56 				 * before they are transferred to the ESP chip
57 				 * via PIO.
58 				 */
59 
60 /***************************************************************** Detection */
blz1230_esp_detect(Scsi_Host_Template * tpnt)61 int __init blz1230_esp_detect(Scsi_Host_Template *tpnt)
62 {
63 	struct NCR_ESP *esp;
64 	struct zorro_dev *z = NULL;
65 	unsigned long address;
66 	struct ESP_regs *eregs;
67 	unsigned long board;
68 
69 #if MKIV
70 #define REAL_BLZ1230_ID		ZORRO_PROD_PHASE5_BLIZZARD_1230_IV_1260
71 #define REAL_BLZ1230_ESP_ADDR	BLZ1230_ESP_ADDR
72 #define REAL_BLZ1230_DMA_ADDR	BLZ1230_DMA_ADDR
73 #else
74 #define REAL_BLZ1230_ID		ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060
75 #define REAL_BLZ1230_ESP_ADDR	BLZ1230II_ESP_ADDR
76 #define REAL_BLZ1230_DMA_ADDR	BLZ1230II_DMA_ADDR
77 #endif
78 
79 	if ((z = zorro_find_device(REAL_BLZ1230_ID, z))) {
80 	    board = z->resource.start;
81 	    if (request_mem_region(board+REAL_BLZ1230_ESP_ADDR,
82 				   sizeof(struct ESP_regs), "NCR53C9x")) {
83 		/* Do some magic to figure out if the blizzard is
84 		 * equipped with a SCSI controller
85 		 */
86 		address = ZTWO_VADDR(board);
87 		eregs = (struct ESP_regs *)(address + REAL_BLZ1230_ESP_ADDR);
88 		esp = esp_allocate(tpnt, (void *)board+REAL_BLZ1230_ESP_ADDR);
89 
90 		esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7));
91 		udelay(5);
92 		if(esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7))
93 			goto err_out;
94 
95 		/* Do command transfer with programmed I/O */
96 		esp->do_pio_cmds = 1;
97 
98 		/* Required functions */
99 		esp->dma_bytes_sent = &dma_bytes_sent;
100 		esp->dma_can_transfer = &dma_can_transfer;
101 		esp->dma_dump_state = &dma_dump_state;
102 		esp->dma_init_read = &dma_init_read;
103 		esp->dma_init_write = &dma_init_write;
104 		esp->dma_ints_off = &dma_ints_off;
105 		esp->dma_ints_on = &dma_ints_on;
106 		esp->dma_irq_p = &dma_irq_p;
107 		esp->dma_ports_p = &dma_ports_p;
108 		esp->dma_setup = &dma_setup;
109 
110 		/* Optional functions */
111 		esp->dma_barrier = 0;
112 		esp->dma_drain = 0;
113 		esp->dma_invalidate = 0;
114 		esp->dma_irq_entry = 0;
115 		esp->dma_irq_exit = 0;
116 		esp->dma_led_on = 0;
117 		esp->dma_led_off = 0;
118 		esp->dma_poll = 0;
119 		esp->dma_reset = 0;
120 
121 		/* SCSI chip speed */
122 		esp->cfreq = 40000000;
123 
124 		/* The DMA registers on the Blizzard are mapped
125 		 * relative to the device (i.e. in the same Zorro
126 		 * I/O block).
127 		 */
128 		esp->dregs = (void *)(address + REAL_BLZ1230_DMA_ADDR);
129 
130 		/* ESP register base */
131 		esp->eregs = eregs;
132 
133 		/* Set the command buffer */
134 		esp->esp_command = cmd_buffer;
135 		esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer);
136 
137 		esp->irq = IRQ_AMIGA_PORTS;
138 		esp->slot = board+REAL_BLZ1230_ESP_ADDR;
139 		if (request_irq(IRQ_AMIGA_PORTS, esp_intr, SA_SHIRQ,
140 				 "Blizzard 1230 SCSI IV", esp_intr))
141 			goto err_out;
142 
143 		/* Figure out our scsi ID on the bus */
144 		esp->scsi_id = 7;
145 
146 		/* We don't have a differential SCSI-bus. */
147 		esp->diff = 0;
148 
149 		esp_initialize(esp);
150 
151 		printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use);
152 		esps_running = esps_in_use;
153 		return esps_in_use;
154 	    }
155 	}
156 	return 0;
157 
158  err_out:
159 	scsi_unregister(esp->ehost);
160 	esp_deallocate(esp);
161 	release_mem_region(board+REAL_BLZ1230_ESP_ADDR,
162 			   sizeof(struct ESP_regs));
163 	return 0;
164 }
165 
166 /************************************************************* DMA Functions */
dma_bytes_sent(struct NCR_ESP * esp,int fifo_count)167 static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
168 {
169 	/* Since the Blizzard DMA is fully dedicated to the ESP chip,
170 	 * the number of bytes sent (to the ESP chip) equals the number
171 	 * of bytes in the FIFO - there is no buffering in the DMA controller.
172 	 * XXXX Do I read this right? It is from host to ESP, right?
173 	 */
174 	return fifo_count;
175 }
176 
dma_can_transfer(struct NCR_ESP * esp,Scsi_Cmnd * sp)177 static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
178 {
179 	/* I don't think there's any limit on the Blizzard DMA. So we use what
180 	 * the ESP chip can handle (24 bit).
181 	 */
182 	unsigned long sz = sp->SCp.this_residual;
183 	if(sz > 0x1000000)
184 		sz = 0x1000000;
185 	return sz;
186 }
187 
dma_dump_state(struct NCR_ESP * esp)188 static void dma_dump_state(struct NCR_ESP *esp)
189 {
190 	ESPLOG(("intreq:<%04x>, intena:<%04x>\n",
191 		custom.intreqr, custom.intenar));
192 }
193 
dma_init_read(struct NCR_ESP * esp,__u32 addr,int length)194 void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length)
195 {
196 #if MKIV
197 	struct blz1230_dma_registers *dregs =
198 		(struct blz1230_dma_registers *) (esp->dregs);
199 #else
200 	struct blz1230II_dma_registers *dregs =
201 		(struct blz1230II_dma_registers *) (esp->dregs);
202 #endif
203 
204 	cache_clear(addr, length);
205 
206 	addr >>= 1;
207 	addr &= ~(BLZ1230_DMA_WRITE);
208 
209 	/* First set latch */
210 	dregs->dma_latch = (addr >> 24) & 0xff;
211 
212 	/* Then pump the address to the DMA address register */
213 #if MKIV
214 	dregs->dma_addr = (addr >> 24) & 0xff;
215 #endif
216 	dregs->dma_addr = (addr >> 16) & 0xff;
217 	dregs->dma_addr = (addr >>  8) & 0xff;
218 	dregs->dma_addr = (addr      ) & 0xff;
219 }
220 
dma_init_write(struct NCR_ESP * esp,__u32 addr,int length)221 void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length)
222 {
223 #if MKIV
224 	struct blz1230_dma_registers *dregs =
225 		(struct blz1230_dma_registers *) (esp->dregs);
226 #else
227 	struct blz1230II_dma_registers *dregs =
228 		(struct blz1230II_dma_registers *) (esp->dregs);
229 #endif
230 
231 	cache_push(addr, length);
232 
233 	addr >>= 1;
234 	addr |= BLZ1230_DMA_WRITE;
235 
236 	/* First set latch */
237 	dregs->dma_latch = (addr >> 24) & 0xff;
238 
239 	/* Then pump the address to the DMA address register */
240 #if MKIV
241 	dregs->dma_addr = (addr >> 24) & 0xff;
242 #endif
243 	dregs->dma_addr = (addr >> 16) & 0xff;
244 	dregs->dma_addr = (addr >>  8) & 0xff;
245 	dregs->dma_addr = (addr      ) & 0xff;
246 }
247 
dma_ints_off(struct NCR_ESP * esp)248 static void dma_ints_off(struct NCR_ESP *esp)
249 {
250 	disable_irq(esp->irq);
251 }
252 
dma_ints_on(struct NCR_ESP * esp)253 static void dma_ints_on(struct NCR_ESP *esp)
254 {
255 	enable_irq(esp->irq);
256 }
257 
dma_irq_p(struct NCR_ESP * esp)258 static int dma_irq_p(struct NCR_ESP *esp)
259 {
260 	return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR);
261 }
262 
dma_ports_p(struct NCR_ESP * esp)263 static int dma_ports_p(struct NCR_ESP *esp)
264 {
265 	return ((custom.intenar) & IF_PORTS);
266 }
267 
dma_setup(struct NCR_ESP * esp,__u32 addr,int count,int write)268 static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
269 {
270 	/* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
271 	 * so when (write) is true, it actually means READ!
272 	 */
273 	if(write){
274 		dma_init_read(esp, addr, count);
275 	} else {
276 		dma_init_write(esp, addr, count);
277 	}
278 }
279 
280 #define HOSTS_C
281 
282 #include "blz1230.h"
283 
284 static Scsi_Host_Template driver_template = SCSI_BLZ1230;
285 
286 #include "scsi_module.c"
287 
blz1230_esp_release(struct Scsi_Host * instance)288 int blz1230_esp_release(struct Scsi_Host *instance)
289 {
290 #ifdef MODULE
291 	unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
292 	esp_deallocate((struct NCR_ESP *)instance->hostdata);
293 	esp_release();
294 	release_mem_region(address, sizeof(struct ESP_regs));
295 	free_irq(IRQ_AMIGA_PORTS, esp_intr);
296 #endif
297 	return 1;
298 }
299 
300 MODULE_LICENSE("GPL");
301