1 /*
2 * WaveLAN ISA driver
3 *
4 * Jean II - HPLB '96
5 *
6 * Reorganisation and extension of the driver.
7 * Original copyright follows (also see the end of this file).
8 * See wavelan.p.h for details.
9 *
10 *
11 *
12 * AT&T GIS (nee NCR) WaveLAN card:
13 * An Ethernet-like radio transceiver
14 * controlled by an Intel 82586 coprocessor.
15 */
16
17 #include "wavelan.p.h" /* Private header */
18
19 /************************* MISC SUBROUTINES **************************/
20 /*
21 * Subroutines which won't fit in one of the following category
22 * (WaveLAN modem or i82586)
23 */
24
25 /*------------------------------------------------------------------*/
26 /*
27 * Wrapper for disabling interrupts and locking the driver.
28 * (note : inline, so optimised away)
29 */
wv_splhi(net_local * lp,unsigned long * pflags)30 static inline void wv_splhi(net_local * lp,
31 unsigned long * pflags)
32 {
33 spin_lock_irqsave(&lp->spinlock, *pflags);
34 /* Note : above does the cli(); itself */
35 }
36
37 /*------------------------------------------------------------------*/
38 /*
39 * Wrapper for re-enabling interrupts and un-locking the driver.
40 */
wv_splx(net_local * lp,unsigned long * pflags)41 static inline void wv_splx(net_local * lp,
42 unsigned long * pflags)
43 {
44 spin_unlock_irqrestore(&lp->spinlock, *pflags);
45 }
46
47 /*------------------------------------------------------------------*/
48 /*
49 * Translate irq number to PSA irq parameter
50 */
wv_irq_to_psa(int irq)51 static u8 wv_irq_to_psa(int irq)
52 {
53 if (irq < 0 || irq >= NELS(irqvals))
54 return 0;
55
56 return irqvals[irq];
57 }
58
59 /*------------------------------------------------------------------*/
60 /*
61 * Translate PSA irq parameter to irq number
62 */
wv_psa_to_irq(u8 irqval)63 static int __init wv_psa_to_irq(u8 irqval)
64 {
65 int irq;
66
67 for (irq = 0; irq < NELS(irqvals); irq++)
68 if (irqvals[irq] == irqval)
69 return irq;
70
71 return -1;
72 }
73
74 #ifdef STRUCT_CHECK
75 /*------------------------------------------------------------------*/
76 /*
77 * Sanity routine to verify the sizes of the various WaveLAN interface
78 * structures.
79 */
wv_struct_check(void)80 static char *wv_struct_check(void)
81 {
82 #define SC(t,s,n) if (sizeof(t) != s) return(n);
83
84 SC(psa_t, PSA_SIZE, "psa_t");
85 SC(mmw_t, MMW_SIZE, "mmw_t");
86 SC(mmr_t, MMR_SIZE, "mmr_t");
87 SC(ha_t, HA_SIZE, "ha_t");
88
89 #undef SC
90
91 return ((char *) NULL);
92 } /* wv_struct_check */
93 #endif /* STRUCT_CHECK */
94
95 /********************* HOST ADAPTER SUBROUTINES *********************/
96 /*
97 * Useful subroutines to manage the WaveLAN ISA interface
98 *
99 * One major difference with the PCMCIA hardware (except the port mapping)
100 * is that we have to keep the state of the Host Control Register
101 * because of the interrupt enable & bus size flags.
102 */
103
104 /*------------------------------------------------------------------*/
105 /*
106 * Read from card's Host Adaptor Status Register.
107 */
hasr_read(unsigned long ioaddr)108 static inline u16 hasr_read(unsigned long ioaddr)
109 {
110 return (inw(HASR(ioaddr)));
111 } /* hasr_read */
112
113 /*------------------------------------------------------------------*/
114 /*
115 * Write to card's Host Adapter Command Register.
116 */
hacr_write(unsigned long ioaddr,u16 hacr)117 static inline void hacr_write(unsigned long ioaddr, u16 hacr)
118 {
119 outw(hacr, HACR(ioaddr));
120 } /* hacr_write */
121
122 /*------------------------------------------------------------------*/
123 /*
124 * Write to card's Host Adapter Command Register. Include a delay for
125 * those times when it is needed.
126 */
hacr_write_slow(unsigned long ioaddr,u16 hacr)127 static inline void hacr_write_slow(unsigned long ioaddr, u16 hacr)
128 {
129 hacr_write(ioaddr, hacr);
130 /* delay might only be needed sometimes */
131 mdelay(1);
132 } /* hacr_write_slow */
133
134 /*------------------------------------------------------------------*/
135 /*
136 * Set the channel attention bit.
137 */
set_chan_attn(unsigned long ioaddr,u16 hacr)138 static inline void set_chan_attn(unsigned long ioaddr, u16 hacr)
139 {
140 hacr_write(ioaddr, hacr | HACR_CA);
141 } /* set_chan_attn */
142
143 /*------------------------------------------------------------------*/
144 /*
145 * Reset, and then set host adaptor into default mode.
146 */
wv_hacr_reset(unsigned long ioaddr)147 static inline void wv_hacr_reset(unsigned long ioaddr)
148 {
149 hacr_write_slow(ioaddr, HACR_RESET);
150 hacr_write(ioaddr, HACR_DEFAULT);
151 } /* wv_hacr_reset */
152
153 /*------------------------------------------------------------------*/
154 /*
155 * Set the I/O transfer over the ISA bus to 8-bit mode
156 */
wv_16_off(unsigned long ioaddr,u16 hacr)157 static inline void wv_16_off(unsigned long ioaddr, u16 hacr)
158 {
159 hacr &= ~HACR_16BITS;
160 hacr_write(ioaddr, hacr);
161 } /* wv_16_off */
162
163 /*------------------------------------------------------------------*/
164 /*
165 * Set the I/O transfer over the ISA bus to 8-bit mode
166 */
wv_16_on(unsigned long ioaddr,u16 hacr)167 static inline void wv_16_on(unsigned long ioaddr, u16 hacr)
168 {
169 hacr |= HACR_16BITS;
170 hacr_write(ioaddr, hacr);
171 } /* wv_16_on */
172
173 /*------------------------------------------------------------------*/
174 /*
175 * Disable interrupts on the WaveLAN hardware.
176 * (called by wv_82586_stop())
177 */
wv_ints_off(device * dev)178 static inline void wv_ints_off(device * dev)
179 {
180 net_local *lp = (net_local *) dev->priv;
181 unsigned long ioaddr = dev->base_addr;
182
183 lp->hacr &= ~HACR_INTRON;
184 hacr_write(ioaddr, lp->hacr);
185 } /* wv_ints_off */
186
187 /*------------------------------------------------------------------*/
188 /*
189 * Enable interrupts on the WaveLAN hardware.
190 * (called by wv_hw_reset())
191 */
wv_ints_on(device * dev)192 static inline void wv_ints_on(device * dev)
193 {
194 net_local *lp = (net_local *) dev->priv;
195 unsigned long ioaddr = dev->base_addr;
196
197 lp->hacr |= HACR_INTRON;
198 hacr_write(ioaddr, lp->hacr);
199 } /* wv_ints_on */
200
201 /******************* MODEM MANAGEMENT SUBROUTINES *******************/
202 /*
203 * Useful subroutines to manage the modem of the WaveLAN
204 */
205
206 /*------------------------------------------------------------------*/
207 /*
208 * Read the Parameter Storage Area from the WaveLAN card's memory
209 */
210 /*
211 * Read bytes from the PSA.
212 */
psa_read(unsigned long ioaddr,u16 hacr,int o,u8 * b,int n)213 static void psa_read(unsigned long ioaddr, u16 hacr, int o, /* offset in PSA */
214 u8 * b, /* buffer to fill */
215 int n)
216 { /* size to read */
217 wv_16_off(ioaddr, hacr);
218
219 while (n-- > 0) {
220 outw(o, PIOR2(ioaddr));
221 o++;
222 *b++ = inb(PIOP2(ioaddr));
223 }
224
225 wv_16_on(ioaddr, hacr);
226 } /* psa_read */
227
228 /*------------------------------------------------------------------*/
229 /*
230 * Write the Parameter Storage Area to the WaveLAN card's memory.
231 */
psa_write(unsigned long ioaddr,u16 hacr,int o,u8 * b,int n)232 static void psa_write(unsigned long ioaddr, u16 hacr, int o, /* Offset in PSA */
233 u8 * b, /* Buffer in memory */
234 int n)
235 { /* Length of buffer */
236 int count = 0;
237
238 wv_16_off(ioaddr, hacr);
239
240 while (n-- > 0) {
241 outw(o, PIOR2(ioaddr));
242 o++;
243
244 outb(*b, PIOP2(ioaddr));
245 b++;
246
247 /* Wait for the memory to finish its write cycle */
248 count = 0;
249 while ((count++ < 100) &&
250 (hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1);
251 }
252
253 wv_16_on(ioaddr, hacr);
254 } /* psa_write */
255
256 #ifdef SET_PSA_CRC
257 /*------------------------------------------------------------------*/
258 /*
259 * Calculate the PSA CRC
260 * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
261 * NOTE: By specifying a length including the CRC position the
262 * returned value should be zero. (i.e. a correct checksum in the PSA)
263 *
264 * The Windows drivers don't use the CRC, but the AP and the PtP tool
265 * depend on it.
266 */
psa_crc(u8 * psa,int size)267 static inline u16 psa_crc(u8 * psa, /* The PSA */
268 int size)
269 { /* Number of short for CRC */
270 int byte_cnt; /* Loop on the PSA */
271 u16 crc_bytes = 0; /* Data in the PSA */
272 int bit_cnt; /* Loop on the bits of the short */
273
274 for (byte_cnt = 0; byte_cnt < size; byte_cnt++) {
275 crc_bytes ^= psa[byte_cnt]; /* Its an xor */
276
277 for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) {
278 if (crc_bytes & 0x0001)
279 crc_bytes = (crc_bytes >> 1) ^ 0xA001;
280 else
281 crc_bytes >>= 1;
282 }
283 }
284
285 return crc_bytes;
286 } /* psa_crc */
287 #endif /* SET_PSA_CRC */
288
289 /*------------------------------------------------------------------*/
290 /*
291 * update the checksum field in the Wavelan's PSA
292 */
update_psa_checksum(device * dev,unsigned long ioaddr,u16 hacr)293 static void update_psa_checksum(device * dev, unsigned long ioaddr, u16 hacr)
294 {
295 #ifdef SET_PSA_CRC
296 psa_t psa;
297 u16 crc;
298
299 /* read the parameter storage area */
300 psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa));
301
302 /* update the checksum */
303 crc = psa_crc((unsigned char *) &psa,
304 sizeof(psa) - sizeof(psa.psa_crc[0]) -
305 sizeof(psa.psa_crc[1])
306 - sizeof(psa.psa_crc_status));
307
308 psa.psa_crc[0] = crc & 0xFF;
309 psa.psa_crc[1] = (crc & 0xFF00) >> 8;
310
311 /* Write it ! */
312 psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa,
313 (unsigned char *) &psa.psa_crc, 2);
314
315 #ifdef DEBUG_IOCTL_INFO
316 printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
317 dev->name, psa.psa_crc[0], psa.psa_crc[1]);
318
319 /* Check again (luxury !) */
320 crc = psa_crc((unsigned char *) &psa,
321 sizeof(psa) - sizeof(psa.psa_crc_status));
322
323 if (crc != 0)
324 printk(KERN_WARNING
325 "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n",
326 dev->name);
327 #endif /* DEBUG_IOCTL_INFO */
328 #endif /* SET_PSA_CRC */
329 } /* update_psa_checksum */
330
331 /*------------------------------------------------------------------*/
332 /*
333 * Write 1 byte to the MMC.
334 */
mmc_out(unsigned long ioaddr,u16 o,u8 d)335 static inline void mmc_out(unsigned long ioaddr, u16 o, u8 d)
336 {
337 /* Wait for MMC to go idle */
338 while (inw(HASR(ioaddr)) & HASR_MMC_BUSY);
339
340 outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr));
341 }
342
343 /*------------------------------------------------------------------*/
344 /*
345 * Routine to write bytes to the Modem Management Controller.
346 * We start at the end because it is the way it should be!
347 */
mmc_write(unsigned long ioaddr,u8 o,u8 * b,int n)348 static inline void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n)
349 {
350 o += n;
351 b += n;
352
353 while (n-- > 0)
354 mmc_out(ioaddr, --o, *(--b));
355 } /* mmc_write */
356
357 /*------------------------------------------------------------------*/
358 /*
359 * Read a byte from the MMC.
360 * Optimised version for 1 byte, avoid using memory.
361 */
mmc_in(unsigned long ioaddr,u16 o)362 static inline u8 mmc_in(unsigned long ioaddr, u16 o)
363 {
364 while (inw(HASR(ioaddr)) & HASR_MMC_BUSY);
365 outw(o << 1, MMCR(ioaddr));
366
367 while (inw(HASR(ioaddr)) & HASR_MMC_BUSY);
368 return (u8) (inw(MMCR(ioaddr)) >> 8);
369 }
370
371 /*------------------------------------------------------------------*/
372 /*
373 * Routine to read bytes from the Modem Management Controller.
374 * The implementation is complicated by a lack of address lines,
375 * which prevents decoding of the low-order bit.
376 * (code has just been moved in the above function)
377 * We start at the end because it is the way it should be!
378 */
mmc_read(unsigned long ioaddr,u8 o,u8 * b,int n)379 static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n)
380 {
381 o += n;
382 b += n;
383
384 while (n-- > 0)
385 *(--b) = mmc_in(ioaddr, --o);
386 } /* mmc_read */
387
388 /*------------------------------------------------------------------*/
389 /*
390 * Get the type of encryption available.
391 */
mmc_encr(unsigned long ioaddr)392 static inline int mmc_encr(unsigned long ioaddr)
393 { /* I/O port of the card */
394 int temp;
395
396 temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail));
397 if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
398 return 0;
399 else
400 return temp;
401 }
402
403 /*------------------------------------------------------------------*/
404 /*
405 * Wait for the frequency EEPROM to complete a command.
406 * I hope this one will be optimally inlined.
407 */
fee_wait(unsigned long ioaddr,int delay,int number)408 static inline void fee_wait(unsigned long ioaddr, /* I/O port of the card */
409 int delay, /* Base delay to wait for */
410 int number)
411 { /* Number of time to wait */
412 int count = 0; /* Wait only a limited time */
413
414 while ((count++ < number) &&
415 (mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
416 MMR_FEE_STATUS_BUSY)) udelay(delay);
417 }
418
419 /*------------------------------------------------------------------*/
420 /*
421 * Read bytes from the Frequency EEPROM (frequency select cards).
422 */
fee_read(unsigned long ioaddr,u16 o,u16 * b,int n)423 static void fee_read(unsigned long ioaddr, /* I/O port of the card */
424 u16 o, /* destination offset */
425 u16 * b, /* data buffer */
426 int n)
427 { /* number of registers */
428 b += n; /* Position at the end of the area */
429
430 /* Write the address */
431 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
432
433 /* Loop on all buffer */
434 while (n-- > 0) {
435 /* Write the read command */
436 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
437 MMW_FEE_CTRL_READ);
438
439 /* Wait until EEPROM is ready (should be quick). */
440 fee_wait(ioaddr, 10, 100);
441
442 /* Read the value. */
443 *--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) |
444 mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
445 }
446 }
447
448 #ifdef WIRELESS_EXT /* if the wireless extension exists in the kernel */
449
450 /*------------------------------------------------------------------*/
451 /*
452 * Write bytes from the Frequency EEPROM (frequency select cards).
453 * This is a bit complicated, because the frequency EEPROM has to
454 * be unprotected and the write enabled.
455 * Jean II
456 */
fee_write(unsigned long ioaddr,u16 o,u16 * b,int n)457 static void fee_write(unsigned long ioaddr, /* I/O port of the card */
458 u16 o, /* destination offset */
459 u16 * b, /* data buffer */
460 int n)
461 { /* number of registers */
462 b += n; /* Position at the end of the area. */
463
464 #ifdef EEPROM_IS_PROTECTED /* disabled */
465 #ifdef DOESNT_SEEM_TO_WORK /* disabled */
466 /* Ask to read the protected register */
467 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
468
469 fee_wait(ioaddr, 10, 100);
470
471 /* Read the protected register. */
472 printk("Protected 2: %02X-%02X\n",
473 mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)),
474 mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
475 #endif /* DOESNT_SEEM_TO_WORK */
476
477 /* Enable protected register. */
478 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
479 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
480
481 fee_wait(ioaddr, 10, 100);
482
483 /* Unprotect area. */
484 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n);
485 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
486 #ifdef DOESNT_SEEM_TO_WORK /* disabled */
487 /* or use: */
488 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
489 #endif /* DOESNT_SEEM_TO_WORK */
490
491 fee_wait(ioaddr, 10, 100);
492 #endif /* EEPROM_IS_PROTECTED */
493
494 /* Write enable. */
495 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
496 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
497
498 fee_wait(ioaddr, 10, 100);
499
500 /* Write the EEPROM address. */
501 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
502
503 /* Loop on all buffer */
504 while (n-- > 0) {
505 /* Write the value. */
506 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
507 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
508
509 /* Write the write command. */
510 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
511 MMW_FEE_CTRL_WRITE);
512
513 /* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */
514 mdelay(10);
515 fee_wait(ioaddr, 10, 100);
516 }
517
518 /* Write disable. */
519 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
520 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
521
522 fee_wait(ioaddr, 10, 100);
523
524 #ifdef EEPROM_IS_PROTECTED /* disabled */
525 /* Reprotect EEPROM. */
526 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00);
527 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
528
529 fee_wait(ioaddr, 10, 100);
530 #endif /* EEPROM_IS_PROTECTED */
531 }
532 #endif /* WIRELESS_EXT */
533
534 /************************ I82586 SUBROUTINES *************************/
535 /*
536 * Useful subroutines to manage the Ethernet controller
537 */
538
539 /*------------------------------------------------------------------*/
540 /*
541 * Read bytes from the on-board RAM.
542 * Why does inlining this function make it fail?
543 */
obram_read(unsigned long ioaddr,u16 o,u8 * b,int n)544 static /*inline */ void obram_read(unsigned long ioaddr,
545 u16 o, u8 * b, int n)
546 {
547 outw(o, PIOR1(ioaddr));
548 insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
549 }
550
551 /*------------------------------------------------------------------*/
552 /*
553 * Write bytes to the on-board RAM.
554 */
obram_write(unsigned long ioaddr,u16 o,u8 * b,int n)555 static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n)
556 {
557 outw(o, PIOR1(ioaddr));
558 outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
559 }
560
561 /*------------------------------------------------------------------*/
562 /*
563 * Acknowledge the reading of the status issued by the i82586.
564 */
wv_ack(device * dev)565 static void wv_ack(device * dev)
566 {
567 net_local *lp = (net_local *) dev->priv;
568 unsigned long ioaddr = dev->base_addr;
569 u16 scb_cs;
570 int i;
571
572 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
573 (unsigned char *) &scb_cs, sizeof(scb_cs));
574 scb_cs &= SCB_ST_INT;
575
576 if (scb_cs == 0)
577 return;
578
579 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
580 (unsigned char *) &scb_cs, sizeof(scb_cs));
581
582 set_chan_attn(ioaddr, lp->hacr);
583
584 for (i = 1000; i > 0; i--) {
585 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
586 (unsigned char *) &scb_cs, sizeof(scb_cs));
587 if (scb_cs == 0)
588 break;
589
590 udelay(10);
591 }
592 udelay(100);
593
594 #ifdef DEBUG_CONFIG_ERROR
595 if (i <= 0)
596 printk(KERN_INFO
597 "%s: wv_ack(): board not accepting command.\n",
598 dev->name);
599 #endif
600 }
601
602 /*------------------------------------------------------------------*/
603 /*
604 * Set channel attention bit and busy wait until command has
605 * completed, then acknowledge completion of the command.
606 */
wv_synchronous_cmd(device * dev,const char * str)607 static inline int wv_synchronous_cmd(device * dev, const char *str)
608 {
609 net_local *lp = (net_local *) dev->priv;
610 unsigned long ioaddr = dev->base_addr;
611 u16 scb_cmd;
612 ach_t cb;
613 int i;
614
615 scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO;
616 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
617 (unsigned char *) &scb_cmd, sizeof(scb_cmd));
618
619 set_chan_attn(ioaddr, lp->hacr);
620
621 for (i = 1000; i > 0; i--) {
622 obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb,
623 sizeof(cb));
624 if (cb.ac_status & AC_SFLD_C)
625 break;
626
627 udelay(10);
628 }
629 udelay(100);
630
631 if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) {
632 #ifdef DEBUG_CONFIG_ERROR
633 printk(KERN_INFO "%s: %s failed; status = 0x%x\n",
634 dev->name, str, cb.ac_status);
635 #endif
636 #ifdef DEBUG_I82586_SHOW
637 wv_scb_show(ioaddr);
638 #endif
639 return -1;
640 }
641
642 /* Ack the status */
643 wv_ack(dev);
644
645 return 0;
646 }
647
648 /*------------------------------------------------------------------*/
649 /*
650 * Configuration commands completion interrupt.
651 * Check if done, and if OK.
652 */
653 static inline int
wv_config_complete(device * dev,unsigned long ioaddr,net_local * lp)654 wv_config_complete(device * dev, unsigned long ioaddr, net_local * lp)
655 {
656 unsigned short mcs_addr;
657 unsigned short status;
658 int ret;
659
660 #ifdef DEBUG_INTERRUPT_TRACE
661 printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name);
662 #endif
663
664 mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t)
665 + sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t);
666
667 /* Read the status of the last command (set mc list). */
668 obram_read(ioaddr, acoff(mcs_addr, ac_status),
669 (unsigned char *) &status, sizeof(status));
670
671 /* If not completed -> exit */
672 if ((status & AC_SFLD_C) == 0)
673 ret = 0; /* Not ready to be scrapped */
674 else {
675 #ifdef DEBUG_CONFIG_ERROR
676 unsigned short cfg_addr;
677 unsigned short ias_addr;
678
679 /* Check mc_config command */
680 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
681 printk(KERN_INFO
682 "%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n",
683 dev->name, status);
684
685 /* check ia-config command */
686 ias_addr = mcs_addr - sizeof(ac_ias_t);
687 obram_read(ioaddr, acoff(ias_addr, ac_status),
688 (unsigned char *) &status, sizeof(status));
689 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
690 printk(KERN_INFO
691 "%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n",
692 dev->name, status);
693
694 /* Check config command. */
695 cfg_addr = ias_addr - sizeof(ac_cfg_t);
696 obram_read(ioaddr, acoff(cfg_addr, ac_status),
697 (unsigned char *) &status, sizeof(status));
698 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
699 printk(KERN_INFO
700 "%s: wv_config_complete(): configure failed; status = 0x%x\n",
701 dev->name, status);
702 #endif /* DEBUG_CONFIG_ERROR */
703
704 ret = 1; /* Ready to be scrapped */
705 }
706
707 #ifdef DEBUG_INTERRUPT_TRACE
708 printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name,
709 ret);
710 #endif
711 return ret;
712 }
713
714 /*------------------------------------------------------------------*/
715 /*
716 * Command completion interrupt.
717 * Reclaim as many freed tx buffers as we can.
718 * (called in wavelan_interrupt()).
719 * Note : the spinlock is already grabbed for us.
720 */
wv_complete(device * dev,unsigned long ioaddr,net_local * lp)721 static int wv_complete(device * dev, unsigned long ioaddr, net_local * lp)
722 {
723 int nreaped = 0;
724
725 #ifdef DEBUG_INTERRUPT_TRACE
726 printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name);
727 #endif
728
729 /* Loop on all the transmit buffers */
730 while (lp->tx_first_in_use != I82586NULL) {
731 unsigned short tx_status;
732
733 /* Read the first transmit buffer */
734 obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status),
735 (unsigned char *) &tx_status,
736 sizeof(tx_status));
737
738 /* If not completed -> exit */
739 if ((tx_status & AC_SFLD_C) == 0)
740 break;
741
742 /* Hack for reconfiguration */
743 if (tx_status == 0xFFFF)
744 if (!wv_config_complete(dev, ioaddr, lp))
745 break; /* Not completed */
746
747 /* We now remove this buffer */
748 nreaped++;
749 --lp->tx_n_in_use;
750
751 /*
752 if (lp->tx_n_in_use > 0)
753 printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]);
754 */
755
756 /* Was it the last one? */
757 if (lp->tx_n_in_use <= 0)
758 lp->tx_first_in_use = I82586NULL;
759 else {
760 /* Next one in the chain */
761 lp->tx_first_in_use += TXBLOCKZ;
762 if (lp->tx_first_in_use >=
763 OFFSET_CU +
764 NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -=
765 NTXBLOCKS * TXBLOCKZ;
766 }
767
768 /* Hack for reconfiguration */
769 if (tx_status == 0xFFFF)
770 continue;
771
772 /* Now, check status of the finished command */
773 if (tx_status & AC_SFLD_OK) {
774 int ncollisions;
775
776 lp->stats.tx_packets++;
777 ncollisions = tx_status & AC_SFLD_MAXCOL;
778 lp->stats.collisions += ncollisions;
779 #ifdef DEBUG_TX_INFO
780 if (ncollisions > 0)
781 printk(KERN_DEBUG
782 "%s: wv_complete(): tx completed after %d collisions.\n",
783 dev->name, ncollisions);
784 #endif
785 } else {
786 lp->stats.tx_errors++;
787 if (tx_status & AC_SFLD_S10) {
788 lp->stats.tx_carrier_errors++;
789 #ifdef DEBUG_TX_FAIL
790 printk(KERN_DEBUG
791 "%s: wv_complete(): tx error: no CS.\n",
792 dev->name);
793 #endif
794 }
795 if (tx_status & AC_SFLD_S9) {
796 lp->stats.tx_carrier_errors++;
797 #ifdef DEBUG_TX_FAIL
798 printk(KERN_DEBUG
799 "%s: wv_complete(): tx error: lost CTS.\n",
800 dev->name);
801 #endif
802 }
803 if (tx_status & AC_SFLD_S8) {
804 lp->stats.tx_fifo_errors++;
805 #ifdef DEBUG_TX_FAIL
806 printk(KERN_DEBUG
807 "%s: wv_complete(): tx error: slow DMA.\n",
808 dev->name);
809 #endif
810 }
811 if (tx_status & AC_SFLD_S6) {
812 lp->stats.tx_heartbeat_errors++;
813 #ifdef DEBUG_TX_FAIL
814 printk(KERN_DEBUG
815 "%s: wv_complete(): tx error: heart beat.\n",
816 dev->name);
817 #endif
818 }
819 if (tx_status & AC_SFLD_S5) {
820 lp->stats.tx_aborted_errors++;
821 #ifdef DEBUG_TX_FAIL
822 printk(KERN_DEBUG
823 "%s: wv_complete(): tx error: too many collisions.\n",
824 dev->name);
825 #endif
826 }
827 }
828
829 #ifdef DEBUG_TX_INFO
830 printk(KERN_DEBUG
831 "%s: wv_complete(): tx completed, tx_status 0x%04x\n",
832 dev->name, tx_status);
833 #endif
834 }
835
836 #ifdef DEBUG_INTERRUPT_INFO
837 if (nreaped > 1)
838 printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n",
839 dev->name, nreaped);
840 #endif
841
842 /*
843 * Inform upper layers.
844 */
845 if (lp->tx_n_in_use < NTXBLOCKS - 1) {
846 netif_wake_queue(dev);
847 }
848 #ifdef DEBUG_INTERRUPT_TRACE
849 printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name);
850 #endif
851 return nreaped;
852 }
853
854 /*------------------------------------------------------------------*/
855 /*
856 * Reconfigure the i82586, or at least ask for it.
857 * Because wv_82586_config uses a transmission buffer, we must do it
858 * when we are sure that there is one left, so we do it now
859 * or in wavelan_packet_xmit() (I can't find any better place,
860 * wavelan_interrupt is not an option), so you may experience
861 * delays sometimes.
862 */
wv_82586_reconfig(device * dev)863 static inline void wv_82586_reconfig(device * dev)
864 {
865 net_local *lp = (net_local *) dev->priv;
866 unsigned long flags;
867
868 /* Arm the flag, will be cleard in wv_82586_config() */
869 lp->reconfig_82586 = 1;
870
871 /* Check if we can do it now ! */
872 if((netif_running(dev)) && !(netif_queue_stopped(dev))) {
873 wv_splhi(lp, &flags);
874 /* May fail */
875 wv_82586_config(dev);
876 wv_splx(lp, &flags);
877 }
878 else {
879 #ifdef DEBUG_CONFIG_INFO
880 printk(KERN_DEBUG
881 "%s: wv_82586_reconfig(): delayed (state = %lX)\n",
882 dev->name, dev->state);
883 #endif
884 }
885 }
886
887 /********************* DEBUG & INFO SUBROUTINES *********************/
888 /*
889 * This routine is used in the code to show information for debugging.
890 * Most of the time, it dumps the contents of hardware structures.
891 */
892
893 #ifdef DEBUG_PSA_SHOW
894 /*------------------------------------------------------------------*/
895 /*
896 * Print the formatted contents of the Parameter Storage Area.
897 */
wv_psa_show(psa_t * p)898 static void wv_psa_show(psa_t * p)
899 {
900 printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n");
901 printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
902 p->psa_io_base_addr_1,
903 p->psa_io_base_addr_2,
904 p->psa_io_base_addr_3, p->psa_io_base_addr_4);
905 printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
906 p->psa_rem_boot_addr_1,
907 p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3);
908 printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
909 printk("psa_int_req_no: %d\n", p->psa_int_req_no);
910 #ifdef DEBUG_SHOW_UNUSED
911 printk(KERN_DEBUG
912 "psa_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
913 p->psa_unused0[0], p->psa_unused0[1], p->psa_unused0[2],
914 p->psa_unused0[3], p->psa_unused0[4], p->psa_unused0[5],
915 p->psa_unused0[6]);
916 #endif /* DEBUG_SHOW_UNUSED */
917 printk(KERN_DEBUG
918 "psa_univ_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n",
919 p->psa_univ_mac_addr[0], p->psa_univ_mac_addr[1],
920 p->psa_univ_mac_addr[2], p->psa_univ_mac_addr[3],
921 p->psa_univ_mac_addr[4], p->psa_univ_mac_addr[5]);
922 printk(KERN_DEBUG
923 "psa_local_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n",
924 p->psa_local_mac_addr[0], p->psa_local_mac_addr[1],
925 p->psa_local_mac_addr[2], p->psa_local_mac_addr[3],
926 p->psa_local_mac_addr[4], p->psa_local_mac_addr[5]);
927 printk(KERN_DEBUG "psa_univ_local_sel: %d, ",
928 p->psa_univ_local_sel);
929 printk("psa_comp_number: %d, ", p->psa_comp_number);
930 printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
931 printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
932 p->psa_feature_select);
933 printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
934 printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
935 printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
936 printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0],
937 p->psa_nwid[1]);
938 printk("psa_nwid_select: %d\n", p->psa_nwid_select);
939 printk(KERN_DEBUG "psa_encryption_select: %d, ",
940 p->psa_encryption_select);
941 printk
942 ("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
943 p->psa_encryption_key[0], p->psa_encryption_key[1],
944 p->psa_encryption_key[2], p->psa_encryption_key[3],
945 p->psa_encryption_key[4], p->psa_encryption_key[5],
946 p->psa_encryption_key[6], p->psa_encryption_key[7]);
947 printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
948 printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
949 p->psa_call_code[0]);
950 printk
951 ("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
952 p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2],
953 p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5],
954 p->psa_call_code[6], p->psa_call_code[7]);
955 #ifdef DEBUG_SHOW_UNUSED
956 printk(KERN_DEBUG "psa_reserved[]: %02X:%02X:%02X:%02X\n",
957 p->psa_reserved[0],
958 p->psa_reserved[1], p->psa_reserved[2], p->psa_reserved[3]);
959 #endif /* DEBUG_SHOW_UNUSED */
960 printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
961 printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
962 printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
963 } /* wv_psa_show */
964 #endif /* DEBUG_PSA_SHOW */
965
966 #ifdef DEBUG_MMC_SHOW
967 /*------------------------------------------------------------------*/
968 /*
969 * Print the formatted status of the Modem Management Controller.
970 * This function needs to be completed.
971 */
wv_mmc_show(device * dev)972 static void wv_mmc_show(device * dev)
973 {
974 unsigned long ioaddr = dev->base_addr;
975 net_local *lp = (net_local *) dev->priv;
976 mmr_t m;
977
978 /* Basic check */
979 if (hasr_read(ioaddr) & HASR_NO_CLK) {
980 printk(KERN_WARNING
981 "%s: wv_mmc_show: modem not connected\n",
982 dev->name);
983 return;
984 }
985
986 /* Read the mmc */
987 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
988 mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m));
989 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
990
991 #ifdef WIRELESS_EXT /* if wireless extension exists in the kernel */
992 /* Don't forget to update statistics */
993 lp->wstats.discard.nwid +=
994 (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
995 #endif /* WIRELESS_EXT */
996
997 printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n");
998 #ifdef DEBUG_SHOW_UNUSED
999 printk(KERN_DEBUG
1000 "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1001 m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2],
1002 m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5],
1003 m.mmr_unused0[6], m.mmr_unused0[7]);
1004 #endif /* DEBUG_SHOW_UNUSED */
1005 printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
1006 m.mmr_des_avail, m.mmr_des_status);
1007 #ifdef DEBUG_SHOW_UNUSED
1008 printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
1009 m.mmr_unused1[0],
1010 m.mmr_unused1[1],
1011 m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]);
1012 #endif /* DEBUG_SHOW_UNUSED */
1013 printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
1014 m.mmr_dce_status,
1015 (m.
1016 mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ?
1017 "energy detected," : "",
1018 (m.
1019 mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
1020 "loop test indicated," : "",
1021 (m.
1022 mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ?
1023 "transmitter on," : "",
1024 (m.
1025 mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
1026 "jabber timer expired," : "");
1027 printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id);
1028 #ifdef DEBUG_SHOW_UNUSED
1029 printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
1030 m.mmr_unused2[0], m.mmr_unused2[1]);
1031 #endif /* DEBUG_SHOW_UNUSED */
1032 printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
1033 (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
1034 (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
1035 printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
1036 m.mmr_thr_pre_set & MMR_THR_PRE_SET,
1037 (m.
1038 mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" :
1039 "below");
1040 printk(KERN_DEBUG "signal_lvl: %d [%s], ",
1041 m.mmr_signal_lvl & MMR_SIGNAL_LVL,
1042 (m.
1043 mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" :
1044 "no new msg");
1045 printk("silence_lvl: %d [%s], ",
1046 m.mmr_silence_lvl & MMR_SILENCE_LVL,
1047 (m.
1048 mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" :
1049 "no new update");
1050 printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
1051 (m.
1052 mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" :
1053 "Antenna 0");
1054 #ifdef DEBUG_SHOW_UNUSED
1055 printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
1056 #endif /* DEBUG_SHOW_UNUSED */
1057 } /* wv_mmc_show */
1058 #endif /* DEBUG_MMC_SHOW */
1059
1060 #ifdef DEBUG_I82586_SHOW
1061 /*------------------------------------------------------------------*/
1062 /*
1063 * Print the last block of the i82586 memory.
1064 */
wv_scb_show(unsigned long ioaddr)1065 static void wv_scb_show(unsigned long ioaddr)
1066 {
1067 scb_t scb;
1068
1069 obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
1070 sizeof(scb));
1071
1072 printk(KERN_DEBUG "##### WaveLAN system control block: #####\n");
1073
1074 printk(KERN_DEBUG "status: ");
1075 printk("stat 0x%x[%s%s%s%s] ",
1076 (scb.
1077 scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA |
1078 SCB_ST_RNR)) >> 12,
1079 (scb.
1080 scb_status & SCB_ST_CX) ? "command completion interrupt," :
1081 "", (scb.scb_status & SCB_ST_FR) ? "frame received," : "",
1082 (scb.
1083 scb_status & SCB_ST_CNA) ? "command unit not active," : "",
1084 (scb.
1085 scb_status & SCB_ST_RNR) ? "receiving unit not ready," :
1086 "");
1087 printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8,
1088 ((scb.scb_status & SCB_ST_CUS) ==
1089 SCB_ST_CUS_IDLE) ? "idle" : "",
1090 ((scb.scb_status & SCB_ST_CUS) ==
1091 SCB_ST_CUS_SUSP) ? "suspended" : "",
1092 ((scb.scb_status & SCB_ST_CUS) ==
1093 SCB_ST_CUS_ACTV) ? "active" : "");
1094 printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4,
1095 ((scb.scb_status & SCB_ST_RUS) ==
1096 SCB_ST_RUS_IDLE) ? "idle" : "",
1097 ((scb.scb_status & SCB_ST_RUS) ==
1098 SCB_ST_RUS_SUSP) ? "suspended" : "",
1099 ((scb.scb_status & SCB_ST_RUS) ==
1100 SCB_ST_RUS_NRES) ? "no resources" : "",
1101 ((scb.scb_status & SCB_ST_RUS) ==
1102 SCB_ST_RUS_RDY) ? "ready" : "");
1103
1104 printk(KERN_DEBUG "command: ");
1105 printk("ack 0x%x[%s%s%s%s] ",
1106 (scb.
1107 scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR |
1108 SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12,
1109 (scb.
1110 scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "",
1111 (scb.
1112 scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "",
1113 (scb.
1114 scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "",
1115 (scb.
1116 scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : "");
1117 printk("cuc 0x%x[%s%s%s%s%s] ",
1118 (scb.scb_command & SCB_CMD_CUC) >> 8,
1119 ((scb.scb_command & SCB_CMD_CUC) ==
1120 SCB_CMD_CUC_NOP) ? "nop" : "",
1121 ((scb.scb_command & SCB_CMD_CUC) ==
1122 SCB_CMD_CUC_GO) ? "start cbl_offset" : "",
1123 ((scb.scb_command & SCB_CMD_CUC) ==
1124 SCB_CMD_CUC_RES) ? "resume execution" : "",
1125 ((scb.scb_command & SCB_CMD_CUC) ==
1126 SCB_CMD_CUC_SUS) ? "suspend execution" : "",
1127 ((scb.scb_command & SCB_CMD_CUC) ==
1128 SCB_CMD_CUC_ABT) ? "abort execution" : "");
1129 printk("ruc 0x%x[%s%s%s%s%s]\n",
1130 (scb.scb_command & SCB_CMD_RUC) >> 4,
1131 ((scb.scb_command & SCB_CMD_RUC) ==
1132 SCB_CMD_RUC_NOP) ? "nop" : "",
1133 ((scb.scb_command & SCB_CMD_RUC) ==
1134 SCB_CMD_RUC_GO) ? "start rfa_offset" : "",
1135 ((scb.scb_command & SCB_CMD_RUC) ==
1136 SCB_CMD_RUC_RES) ? "resume reception" : "",
1137 ((scb.scb_command & SCB_CMD_RUC) ==
1138 SCB_CMD_RUC_SUS) ? "suspend reception" : "",
1139 ((scb.scb_command & SCB_CMD_RUC) ==
1140 SCB_CMD_RUC_ABT) ? "abort reception" : "");
1141
1142 printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset);
1143 printk("rfa_offset 0x%x\n", scb.scb_rfa_offset);
1144
1145 printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs);
1146 printk("alnerrs %d ", scb.scb_alnerrs);
1147 printk("rscerrs %d ", scb.scb_rscerrs);
1148 printk("ovrnerrs %d\n", scb.scb_ovrnerrs);
1149 }
1150
1151 /*------------------------------------------------------------------*/
1152 /*
1153 * Print the formatted status of the i82586's receive unit.
1154 */
wv_ru_show(device * dev)1155 static void wv_ru_show(device * dev)
1156 {
1157 /* net_local *lp = (net_local *) dev->priv; */
1158
1159 printk(KERN_DEBUG
1160 "##### WaveLAN i82586 receiver unit status: #####\n");
1161 printk(KERN_DEBUG "ru:");
1162 /*
1163 * Not implemented yet
1164 */
1165 printk("\n");
1166 } /* wv_ru_show */
1167
1168 /*------------------------------------------------------------------*/
1169 /*
1170 * Display info about one control block of the i82586 memory.
1171 */
wv_cu_show_one(device * dev,net_local * lp,int i,u16 p)1172 static void wv_cu_show_one(device * dev, net_local * lp, int i, u16 p)
1173 {
1174 unsigned long ioaddr;
1175 ac_tx_t actx;
1176
1177 ioaddr = dev->base_addr;
1178
1179 printk("%d: 0x%x:", i, p);
1180
1181 obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx));
1182 printk(" status=0x%x,", actx.tx_h.ac_status);
1183 printk(" command=0x%x,", actx.tx_h.ac_command);
1184
1185 /*
1186 {
1187 tbd_t tbd;
1188
1189 obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd));
1190 printk(" tbd_status=0x%x,", tbd.tbd_status);
1191 }
1192 */
1193
1194 printk("|");
1195 }
1196
1197 /*------------------------------------------------------------------*/
1198 /*
1199 * Print status of the command unit of the i82586.
1200 */
wv_cu_show(device * dev)1201 static void wv_cu_show(device * dev)
1202 {
1203 net_local *lp = (net_local *) dev->priv;
1204 unsigned int i;
1205 u16 p;
1206
1207 printk(KERN_DEBUG
1208 "##### WaveLAN i82586 command unit status: #####\n");
1209
1210 printk(KERN_DEBUG);
1211 for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) {
1212 wv_cu_show_one(dev, lp, i, p);
1213
1214 p += TXBLOCKZ;
1215 if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
1216 p -= NTXBLOCKS * TXBLOCKZ;
1217 }
1218 printk("\n");
1219 }
1220 #endif /* DEBUG_I82586_SHOW */
1221
1222 #ifdef DEBUG_DEVICE_SHOW
1223 /*------------------------------------------------------------------*/
1224 /*
1225 * Print the formatted status of the WaveLAN PCMCIA device driver.
1226 */
wv_dev_show(device * dev)1227 static void wv_dev_show(device * dev)
1228 {
1229 printk(KERN_DEBUG "dev:");
1230 printk(" state=%lX,", dev->state);
1231 printk(" trans_start=%ld,", dev->trans_start);
1232 printk(" flags=0x%x,", dev->flags);
1233 printk("\n");
1234 } /* wv_dev_show */
1235
1236 /*------------------------------------------------------------------*/
1237 /*
1238 * Print the formatted status of the WaveLAN PCMCIA device driver's
1239 * private information.
1240 */
wv_local_show(device * dev)1241 static void wv_local_show(device * dev)
1242 {
1243 net_local *lp;
1244
1245 lp = (net_local *) dev->priv;
1246
1247 printk(KERN_DEBUG "local:");
1248 printk(" tx_n_in_use=%d,", lp->tx_n_in_use);
1249 printk(" hacr=0x%x,", lp->hacr);
1250 printk(" rx_head=0x%x,", lp->rx_head);
1251 printk(" rx_last=0x%x,", lp->rx_last);
1252 printk(" tx_first_free=0x%x,", lp->tx_first_free);
1253 printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use);
1254 printk("\n");
1255 } /* wv_local_show */
1256 #endif /* DEBUG_DEVICE_SHOW */
1257
1258 #if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
1259 /*------------------------------------------------------------------*/
1260 /*
1261 * Dump packet header (and content if necessary) on the screen
1262 */
wv_packet_info(u8 * p,int length,char * msg1,char * msg2)1263 static inline void wv_packet_info(u8 * p, /* Packet to dump */
1264 int length, /* Length of the packet */
1265 char *msg1, /* Name of the device */
1266 char *msg2)
1267 { /* Name of the function */
1268 int i;
1269 int maxi;
1270
1271 printk(KERN_DEBUG
1272 "%s: %s(): dest %02X:%02X:%02X:%02X:%02X:%02X, length %d\n",
1273 msg1, msg2, p[0], p[1], p[2], p[3], p[4], p[5], length);
1274 printk(KERN_DEBUG
1275 "%s: %s(): src %02X:%02X:%02X:%02X:%02X:%02X, type 0x%02X%02X\n",
1276 msg1, msg2, p[6], p[7], p[8], p[9], p[10], p[11], p[12],
1277 p[13]);
1278
1279 #ifdef DEBUG_PACKET_DUMP
1280
1281 printk(KERN_DEBUG "data=\"");
1282
1283 if ((maxi = length) > DEBUG_PACKET_DUMP)
1284 maxi = DEBUG_PACKET_DUMP;
1285 for (i = 14; i < maxi; i++)
1286 if (p[i] >= ' ' && p[i] <= '~')
1287 printk(" %c", p[i]);
1288 else
1289 printk("%02X", p[i]);
1290 if (maxi < length)
1291 printk("..");
1292 printk("\"\n");
1293 printk(KERN_DEBUG "\n");
1294 #endif /* DEBUG_PACKET_DUMP */
1295 }
1296 #endif /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
1297
1298 /*------------------------------------------------------------------*/
1299 /*
1300 * This is the information which is displayed by the driver at startup.
1301 * There are lots of flags for configuring it to your liking.
1302 */
wv_init_info(device * dev)1303 static inline void wv_init_info(device * dev)
1304 {
1305 short ioaddr = dev->base_addr;
1306 net_local *lp = (net_local *) dev->priv;
1307 psa_t psa;
1308 int i;
1309
1310 /* Read the parameter storage area */
1311 psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
1312
1313 #ifdef DEBUG_PSA_SHOW
1314 wv_psa_show(&psa);
1315 #endif
1316 #ifdef DEBUG_MMC_SHOW
1317 wv_mmc_show(dev);
1318 #endif
1319 #ifdef DEBUG_I82586_SHOW
1320 wv_cu_show(dev);
1321 #endif
1322
1323 #ifdef DEBUG_BASIC_SHOW
1324 /* Now, let's go for the basic stuff. */
1325 printk(KERN_NOTICE "%s: WaveLAN at %#x,", dev->name, ioaddr);
1326 for (i = 0; i < WAVELAN_ADDR_SIZE; i++)
1327 printk("%s%02X", (i == 0) ? " " : ":", dev->dev_addr[i]);
1328 printk(", IRQ %d", dev->irq);
1329
1330 /* Print current network ID. */
1331 if (psa.psa_nwid_select)
1332 printk(", nwid 0x%02X-%02X", psa.psa_nwid[0],
1333 psa.psa_nwid[1]);
1334 else
1335 printk(", nwid off");
1336
1337 /* If 2.00 card */
1338 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1339 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1340 unsigned short freq;
1341
1342 /* Ask the EEPROM to read the frequency from the first area. */
1343 fee_read(ioaddr, 0x00, &freq, 1);
1344
1345 /* Print frequency */
1346 printk(", 2.00, %ld", (freq >> 6) + 2400L);
1347
1348 /* Hack! */
1349 if (freq & 0x20)
1350 printk(".5");
1351 } else {
1352 printk(", PC");
1353 switch (psa.psa_comp_number) {
1354 case PSA_COMP_PC_AT_915:
1355 case PSA_COMP_PC_AT_2400:
1356 printk("-AT");
1357 break;
1358 case PSA_COMP_PC_MC_915:
1359 case PSA_COMP_PC_MC_2400:
1360 printk("-MC");
1361 break;
1362 case PSA_COMP_PCMCIA_915:
1363 printk("MCIA");
1364 break;
1365 default:
1366 printk("?");
1367 }
1368 printk(", ");
1369 switch (psa.psa_subband) {
1370 case PSA_SUBBAND_915:
1371 printk("915");
1372 break;
1373 case PSA_SUBBAND_2425:
1374 printk("2425");
1375 break;
1376 case PSA_SUBBAND_2460:
1377 printk("2460");
1378 break;
1379 case PSA_SUBBAND_2484:
1380 printk("2484");
1381 break;
1382 case PSA_SUBBAND_2430_5:
1383 printk("2430.5");
1384 break;
1385 default:
1386 printk("?");
1387 }
1388 }
1389
1390 printk(" MHz\n");
1391 #endif /* DEBUG_BASIC_SHOW */
1392
1393 #ifdef DEBUG_VERSION_SHOW
1394 /* Print version information */
1395 printk(KERN_NOTICE "%s", version);
1396 #endif
1397 } /* wv_init_info */
1398
1399 /********************* IOCTL, STATS & RECONFIG *********************/
1400 /*
1401 * We found here routines that are called by Linux on different
1402 * occasions after the configuration and not for transmitting data
1403 * These may be called when the user use ifconfig, /proc/net/dev
1404 * or wireless extensions
1405 */
1406
1407 /*------------------------------------------------------------------*/
1408 /*
1409 * Get the current Ethernet statistics. This may be called with the
1410 * card open or closed.
1411 * Used when the user read /proc/net/dev
1412 */
wavelan_get_stats(device * dev)1413 static en_stats *wavelan_get_stats(device * dev)
1414 {
1415 #ifdef DEBUG_IOCTL_TRACE
1416 printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name);
1417 #endif
1418
1419 return (&((net_local *) dev->priv)->stats);
1420 }
1421
1422 /*------------------------------------------------------------------*/
1423 /*
1424 * Set or clear the multicast filter for this adaptor.
1425 * num_addrs == -1 Promiscuous mode, receive all packets
1426 * num_addrs == 0 Normal mode, clear multicast list
1427 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1428 * and do best-effort filtering.
1429 */
wavelan_set_multicast_list(device * dev)1430 static void wavelan_set_multicast_list(device * dev)
1431 {
1432 net_local *lp = (net_local *) dev->priv;
1433
1434 #ifdef DEBUG_IOCTL_TRACE
1435 printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n",
1436 dev->name);
1437 #endif
1438
1439 #ifdef DEBUG_IOCTL_INFO
1440 printk(KERN_DEBUG
1441 "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
1442 dev->name, dev->flags, dev->mc_count);
1443 #endif
1444
1445 /* Are we asking for promiscuous mode,
1446 * or all multicast addresses (we don't have that!)
1447 * or too many multicast addresses for the hardware filter? */
1448 if ((dev->flags & IFF_PROMISC) ||
1449 (dev->flags & IFF_ALLMULTI) ||
1450 (dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) {
1451 /*
1452 * Enable promiscuous mode: receive all packets.
1453 */
1454 if (!lp->promiscuous) {
1455 lp->promiscuous = 1;
1456 lp->mc_count = 0;
1457
1458 wv_82586_reconfig(dev);
1459
1460 /* Tell the kernel that we are doing a really bad job. */
1461 dev->flags |= IFF_PROMISC;
1462 }
1463 } else
1464 /* Are there multicast addresses to send? */
1465 if (dev->mc_list != (struct dev_mc_list *) NULL) {
1466 /*
1467 * Disable promiscuous mode, but receive all packets
1468 * in multicast list
1469 */
1470 #ifdef MULTICAST_AVOID
1471 if (lp->promiscuous || (dev->mc_count != lp->mc_count))
1472 #endif
1473 {
1474 lp->promiscuous = 0;
1475 lp->mc_count = dev->mc_count;
1476
1477 wv_82586_reconfig(dev);
1478 }
1479 } else {
1480 /*
1481 * Switch to normal mode: disable promiscuous mode and
1482 * clear the multicast list.
1483 */
1484 if (lp->promiscuous || lp->mc_count == 0) {
1485 lp->promiscuous = 0;
1486 lp->mc_count = 0;
1487
1488 wv_82586_reconfig(dev);
1489 }
1490 }
1491 #ifdef DEBUG_IOCTL_TRACE
1492 printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n",
1493 dev->name);
1494 #endif
1495 }
1496
1497 /*------------------------------------------------------------------*/
1498 /*
1499 * This function doesn't exist.
1500 * (Note : it was a nice way to test the reconfigure stuff...)
1501 */
1502 #ifdef SET_MAC_ADDRESS
wavelan_set_mac_address(device * dev,void * addr)1503 static int wavelan_set_mac_address(device * dev, void *addr)
1504 {
1505 struct sockaddr *mac = addr;
1506
1507 /* Copy the address. */
1508 memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
1509
1510 /* Reconfigure the beast. */
1511 wv_82586_reconfig(dev);
1512
1513 return 0;
1514 }
1515 #endif /* SET_MAC_ADDRESS */
1516
1517 #ifdef WIRELESS_EXT /* if wireless extensions exist in the kernel */
1518
1519 /*------------------------------------------------------------------*/
1520 /*
1521 * Frequency setting (for hardware capable of it)
1522 * It's a bit complicated and you don't really want to look into it.
1523 * (called in wavelan_ioctl)
1524 */
wv_set_frequency(unsigned long ioaddr,iw_freq * frequency)1525 static inline int wv_set_frequency(unsigned long ioaddr, /* I/O port of the card */
1526 iw_freq * frequency)
1527 {
1528 const int BAND_NUM = 10; /* Number of bands */
1529 long freq = 0L; /* offset to 2.4 GHz in .5 MHz */
1530 #ifdef DEBUG_IOCTL_INFO
1531 int i;
1532 #endif
1533
1534 /* Setting by frequency */
1535 /* Theoretically, you may set any frequency between
1536 * the two limits with a 0.5 MHz precision. In practice,
1537 * I don't want you to have trouble with local regulations.
1538 */
1539 if ((frequency->e == 1) &&
1540 (frequency->m >= (int) 2.412e8)
1541 && (frequency->m <= (int) 2.487e8)) {
1542 freq = ((frequency->m / 10000) - 24000L) / 5;
1543 }
1544
1545 /* Setting by channel (same as wfreqsel) */
1546 /* Warning: each channel is 22 MHz wide, so some of the channels
1547 * will interfere. */
1548 if ((frequency->e == 0) && (frequency->m < BAND_NUM)) {
1549 /* Get frequency offset. */
1550 freq = channel_bands[frequency->m] >> 1;
1551 }
1552
1553 /* Verify that the frequency is allowed. */
1554 if (freq != 0L) {
1555 u16 table[10]; /* Authorized frequency table */
1556
1557 /* Read the frequency table. */
1558 fee_read(ioaddr, 0x71, table, 10);
1559
1560 #ifdef DEBUG_IOCTL_INFO
1561 printk(KERN_DEBUG "Frequency table: ");
1562 for (i = 0; i < 10; i++) {
1563 printk(" %04X", table[i]);
1564 }
1565 printk("\n");
1566 #endif
1567
1568 /* Look in the table to see whether the frequency is allowed. */
1569 if (!(table[9 - ((freq - 24) / 16)] &
1570 (1 << ((freq - 24) % 16)))) return -EINVAL; /* not allowed */
1571 } else
1572 return -EINVAL;
1573
1574 /* if we get a usable frequency */
1575 if (freq != 0L) {
1576 unsigned short area[16];
1577 unsigned short dac[2];
1578 unsigned short area_verify[16];
1579 unsigned short dac_verify[2];
1580 /* Corresponding gain (in the power adjust value table)
1581 * See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8
1582 * and WCIN062D.DOC, page 6.2.9. */
1583 unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
1584 int power_band = 0; /* Selected band */
1585 unsigned short power_adjust; /* Correct value */
1586
1587 /* Search for the gain. */
1588 power_band = 0;
1589 while ((freq > power_limit[power_band]) &&
1590 (power_limit[++power_band] != 0));
1591
1592 /* Read the first area. */
1593 fee_read(ioaddr, 0x00, area, 16);
1594
1595 /* Read the DAC. */
1596 fee_read(ioaddr, 0x60, dac, 2);
1597
1598 /* Read the new power adjust value. */
1599 fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust,
1600 1);
1601 if (power_band & 0x1)
1602 power_adjust >>= 8;
1603 else
1604 power_adjust &= 0xFF;
1605
1606 #ifdef DEBUG_IOCTL_INFO
1607 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1608 for (i = 0; i < 16; i++) {
1609 printk(" %04X", area[i]);
1610 }
1611 printk("\n");
1612
1613 printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
1614 dac[0], dac[1]);
1615 #endif
1616
1617 /* Frequency offset (for info only) */
1618 area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
1619
1620 /* Receiver Principle main divider coefficient */
1621 area[3] = (freq >> 1) + 2400L - 352L;
1622 area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1623
1624 /* Transmitter Main divider coefficient */
1625 area[13] = (freq >> 1) + 2400L;
1626 area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1627
1628 /* Other parts of the area are flags, bit streams or unused. */
1629
1630 /* Set the value in the DAC. */
1631 dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
1632 dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
1633
1634 /* Write the first area. */
1635 fee_write(ioaddr, 0x00, area, 16);
1636
1637 /* Write the DAC. */
1638 fee_write(ioaddr, 0x60, dac, 2);
1639
1640 /* We now should verify here that the writing of the EEPROM went OK. */
1641
1642 /* Reread the first area. */
1643 fee_read(ioaddr, 0x00, area_verify, 16);
1644
1645 /* Reread the DAC. */
1646 fee_read(ioaddr, 0x60, dac_verify, 2);
1647
1648 /* Compare. */
1649 if (memcmp(area, area_verify, 16 * 2) ||
1650 memcmp(dac, dac_verify, 2 * 2)) {
1651 #ifdef DEBUG_IOCTL_ERROR
1652 printk(KERN_INFO
1653 "WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n");
1654 #endif
1655 return -EOPNOTSUPP;
1656 }
1657
1658 /* We must download the frequency parameters to the
1659 * synthesizers (from the EEPROM - area 1)
1660 * Note: as the EEPROM is automatically decremented, we set the end
1661 * if the area... */
1662 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F);
1663 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1664 MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1665
1666 /* Wait until the download is finished. */
1667 fee_wait(ioaddr, 100, 100);
1668
1669 /* We must now download the power adjust value (gain) to
1670 * the synthesizers (from the EEPROM - area 7 - DAC). */
1671 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61);
1672 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1673 MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1674
1675 /* Wait for the download to finish. */
1676 fee_wait(ioaddr, 100, 100);
1677
1678 #ifdef DEBUG_IOCTL_INFO
1679 /* Verification of what we have done */
1680
1681 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1682 for (i = 0; i < 16; i++) {
1683 printk(" %04X", area_verify[i]);
1684 }
1685 printk("\n");
1686
1687 printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
1688 dac_verify[0], dac_verify[1]);
1689 #endif
1690
1691 return 0;
1692 } else
1693 return -EINVAL; /* Bah, never get there... */
1694 }
1695
1696 /*------------------------------------------------------------------*/
1697 /*
1698 * Give the list of available frequencies.
1699 */
wv_frequency_list(unsigned long ioaddr,iw_freq * list,int max)1700 static inline int wv_frequency_list(unsigned long ioaddr, /* I/O port of the card */
1701 iw_freq * list, /* List of frequencies to fill */
1702 int max)
1703 { /* Maximum number of frequencies */
1704 u16 table[10]; /* Authorized frequency table */
1705 long freq = 0L; /* offset to 2.4 GHz in .5 MHz + 12 MHz */
1706 int i; /* index in the table */
1707 int c = 0; /* Channel number */
1708
1709 /* Read the frequency table. */
1710 fee_read(ioaddr, 0x71 /* frequency table */ , table, 10);
1711
1712 /* Check all frequencies. */
1713 i = 0;
1714 for (freq = 0; freq < 150; freq++)
1715 /* Look in the table if the frequency is allowed */
1716 if (table[9 - (freq / 16)] & (1 << (freq % 16))) {
1717 /* Compute approximate channel number */
1718 while ((((channel_bands[c] >> 1) - 24) < freq) &&
1719 (c < NELS(channel_bands)))
1720 c++;
1721 list[i].i = c; /* Set the list index */
1722
1723 /* put in the list */
1724 list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
1725 list[i++].e = 1;
1726
1727 /* Check number. */
1728 if (i >= max)
1729 return (i);
1730 }
1731
1732 return (i);
1733 }
1734
1735 #ifdef WIRELESS_SPY
1736 /*------------------------------------------------------------------*/
1737 /*
1738 * Gather wireless spy statistics: for each packet, compare the source
1739 * address with our list, and if they match, get the statistics.
1740 * Sorry, but this function really needs the wireless extensions.
1741 */
wl_spy_gather(device * dev,u8 * mac,u8 * stats)1742 static inline void wl_spy_gather(device * dev, u8 * mac, /* MAC address */
1743 u8 * stats)
1744 { /* Statistics to gather */
1745 net_local *lp = (net_local *) dev->priv;
1746 int i;
1747
1748 /* Check all addresses. */
1749 for (i = 0; i < lp->spy_number; i++)
1750 /* If match */
1751 if (!memcmp(mac, lp->spy_address[i], WAVELAN_ADDR_SIZE)) {
1752 /* Update statistics */
1753 lp->spy_stat[i].qual = stats[2] & MMR_SGNL_QUAL;
1754 lp->spy_stat[i].level = stats[0] & MMR_SIGNAL_LVL;
1755 lp->spy_stat[i].noise = stats[1] & MMR_SILENCE_LVL;
1756 lp->spy_stat[i].updated = 0x7;
1757 }
1758 }
1759 #endif /* WIRELESS_SPY */
1760
1761 #ifdef HISTOGRAM
1762 /*------------------------------------------------------------------*/
1763 /*
1764 * This function calculates a histogram of the signal level.
1765 * As the noise is quite constant, it's like doing it on the SNR.
1766 * We have defined a set of interval (lp->his_range), and each time
1767 * the level goes in that interval, we increment the count (lp->his_sum).
1768 * With this histogram you may detect if one WaveLAN is really weak,
1769 * or you may also calculate the mean and standard deviation of the level.
1770 */
wl_his_gather(device * dev,u8 * stats)1771 static inline void wl_his_gather(device * dev, u8 * stats)
1772 { /* Statistics to gather */
1773 net_local *lp = (net_local *) dev->priv;
1774 u8 level = stats[0] & MMR_SIGNAL_LVL;
1775 int i;
1776
1777 /* Find the correct interval. */
1778 i = 0;
1779 while ((i < (lp->his_number - 1))
1780 && (level >= lp->his_range[i++]));
1781
1782 /* Increment interval counter. */
1783 (lp->his_sum[i])++;
1784 }
1785 #endif /* HISTOGRAM */
1786
1787 /*------------------------------------------------------------------*/
1788 /*
1789 * Perform ioctl for configuration and information.
1790 * It is here that the wireless extensions are treated (iwconfig).
1791 */
wavelan_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1792 static int wavelan_ioctl(struct net_device *dev, /* device on which the ioctl is applied */
1793 struct ifreq *rq, /* data passed */
1794 int cmd)
1795 { /* ioctl number */
1796 unsigned long ioaddr = dev->base_addr;
1797 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
1798 struct iwreq *wrq = (struct iwreq *) rq;
1799 psa_t psa;
1800 mm_t m;
1801 unsigned long flags;
1802 int ret = 0;
1803 int err = 0;
1804
1805 #ifdef DEBUG_IOCTL_TRACE
1806 printk(KERN_DEBUG "%s: ->wavelan_ioctl(cmd=0x%X)\n", dev->name,
1807 cmd);
1808 #endif
1809
1810 /* Disable interrupts and save flags. */
1811 wv_splhi(lp, &flags);
1812
1813 /* Look what is the request */
1814 switch (cmd) {
1815 /* --------------- WIRELESS EXTENSIONS --------------- */
1816
1817 case SIOCGIWNAME:
1818 strcpy(wrq->u.name, "WaveLAN");
1819 break;
1820
1821 case SIOCSIWNWID:
1822 /* Set NWID in WaveLAN. */
1823 if (!wrq->u.nwid.disabled) {
1824 /* Set NWID in psa */
1825 psa.psa_nwid[0] =
1826 (wrq->u.nwid.value & 0xFF00) >> 8;
1827 psa.psa_nwid[1] = wrq->u.nwid.value & 0xFF;
1828 psa.psa_nwid_select = 0x01;
1829 psa_write(ioaddr, lp->hacr,
1830 (char *) psa.psa_nwid - (char *) &psa,
1831 (unsigned char *) psa.psa_nwid, 3);
1832
1833 /* Set NWID in mmc. */
1834 m.w.mmw_netw_id_l = psa.psa_nwid[1];
1835 m.w.mmw_netw_id_h = psa.psa_nwid[0];
1836 mmc_write(ioaddr,
1837 (char *) &m.w.mmw_netw_id_l -
1838 (char *) &m,
1839 (unsigned char *) &m.w.mmw_netw_id_l, 2);
1840 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00);
1841 } else {
1842 /* Disable NWID in the psa. */
1843 psa.psa_nwid_select = 0x00;
1844 psa_write(ioaddr, lp->hacr,
1845 (char *) &psa.psa_nwid_select -
1846 (char *) &psa,
1847 (unsigned char *) &psa.psa_nwid_select,
1848 1);
1849
1850 /* Disable NWID in the mmc (no filtering). */
1851 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel),
1852 MMW_LOOPT_SEL_DIS_NWID);
1853 }
1854 /* update the Wavelan checksum */
1855 update_psa_checksum(dev, ioaddr, lp->hacr);
1856 break;
1857
1858 case SIOCGIWNWID:
1859 /* Read the NWID. */
1860 psa_read(ioaddr, lp->hacr,
1861 (char *) psa.psa_nwid - (char *) &psa,
1862 (unsigned char *) psa.psa_nwid, 3);
1863 wrq->u.nwid.value =
1864 (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
1865 wrq->u.nwid.disabled = !(psa.psa_nwid_select);
1866 wrq->u.nwid.fixed = 1; /* Superfluous */
1867 break;
1868
1869 case SIOCSIWFREQ:
1870 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
1871 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1872 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
1873 ret = wv_set_frequency(ioaddr, &(wrq->u.freq));
1874 else
1875 ret = -EOPNOTSUPP;
1876 break;
1877
1878 case SIOCGIWFREQ:
1879 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
1880 * Does it work for everybody, especially old cards? */
1881 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1882 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1883 unsigned short freq;
1884
1885 /* Ask the EEPROM to read the frequency from the first area. */
1886 fee_read(ioaddr, 0x00, &freq, 1);
1887 wrq->u.freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
1888 wrq->u.freq.e = 1;
1889 } else {
1890 psa_read(ioaddr, lp->hacr,
1891 (char *) &psa.psa_subband - (char *) &psa,
1892 (unsigned char *) &psa.psa_subband, 1);
1893
1894 if (psa.psa_subband <= 4) {
1895 wrq->u.freq.m =
1896 fixed_bands[psa.psa_subband];
1897 wrq->u.freq.e = (psa.psa_subband != 0);
1898 } else
1899 ret = -EOPNOTSUPP;
1900 }
1901 break;
1902
1903 case SIOCSIWSENS:
1904 /* Set the level threshold. */
1905 /* We should complain loudly if wrq->u.sens.fixed = 0, because we
1906 * can't set auto mode... */
1907 psa.psa_thr_pre_set = wrq->u.sens.value & 0x3F;
1908 psa_write(ioaddr, lp->hacr,
1909 (char *) &psa.psa_thr_pre_set - (char *) &psa,
1910 (unsigned char *) &psa.psa_thr_pre_set, 1);
1911 /* update the Wavelan checksum */
1912 update_psa_checksum(dev, ioaddr, lp->hacr);
1913 mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set),
1914 psa.psa_thr_pre_set);
1915 break;
1916
1917 case SIOCGIWSENS:
1918 /* Read the level threshold. */
1919 psa_read(ioaddr, lp->hacr,
1920 (char *) &psa.psa_thr_pre_set - (char *) &psa,
1921 (unsigned char *) &psa.psa_thr_pre_set, 1);
1922 wrq->u.sens.value = psa.psa_thr_pre_set & 0x3F;
1923 wrq->u.sens.fixed = 1;
1924 break;
1925
1926 case SIOCSIWENCODE:
1927 /* Set encryption key */
1928 if (!mmc_encr(ioaddr)) {
1929 ret = -EOPNOTSUPP;
1930 break;
1931 }
1932
1933 /* Basic checking... */
1934 if (wrq->u.encoding.pointer != (caddr_t) 0) {
1935 /* Check the size of the key */
1936 if (wrq->u.encoding.length != 8) {
1937 ret = -EINVAL;
1938 break;
1939 }
1940
1941 /* Copy the key in the driver */
1942 wv_splx(lp, &flags);
1943 err = copy_from_user(psa.psa_encryption_key,
1944 wrq->u.encoding.pointer,
1945 wrq->u.encoding.length);
1946 wv_splhi(lp, &flags);
1947 if (err) {
1948 ret = -EFAULT;
1949 break;
1950 }
1951
1952 psa.psa_encryption_select = 1;
1953 psa_write(ioaddr, lp->hacr,
1954 (char *) &psa.psa_encryption_select -
1955 (char *) &psa,
1956 (unsigned char *) &psa.
1957 psa_encryption_select, 8 + 1);
1958
1959 mmc_out(ioaddr, mmwoff(0, mmw_encr_enable),
1960 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
1961 mmc_write(ioaddr, mmwoff(0, mmw_encr_key),
1962 (unsigned char *) &psa.
1963 psa_encryption_key, 8);
1964 }
1965
1966 if (wrq->u.encoding.flags & IW_ENCODE_DISABLED) { /* disable encryption */
1967 psa.psa_encryption_select = 0;
1968 psa_write(ioaddr, lp->hacr,
1969 (char *) &psa.psa_encryption_select -
1970 (char *) &psa,
1971 (unsigned char *) &psa.
1972 psa_encryption_select, 1);
1973
1974 mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0);
1975 }
1976 /* update the Wavelan checksum */
1977 update_psa_checksum(dev, ioaddr, lp->hacr);
1978 break;
1979
1980 case SIOCGIWENCODE:
1981 /* Read the encryption key */
1982 if (!mmc_encr(ioaddr)) {
1983 ret = -EOPNOTSUPP;
1984 break;
1985 }
1986
1987 /* only super-user can see encryption key */
1988 if (!capable(CAP_NET_ADMIN)) {
1989 ret = -EPERM;
1990 break;
1991 }
1992
1993 /* Basic checking... */
1994 if (wrq->u.encoding.pointer != (caddr_t) 0) {
1995 /* Verify the user buffer */
1996 ret =
1997 verify_area(VERIFY_WRITE,
1998 wrq->u.encoding.pointer, 8);
1999 if (ret)
2000 break;
2001
2002 psa_read(ioaddr, lp->hacr,
2003 (char *) &psa.psa_encryption_select -
2004 (char *) &psa,
2005 (unsigned char *) &psa.
2006 psa_encryption_select, 1 + 8);
2007
2008 /* encryption is enabled ? */
2009 if (psa.psa_encryption_select)
2010 wrq->u.encoding.flags = IW_ENCODE_ENABLED;
2011 else
2012 wrq->u.encoding.flags = IW_ENCODE_DISABLED;
2013 wrq->u.encoding.flags |= mmc_encr(ioaddr);
2014
2015 /* Copy the key to the user buffer */
2016 wrq->u.encoding.length = 8;
2017 wv_splx(lp, &flags);
2018 if (copy_to_user(wrq->u.encoding.pointer,
2019 psa.psa_encryption_key, 8))
2020 ret = -EFAULT;
2021 wv_splhi(lp, &flags);
2022 }
2023 break;
2024
2025 case SIOCGIWRANGE:
2026 /* basic checking */
2027 if (wrq->u.data.pointer != (caddr_t) 0) {
2028 struct iw_range range;
2029
2030 /* Set the length (very important for backward
2031 * compatibility) */
2032 wrq->u.data.length = sizeof(struct iw_range);
2033
2034 /* Set all the info we don't care or don't know
2035 * about to zero */
2036 memset(&range, 0, sizeof(range));
2037
2038 /* Set the Wireless Extension versions */
2039 range.we_version_compiled = WIRELESS_EXT;
2040 range.we_version_source = 9;
2041
2042 /* Set information in the range struct. */
2043 range.throughput = 1.6 * 1000 * 1000; /* don't argue on this ! */
2044 range.min_nwid = 0x0000;
2045 range.max_nwid = 0xFFFF;
2046
2047 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
2048 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
2049 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
2050 range.num_channels = 10;
2051 range.num_frequency =
2052 wv_frequency_list(ioaddr, range.freq,
2053 IW_MAX_FREQUENCIES);
2054 } else
2055 range.num_channels = range.num_frequency =
2056 0;
2057
2058 range.sensitivity = 0x3F;
2059 range.max_qual.qual = MMR_SGNL_QUAL;
2060 range.max_qual.level = MMR_SIGNAL_LVL;
2061 range.max_qual.noise = MMR_SILENCE_LVL;
2062 range.avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
2063 /* Need to get better values for those two */
2064 range.avg_qual.level = 30;
2065 range.avg_qual.noise = 8;
2066
2067 range.num_bitrates = 1;
2068 range.bitrate[0] = 2000000; /* 2 Mb/s */
2069
2070 /* Encryption supported ? */
2071 if (mmc_encr(ioaddr)) {
2072 range.encoding_size[0] = 8; /* DES = 64 bits key */
2073 range.num_encoding_sizes = 1;
2074 range.max_encoding_tokens = 1; /* Only one key possible */
2075 } else {
2076 range.num_encoding_sizes = 0;
2077 range.max_encoding_tokens = 0;
2078 }
2079
2080 /* Copy structure to the user buffer. */
2081 wv_splx(lp, &flags);
2082 if (copy_to_user(wrq->u.data.pointer,
2083 &range,
2084 sizeof(struct iw_range)))
2085 ret = -EFAULT;
2086 wv_splhi(lp, &flags);
2087 }
2088 break;
2089
2090 case SIOCGIWPRIV:
2091 /* Basic checking */
2092 if (wrq->u.data.pointer != (caddr_t) 0) {
2093 struct iw_priv_args priv[] = {
2094 /* { cmd,
2095 set_args,
2096 get_args,
2097 name } */
2098 { SIOCSIPQTHR,
2099 IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1,
2100 0,
2101 "setqualthr" },
2102 { SIOCGIPQTHR,
2103 0,
2104 IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1,
2105 "getqualthr" },
2106 { SIOCSIPHISTO,
2107 IW_PRIV_TYPE_BYTE | 16,
2108 0,
2109 "sethisto" },
2110 { SIOCGIPHISTO,
2111 0,
2112 IW_PRIV_TYPE_INT | 16,
2113 "gethisto" },
2114 };
2115
2116 /* Set the number of available ioctls. */
2117 wrq->u.data.length = 4;
2118
2119 /* Copy structure to the user buffer. */
2120 wv_splx(lp, &flags);
2121 if (copy_to_user(wrq->u.data.pointer,
2122 (u8 *) priv,
2123 sizeof(priv)))
2124 ret = -EFAULT;
2125 wv_splhi(lp, &flags);
2126 }
2127 break;
2128
2129 #ifdef WIRELESS_SPY
2130 case SIOCSIWSPY:
2131 /* Set the spy list */
2132
2133 /* Check the number of addresses. */
2134 if (wrq->u.data.length > IW_MAX_SPY) {
2135 ret = -E2BIG;
2136 break;
2137 }
2138 lp->spy_number = wrq->u.data.length;
2139
2140 /* Are there are addresses to copy? */
2141 if (lp->spy_number > 0) {
2142 struct sockaddr address[IW_MAX_SPY];
2143 int i;
2144
2145 /* Copy addresses to the driver. */
2146 wv_splx(lp, &flags);
2147 err = copy_from_user(address,
2148 wrq->u.data.pointer,
2149 sizeof(struct sockaddr)
2150 * lp->spy_number);
2151 wv_splhi(lp, &flags);
2152 if (err) {
2153 ret = -EFAULT;
2154 break;
2155 }
2156
2157 /* Copy addresses to the lp structure. */
2158 for (i = 0; i < lp->spy_number; i++) {
2159 memcpy(lp->spy_address[i],
2160 address[i].sa_data,
2161 WAVELAN_ADDR_SIZE);
2162 }
2163
2164 /* Reset structure. */
2165 memset(lp->spy_stat, 0x00,
2166 sizeof(iw_qual) * IW_MAX_SPY);
2167
2168 #ifdef DEBUG_IOCTL_INFO
2169 printk(KERN_DEBUG
2170 "SetSpy: set of new addresses is: \n");
2171 for (i = 0; i < wrq->u.data.length; i++)
2172 printk(KERN_DEBUG
2173 "%02X:%02X:%02X:%02X:%02X:%02X \n",
2174 lp->spy_address[i][0],
2175 lp->spy_address[i][1],
2176 lp->spy_address[i][2],
2177 lp->spy_address[i][3],
2178 lp->spy_address[i][4],
2179 lp->spy_address[i][5]);
2180 #endif /* DEBUG_IOCTL_INFO */
2181 }
2182
2183 break;
2184
2185 case SIOCGIWSPY:
2186 /* Get the spy list and spy stats. */
2187
2188 /* Set the number of addresses */
2189 wrq->u.data.length = lp->spy_number;
2190
2191 /* Does the user want to have the addresses back? */
2192 if ((lp->spy_number > 0)
2193 && (wrq->u.data.pointer != (caddr_t) 0)) {
2194 struct sockaddr address[IW_MAX_SPY];
2195 int i;
2196
2197 /* Copy addresses from the lp structure. */
2198 for (i = 0; i < lp->spy_number; i++) {
2199 memcpy(address[i].sa_data,
2200 lp->spy_address[i],
2201 WAVELAN_ADDR_SIZE);
2202 address[i].sa_family = AF_UNIX;
2203 }
2204
2205 /* Copy addresses to the user buffer. */
2206 wv_splx(lp, &flags);
2207 err = copy_to_user(wrq->u.data.pointer,
2208 address,
2209 sizeof(struct sockaddr)
2210 * lp->spy_number);
2211
2212 /* Copy stats to the user buffer (just after). */
2213 err |= copy_to_user(wrq->u.data.pointer
2214 + (sizeof(struct sockaddr)
2215 * lp->spy_number),
2216 lp->spy_stat,
2217 sizeof(iw_qual) * lp->spy_number);
2218 wv_splhi(lp, &flags);
2219 if (err) {
2220 ret = -EFAULT;
2221 break;
2222 }
2223
2224 /* Reset updated flags. */
2225 for (i = 0; i < lp->spy_number; i++)
2226 lp->spy_stat[i].updated = 0x0;
2227 }
2228 /* if(pointer != NULL) */
2229 break;
2230 #endif /* WIRELESS_SPY */
2231
2232 /* ------------------ PRIVATE IOCTL ------------------ */
2233
2234 case SIOCSIPQTHR:
2235 if (!capable(CAP_NET_ADMIN)) {
2236 ret = -EPERM;
2237 break;
2238 }
2239 psa.psa_quality_thr = *(wrq->u.name) & 0x0F;
2240 psa_write(ioaddr, lp->hacr,
2241 (char *) &psa.psa_quality_thr - (char *) &psa,
2242 (unsigned char *) &psa.psa_quality_thr, 1);
2243 /* update the Wavelan checksum */
2244 update_psa_checksum(dev, ioaddr, lp->hacr);
2245 mmc_out(ioaddr, mmwoff(0, mmw_quality_thr),
2246 psa.psa_quality_thr);
2247 break;
2248
2249 case SIOCGIPQTHR:
2250 psa_read(ioaddr, lp->hacr,
2251 (char *) &psa.psa_quality_thr - (char *) &psa,
2252 (unsigned char *) &psa.psa_quality_thr, 1);
2253 *(wrq->u.name) = psa.psa_quality_thr & 0x0F;
2254 break;
2255
2256 #ifdef HISTOGRAM
2257 case SIOCSIPHISTO:
2258 /* Verify that the user is root. */
2259 if (!capable(CAP_NET_ADMIN)) {
2260 ret = -EPERM;
2261 break;
2262 }
2263
2264 /* Check the number of intervals. */
2265 if (wrq->u.data.length > 16) {
2266 ret = -E2BIG;
2267 break;
2268 }
2269 lp->his_number = wrq->u.data.length;
2270
2271 /* Are there addresses to copy? */
2272 if (lp->his_number > 0) {
2273 /* Copy interval ranges to the driver */
2274 wv_splx(lp, &flags);
2275 err = copy_from_user(lp->his_range,
2276 wrq->u.data.pointer,
2277 sizeof(char) * lp->his_number);
2278 wv_splhi(lp, &flags);
2279 if (err) {
2280 ret = -EFAULT;
2281 break;
2282 }
2283
2284 /* Reset structure. */
2285 memset(lp->his_sum, 0x00, sizeof(long) * 16);
2286 }
2287 break;
2288
2289 case SIOCGIPHISTO:
2290 /* Set the number of intervals. */
2291 wrq->u.data.length = lp->his_number;
2292
2293 /* Give back the distribution statistics */
2294 if ((lp->his_number > 0)
2295 && (wrq->u.data.pointer != (caddr_t) 0)) {
2296 /* Copy data to the user buffer. */
2297 wv_splx(lp, &flags);
2298 if (copy_to_user(wrq->u.data.pointer,
2299 lp->his_sum,
2300 sizeof(long) * lp->his_number));
2301 ret = -EFAULT;
2302 wv_splhi(lp, &flags);
2303
2304 } /* if(pointer != NULL) */
2305 break;
2306 #endif /* HISTOGRAM */
2307
2308 /* ------------------- OTHER IOCTL ------------------- */
2309
2310 default:
2311 ret = -EOPNOTSUPP;
2312 } /* switch (cmd) */
2313
2314 /* Enable interrupts and restore flags. */
2315 wv_splx(lp, &flags);
2316
2317 #ifdef DEBUG_IOCTL_TRACE
2318 printk(KERN_DEBUG "%s: <-wavelan_ioctl()\n", dev->name);
2319 #endif
2320 return ret;
2321 }
2322
2323 /*------------------------------------------------------------------*/
2324 /*
2325 * Get wireless statistics.
2326 * Called by /proc/net/wireless
2327 */
wavelan_get_wireless_stats(device * dev)2328 static iw_stats *wavelan_get_wireless_stats(device * dev)
2329 {
2330 unsigned long ioaddr = dev->base_addr;
2331 net_local *lp = (net_local *) dev->priv;
2332 mmr_t m;
2333 iw_stats *wstats;
2334 unsigned long flags;
2335
2336 #ifdef DEBUG_IOCTL_TRACE
2337 printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n",
2338 dev->name);
2339 #endif
2340
2341 /* Check */
2342 if (lp == (net_local *) NULL)
2343 return (iw_stats *) NULL;
2344
2345 /* Disable interrupts and save flags. */
2346 wv_splhi(lp, &flags);
2347
2348 wstats = &lp->wstats;
2349
2350 /* Get data from the mmc. */
2351 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2352
2353 mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
2354 mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l,
2355 2);
2356 mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set,
2357 4);
2358
2359 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2360
2361 /* Copy data to wireless stuff. */
2362 wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
2363 wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
2364 wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
2365 wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
2366 wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7)
2367 | ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6)
2368 | ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
2369 wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
2370 wstats->discard.code = 0L;
2371 wstats->discard.misc = 0L;
2372
2373 /* Enable interrupts and restore flags. */
2374 wv_splx(lp, &flags);
2375
2376 #ifdef DEBUG_IOCTL_TRACE
2377 printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n",
2378 dev->name);
2379 #endif
2380 return &lp->wstats;
2381 }
2382 #endif /* WIRELESS_EXT */
2383
2384 /************************* PACKET RECEPTION *************************/
2385 /*
2386 * This part deals with receiving the packets.
2387 * The interrupt handler gets an interrupt when a packet has been
2388 * successfully received and calls this part.
2389 */
2390
2391 /*------------------------------------------------------------------*/
2392 /*
2393 * This routine does the actual copying of data (including the Ethernet
2394 * header structure) from the WaveLAN card to an sk_buff chain that
2395 * will be passed up to the network interface layer. NOTE: we
2396 * currently don't handle trailer protocols (neither does the rest of
2397 * the network interface), so if that is needed, it will (at least in
2398 * part) be added here. The contents of the receive ring buffer are
2399 * copied to a message chain that is then passed to the kernel.
2400 *
2401 * Note: if any errors occur, the packet is "dropped on the floor".
2402 * (called by wv_packet_rcv())
2403 */
2404 static inline void
wv_packet_read(device * dev,u16 buf_off,int sksize)2405 wv_packet_read(device * dev, u16 buf_off, int sksize)
2406 {
2407 net_local *lp = (net_local *) dev->priv;
2408 unsigned long ioaddr = dev->base_addr;
2409 struct sk_buff *skb;
2410
2411 #ifdef DEBUG_RX_TRACE
2412 printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
2413 dev->name, buf_off, sksize);
2414 #endif
2415
2416 /* Allocate buffer for the data */
2417 if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) {
2418 #ifdef DEBUG_RX_ERROR
2419 printk(KERN_INFO
2420 "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n",
2421 dev->name, sksize);
2422 #endif
2423 lp->stats.rx_dropped++;
2424 return;
2425 }
2426
2427 skb->dev = dev;
2428
2429 /* Copy the packet to the buffer. */
2430 obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize);
2431 skb->protocol = eth_type_trans(skb, dev);
2432
2433 #ifdef DEBUG_RX_INFO
2434 wv_packet_info(skb->mac.raw, sksize, dev->name, "wv_packet_read");
2435 #endif /* DEBUG_RX_INFO */
2436
2437 /* Statistics-gathering and associated stuff.
2438 * It seem a bit messy with all the define, but it's really simple... */
2439 #if defined(WIRELESS_SPY) || defined(HISTOGRAM)
2440 if (
2441 #ifdef WIRELESS_SPY
2442 (lp->spy_number > 0) ||
2443 #endif /* WIRELESS_SPY */
2444 #ifdef HISTOGRAM
2445 (lp->his_number > 0) ||
2446 #endif /* HISTOGRAM */
2447 0) {
2448 u8 stats[3]; /* signal level, noise level, signal quality */
2449
2450 /* Read signal level, silence level and signal quality bytes. */
2451 /* Note: in the PCMCIA hardware, these are part of the frame. It seems
2452 * that for the ISA hardware, it's nowhere to be found in the frame,
2453 * so I'm obliged to do this (it has a side effect on /proc/net/wireless).
2454 * Any ideas?
2455 */
2456 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2457 mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3);
2458 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2459
2460 #ifdef DEBUG_RX_INFO
2461 printk(KERN_DEBUG
2462 "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
2463 dev->name, stats[0] & 0x3F, stats[1] & 0x3F,
2464 stats[2] & 0x0F);
2465 #endif
2466
2467 /* Spying stuff */
2468 #ifdef WIRELESS_SPY
2469 wl_spy_gather(dev, skb->mac.raw + WAVELAN_ADDR_SIZE,
2470 stats);
2471 #endif /* WIRELESS_SPY */
2472 #ifdef HISTOGRAM
2473 wl_his_gather(dev, stats);
2474 #endif /* HISTOGRAM */
2475 }
2476 #endif /* defined(WIRELESS_SPY) || defined(HISTOGRAM) */
2477
2478 /*
2479 * Hand the packet to the network module.
2480 */
2481 netif_rx(skb);
2482
2483 /* Keep statistics up to date */
2484 dev->last_rx = jiffies;
2485 lp->stats.rx_packets++;
2486 lp->stats.rx_bytes += sksize;
2487
2488 #ifdef DEBUG_RX_TRACE
2489 printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
2490 #endif
2491 }
2492
2493 /*------------------------------------------------------------------*/
2494 /*
2495 * Transfer as many packets as we can
2496 * from the device RAM.
2497 * (called in wavelan_interrupt()).
2498 * Note : the spinlock is already grabbed for us.
2499 */
wv_receive(device * dev)2500 static inline void wv_receive(device * dev)
2501 {
2502 unsigned long ioaddr = dev->base_addr;
2503 net_local *lp = (net_local *) dev->priv;
2504 fd_t fd;
2505 rbd_t rbd;
2506 int nreaped = 0;
2507
2508 #ifdef DEBUG_RX_TRACE
2509 printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name);
2510 #endif
2511
2512 /* Loop on each received packet. */
2513 for (;;) {
2514 obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd,
2515 sizeof(fd));
2516
2517 /* Note about the status :
2518 * It start up to be 0 (the value we set). Then, when the RU
2519 * grab the buffer to prepare for reception, it sets the
2520 * FD_STATUS_B flag. When the RU has finished receiving the
2521 * frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate
2522 * completion and set the other flags to indicate the eventual
2523 * errors. FD_STATUS_OK indicates that the reception was OK.
2524 */
2525
2526 /* If the current frame is not complete, we have reached the end. */
2527 if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C)
2528 break; /* This is how we exit the loop. */
2529
2530 nreaped++;
2531
2532 /* Check whether frame was correctly received. */
2533 if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) {
2534 /* Does the frame contain a pointer to the data? Let's check. */
2535 if (fd.fd_rbd_offset != I82586NULL) {
2536 /* Read the receive buffer descriptor */
2537 obram_read(ioaddr, fd.fd_rbd_offset,
2538 (unsigned char *) &rbd,
2539 sizeof(rbd));
2540
2541 #ifdef DEBUG_RX_ERROR
2542 if ((rbd.rbd_status & RBD_STATUS_EOF) !=
2543 RBD_STATUS_EOF) printk(KERN_INFO
2544 "%s: wv_receive(): missing EOF flag.\n",
2545 dev->name);
2546
2547 if ((rbd.rbd_status & RBD_STATUS_F) !=
2548 RBD_STATUS_F) printk(KERN_INFO
2549 "%s: wv_receive(): missing F flag.\n",
2550 dev->name);
2551 #endif /* DEBUG_RX_ERROR */
2552
2553 /* Read the packet and transmit to Linux */
2554 wv_packet_read(dev, rbd.rbd_bufl,
2555 rbd.
2556 rbd_status &
2557 RBD_STATUS_ACNT);
2558 }
2559 #ifdef DEBUG_RX_ERROR
2560 else /* if frame has no data */
2561 printk(KERN_INFO
2562 "%s: wv_receive(): frame has no data.\n",
2563 dev->name);
2564 #endif
2565 } else { /* If reception was no successful */
2566
2567 lp->stats.rx_errors++;
2568
2569 #ifdef DEBUG_RX_INFO
2570 printk(KERN_DEBUG
2571 "%s: wv_receive(): frame not received successfully (%X).\n",
2572 dev->name, fd.fd_status);
2573 #endif
2574
2575 #ifdef DEBUG_RX_ERROR
2576 if ((fd.fd_status & FD_STATUS_S6) != 0)
2577 printk(KERN_INFO
2578 "%s: wv_receive(): no EOF flag.\n",
2579 dev->name);
2580 #endif
2581
2582 if ((fd.fd_status & FD_STATUS_S7) != 0) {
2583 lp->stats.rx_length_errors++;
2584 #ifdef DEBUG_RX_FAIL
2585 printk(KERN_DEBUG
2586 "%s: wv_receive(): frame too short.\n",
2587 dev->name);
2588 #endif
2589 }
2590
2591 if ((fd.fd_status & FD_STATUS_S8) != 0) {
2592 lp->stats.rx_over_errors++;
2593 #ifdef DEBUG_RX_FAIL
2594 printk(KERN_DEBUG
2595 "%s: wv_receive(): rx DMA overrun.\n",
2596 dev->name);
2597 #endif
2598 }
2599
2600 if ((fd.fd_status & FD_STATUS_S9) != 0) {
2601 lp->stats.rx_fifo_errors++;
2602 #ifdef DEBUG_RX_FAIL
2603 printk(KERN_DEBUG
2604 "%s: wv_receive(): ran out of resources.\n",
2605 dev->name);
2606 #endif
2607 }
2608
2609 if ((fd.fd_status & FD_STATUS_S10) != 0) {
2610 lp->stats.rx_frame_errors++;
2611 #ifdef DEBUG_RX_FAIL
2612 printk(KERN_DEBUG
2613 "%s: wv_receive(): alignment error.\n",
2614 dev->name);
2615 #endif
2616 }
2617
2618 if ((fd.fd_status & FD_STATUS_S11) != 0) {
2619 lp->stats.rx_crc_errors++;
2620 #ifdef DEBUG_RX_FAIL
2621 printk(KERN_DEBUG
2622 "%s: wv_receive(): CRC error.\n",
2623 dev->name);
2624 #endif
2625 }
2626 }
2627
2628 fd.fd_status = 0;
2629 obram_write(ioaddr, fdoff(lp->rx_head, fd_status),
2630 (unsigned char *) &fd.fd_status,
2631 sizeof(fd.fd_status));
2632
2633 fd.fd_command = FD_COMMAND_EL;
2634 obram_write(ioaddr, fdoff(lp->rx_head, fd_command),
2635 (unsigned char *) &fd.fd_command,
2636 sizeof(fd.fd_command));
2637
2638 fd.fd_command = 0;
2639 obram_write(ioaddr, fdoff(lp->rx_last, fd_command),
2640 (unsigned char *) &fd.fd_command,
2641 sizeof(fd.fd_command));
2642
2643 lp->rx_last = lp->rx_head;
2644 lp->rx_head = fd.fd_link_offset;
2645 } /* for(;;) -> loop on all frames */
2646
2647 #ifdef DEBUG_RX_INFO
2648 if (nreaped > 1)
2649 printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n",
2650 dev->name, nreaped);
2651 #endif
2652 #ifdef DEBUG_RX_TRACE
2653 printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name);
2654 #endif
2655 }
2656
2657 /*********************** PACKET TRANSMISSION ***********************/
2658 /*
2659 * This part deals with sending packets through the WaveLAN.
2660 *
2661 */
2662
2663 /*------------------------------------------------------------------*/
2664 /*
2665 * This routine fills in the appropriate registers and memory
2666 * locations on the WaveLAN card and starts the card off on
2667 * the transmit.
2668 *
2669 * The principle:
2670 * Each block contains a transmit command, a NOP command,
2671 * a transmit block descriptor and a buffer.
2672 * The CU read the transmit block which point to the tbd,
2673 * read the tbd and the content of the buffer.
2674 * When it has finish with it, it goes to the next command
2675 * which in our case is the NOP. The NOP points on itself,
2676 * so the CU stop here.
2677 * When we add the next block, we modify the previous nop
2678 * to make it point on the new tx command.
2679 * Simple, isn't it ?
2680 *
2681 * (called in wavelan_packet_xmit())
2682 */
wv_packet_write(device * dev,void * buf,short length)2683 static inline int wv_packet_write(device * dev, void *buf, short length)
2684 {
2685 net_local *lp = (net_local *) dev->priv;
2686 unsigned long ioaddr = dev->base_addr;
2687 unsigned short txblock;
2688 unsigned short txpred;
2689 unsigned short tx_addr;
2690 unsigned short nop_addr;
2691 unsigned short tbd_addr;
2692 unsigned short buf_addr;
2693 ac_tx_t tx;
2694 ac_nop_t nop;
2695 tbd_t tbd;
2696 int clen = length;
2697 unsigned long flags;
2698
2699 #ifdef DEBUG_TX_TRACE
2700 printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name,
2701 length);
2702 #endif
2703
2704 /* Do we need some padding? */
2705 if (clen < ETH_ZLEN)
2706 clen = ETH_ZLEN;
2707
2708 wv_splhi(lp, &flags);
2709
2710 /* Check nothing bad has happened */
2711 if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
2712 #ifdef DEBUG_TX_ERROR
2713 printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n",
2714 dev->name);
2715 #endif
2716 wv_splx(lp, &flags);
2717 return 1;
2718 }
2719
2720 /* Calculate addresses of next block and previous block. */
2721 txblock = lp->tx_first_free;
2722 txpred = txblock - TXBLOCKZ;
2723 if (txpred < OFFSET_CU)
2724 txpred += NTXBLOCKS * TXBLOCKZ;
2725 lp->tx_first_free += TXBLOCKZ;
2726 if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
2727 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
2728
2729 lp->tx_n_in_use++;
2730
2731 /* Calculate addresses of the different parts of the block. */
2732 tx_addr = txblock;
2733 nop_addr = tx_addr + sizeof(tx);
2734 tbd_addr = nop_addr + sizeof(nop);
2735 buf_addr = tbd_addr + sizeof(tbd);
2736
2737 /*
2738 * Transmit command
2739 */
2740 tx.tx_h.ac_status = 0;
2741 obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
2742 (unsigned char *) &tx.tx_h.ac_status,
2743 sizeof(tx.tx_h.ac_status));
2744
2745 /*
2746 * NOP command
2747 */
2748 nop.nop_h.ac_status = 0;
2749 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2750 (unsigned char *) &nop.nop_h.ac_status,
2751 sizeof(nop.nop_h.ac_status));
2752 nop.nop_h.ac_link = nop_addr;
2753 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2754 (unsigned char *) &nop.nop_h.ac_link,
2755 sizeof(nop.nop_h.ac_link));
2756
2757 /*
2758 * Transmit buffer descriptor
2759 */
2760 tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen);
2761 tbd.tbd_next_bd_offset = I82586NULL;
2762 tbd.tbd_bufl = buf_addr;
2763 tbd.tbd_bufh = 0;
2764 obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd));
2765
2766 /*
2767 * Data
2768 */
2769 obram_write(ioaddr, buf_addr, buf, length);
2770
2771 /*
2772 * Overwrite the predecessor NOP link
2773 * so that it points to this txblock.
2774 */
2775 nop_addr = txpred + sizeof(tx);
2776 nop.nop_h.ac_status = 0;
2777 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2778 (unsigned char *) &nop.nop_h.ac_status,
2779 sizeof(nop.nop_h.ac_status));
2780 nop.nop_h.ac_link = txblock;
2781 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2782 (unsigned char *) &nop.nop_h.ac_link,
2783 sizeof(nop.nop_h.ac_link));
2784
2785 /* Make sure the watchdog will keep quiet for a while */
2786 dev->trans_start = jiffies;
2787
2788 /* Keep stats up to date. */
2789 lp->stats.tx_bytes += length;
2790
2791 if (lp->tx_first_in_use == I82586NULL)
2792 lp->tx_first_in_use = txblock;
2793
2794 if (lp->tx_n_in_use < NTXBLOCKS - 1)
2795 netif_wake_queue(dev);
2796
2797 wv_splx(lp, &flags);
2798
2799 #ifdef DEBUG_TX_INFO
2800 wv_packet_info((u8 *) buf, length, dev->name,
2801 "wv_packet_write");
2802 #endif /* DEBUG_TX_INFO */
2803
2804 #ifdef DEBUG_TX_TRACE
2805 printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
2806 #endif
2807
2808 return 0;
2809 }
2810
2811 /*------------------------------------------------------------------*/
2812 /*
2813 * This routine is called when we want to send a packet (NET3 callback)
2814 * In this routine, we check if the harware is ready to accept
2815 * the packet. We also prevent reentrance. Then we call the function
2816 * to send the packet.
2817 */
wavelan_packet_xmit(struct sk_buff * skb,device * dev)2818 static int wavelan_packet_xmit(struct sk_buff *skb, device * dev)
2819 {
2820 net_local *lp = (net_local *) dev->priv;
2821 unsigned long flags;
2822
2823 #ifdef DEBUG_TX_TRACE
2824 printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
2825 (unsigned) skb);
2826 #endif
2827
2828 if(skb->len < ETH_ZLEN)
2829 {
2830 skb = skb_padto(skb, ETH_ZLEN);
2831 if(skb == NULL)
2832 return 0;
2833 }
2834
2835 /*
2836 * Block a timer-based transmit from overlapping.
2837 * In other words, prevent reentering this routine.
2838 */
2839 netif_stop_queue(dev);
2840
2841 /* If somebody has asked to reconfigure the controller,
2842 * we can do it now.
2843 */
2844 if (lp->reconfig_82586) {
2845 wv_splhi(lp, &flags);
2846 wv_82586_config(dev);
2847 wv_splx(lp, &flags);
2848 /* Check that we can continue */
2849 if (lp->tx_n_in_use == (NTXBLOCKS - 1))
2850 return 1;
2851 }
2852 #ifdef DEBUG_TX_ERROR
2853 if (skb->next)
2854 printk(KERN_INFO "skb has next\n");
2855 #endif
2856
2857 /* Write packet on the card */
2858 if(wv_packet_write(dev, skb->data, skb->len))
2859 return 1; /* We failed */
2860
2861 dev_kfree_skb(skb);
2862
2863 #ifdef DEBUG_TX_TRACE
2864 printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
2865 #endif
2866 return 0;
2867 }
2868
2869 /*********************** HARDWARE CONFIGURATION ***********************/
2870 /*
2871 * This part does the real job of starting and configuring the hardware.
2872 */
2873
2874 /*--------------------------------------------------------------------*/
2875 /*
2876 * Routine to initialize the Modem Management Controller.
2877 * (called by wv_hw_reset())
2878 */
wv_mmc_init(device * dev)2879 static inline int wv_mmc_init(device * dev)
2880 {
2881 unsigned long ioaddr = dev->base_addr;
2882 net_local *lp = (net_local *) dev->priv;
2883 psa_t psa;
2884 mmw_t m;
2885 int configured;
2886
2887 #ifdef DEBUG_CONFIG_TRACE
2888 printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
2889 #endif
2890
2891 /* Read the parameter storage area. */
2892 psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
2893
2894 #ifdef USE_PSA_CONFIG
2895 configured = psa.psa_conf_status & 1;
2896 #else
2897 configured = 0;
2898 #endif
2899
2900 /* Is the PSA is not configured */
2901 if (!configured) {
2902 /* User will be able to configure NWID later (with iwconfig). */
2903 psa.psa_nwid[0] = 0;
2904 psa.psa_nwid[1] = 0;
2905
2906 /* no NWID checking since NWID is not set */
2907 psa.psa_nwid_select = 0;
2908
2909 /* Disable encryption */
2910 psa.psa_encryption_select = 0;
2911
2912 /* Set to standard values:
2913 * 0x04 for AT,
2914 * 0x01 for MCA,
2915 * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
2916 */
2917 if (psa.psa_comp_number & 1)
2918 psa.psa_thr_pre_set = 0x01;
2919 else
2920 psa.psa_thr_pre_set = 0x04;
2921 psa.psa_quality_thr = 0x03;
2922
2923 /* It is configured */
2924 psa.psa_conf_status |= 1;
2925
2926 #ifdef USE_PSA_CONFIG
2927 /* Write the psa. */
2928 psa_write(ioaddr, lp->hacr,
2929 (char *) psa.psa_nwid - (char *) &psa,
2930 (unsigned char *) psa.psa_nwid, 4);
2931 psa_write(ioaddr, lp->hacr,
2932 (char *) &psa.psa_thr_pre_set - (char *) &psa,
2933 (unsigned char *) &psa.psa_thr_pre_set, 1);
2934 psa_write(ioaddr, lp->hacr,
2935 (char *) &psa.psa_quality_thr - (char *) &psa,
2936 (unsigned char *) &psa.psa_quality_thr, 1);
2937 psa_write(ioaddr, lp->hacr,
2938 (char *) &psa.psa_conf_status - (char *) &psa,
2939 (unsigned char *) &psa.psa_conf_status, 1);
2940 /* update the Wavelan checksum */
2941 update_psa_checksum(dev, ioaddr, lp->hacr);
2942 #endif
2943 }
2944
2945 /* Zero the mmc structure. */
2946 memset(&m, 0x00, sizeof(m));
2947
2948 /* Copy PSA info to the mmc. */
2949 m.mmw_netw_id_l = psa.psa_nwid[1];
2950 m.mmw_netw_id_h = psa.psa_nwid[0];
2951
2952 if (psa.psa_nwid_select & 1)
2953 m.mmw_loopt_sel = 0x00;
2954 else
2955 m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
2956
2957 memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
2958 sizeof(m.mmw_encr_key));
2959
2960 if (psa.psa_encryption_select)
2961 m.mmw_encr_enable =
2962 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
2963 else
2964 m.mmw_encr_enable = 0;
2965
2966 m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
2967 m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
2968
2969 /*
2970 * Set default modem control parameters.
2971 * See NCR document 407-0024326 Rev. A.
2972 */
2973 m.mmw_jabber_enable = 0x01;
2974 m.mmw_freeze = 0;
2975 m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
2976 m.mmw_ifs = 0x20;
2977 m.mmw_mod_delay = 0x04;
2978 m.mmw_jam_time = 0x38;
2979
2980 m.mmw_des_io_invert = 0;
2981 m.mmw_decay_prm = 0;
2982 m.mmw_decay_updat_prm = 0;
2983
2984 /* Write all info to MMC. */
2985 mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m));
2986
2987 /* The following code starts the modem of the 2.00 frequency
2988 * selectable cards at power on. It's not strictly needed for the
2989 * following boots.
2990 * The original patch was by Joe Finney for the PCMCIA driver, but
2991 * I've cleaned it up a bit and added documentation.
2992 * Thanks to Loeke Brederveld from Lucent for the info.
2993 */
2994
2995 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
2996 * Does it work for everybody, especially old cards? */
2997 /* Note: WFREQSEL verifies that it is able to read a sensible
2998 * frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID
2999 * is 0xA (Xilinx version) or 0xB (Ariadne version).
3000 * My test is more crude but does work. */
3001 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
3002 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
3003 /* We must download the frequency parameters to the
3004 * synthesizers (from the EEPROM - area 1)
3005 * Note: as the EEPROM is automatically decremented, we set the end
3006 * if the area... */
3007 m.mmw_fee_addr = 0x0F;
3008 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3009 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3010 (unsigned char *) &m.mmw_fee_ctrl, 2);
3011
3012 /* Wait until the download is finished. */
3013 fee_wait(ioaddr, 100, 100);
3014
3015 #ifdef DEBUG_CONFIG_INFO
3016 /* The frequency was in the last word downloaded. */
3017 mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m,
3018 (unsigned char *) &m.mmw_fee_data_l, 2);
3019
3020 /* Print some info for the user. */
3021 printk(KERN_DEBUG
3022 "%s: WaveLAN 2.00 recognised (frequency select). Current frequency = %ld\n",
3023 dev->name,
3024 ((m.
3025 mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) *
3026 5 / 2 + 24000L);
3027 #endif
3028
3029 /* We must now download the power adjust value (gain) to
3030 * the synthesizers (from the EEPROM - area 7 - DAC). */
3031 m.mmw_fee_addr = 0x61;
3032 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3033 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3034 (unsigned char *) &m.mmw_fee_ctrl, 2);
3035
3036 /* Wait until the download is finished. */
3037 }
3038 /* if 2.00 card */
3039 #ifdef DEBUG_CONFIG_TRACE
3040 printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
3041 #endif
3042 return 0;
3043 }
3044
3045 /*------------------------------------------------------------------*/
3046 /*
3047 * Construct the fd and rbd structures.
3048 * Start the receive unit.
3049 * (called by wv_hw_reset())
3050 */
wv_ru_start(device * dev)3051 static inline int wv_ru_start(device * dev)
3052 {
3053 net_local *lp = (net_local *) dev->priv;
3054 unsigned long ioaddr = dev->base_addr;
3055 u16 scb_cs;
3056 fd_t fd;
3057 rbd_t rbd;
3058 u16 rx;
3059 u16 rx_next;
3060 int i;
3061
3062 #ifdef DEBUG_CONFIG_TRACE
3063 printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
3064 #endif
3065
3066 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3067 (unsigned char *) &scb_cs, sizeof(scb_cs));
3068 if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY)
3069 return 0;
3070
3071 lp->rx_head = OFFSET_RU;
3072
3073 for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) {
3074 rx_next =
3075 (i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ;
3076
3077 fd.fd_status = 0;
3078 fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0;
3079 fd.fd_link_offset = rx_next;
3080 fd.fd_rbd_offset = rx + sizeof(fd);
3081 obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd));
3082
3083 rbd.rbd_status = 0;
3084 rbd.rbd_next_rbd_offset = I82586NULL;
3085 rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd);
3086 rbd.rbd_bufh = 0;
3087 rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ);
3088 obram_write(ioaddr, rx + sizeof(fd),
3089 (unsigned char *) &rbd, sizeof(rbd));
3090
3091 lp->rx_last = rx;
3092 }
3093
3094 obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset),
3095 (unsigned char *) &lp->rx_head, sizeof(lp->rx_head));
3096
3097 scb_cs = SCB_CMD_RUC_GO;
3098 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3099 (unsigned char *) &scb_cs, sizeof(scb_cs));
3100
3101 set_chan_attn(ioaddr, lp->hacr);
3102
3103 for (i = 1000; i > 0; i--) {
3104 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3105 (unsigned char *) &scb_cs, sizeof(scb_cs));
3106 if (scb_cs == 0)
3107 break;
3108
3109 udelay(10);
3110 }
3111
3112 if (i <= 0) {
3113 #ifdef DEBUG_CONFIG_ERROR
3114 printk(KERN_INFO
3115 "%s: wavelan_ru_start(): board not accepting command.\n",
3116 dev->name);
3117 #endif
3118 return -1;
3119 }
3120 #ifdef DEBUG_CONFIG_TRACE
3121 printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
3122 #endif
3123 return 0;
3124 }
3125
3126 /*------------------------------------------------------------------*/
3127 /*
3128 * Initialise the transmit blocks.
3129 * Start the command unit executing the NOP
3130 * self-loop of the first transmit block.
3131 *
3132 * Here we create the list of send buffers used to transmit packets
3133 * between the PC and the command unit. For each buffer, we create a
3134 * buffer descriptor (pointing on the buffer), a transmit command
3135 * (pointing to the buffer descriptor) and a NOP command.
3136 * The transmit command is linked to the NOP, and the NOP to itself.
3137 * When we will have finished executing the transmit command, we will
3138 * then loop on the NOP. By releasing the NOP link to a new command,
3139 * we may send another buffer.
3140 *
3141 * (called by wv_hw_reset())
3142 */
wv_cu_start(device * dev)3143 static inline int wv_cu_start(device * dev)
3144 {
3145 net_local *lp = (net_local *) dev->priv;
3146 unsigned long ioaddr = dev->base_addr;
3147 int i;
3148 u16 txblock;
3149 u16 first_nop;
3150 u16 scb_cs;
3151
3152 #ifdef DEBUG_CONFIG_TRACE
3153 printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name);
3154 #endif
3155
3156 lp->tx_first_free = OFFSET_CU;
3157 lp->tx_first_in_use = I82586NULL;
3158
3159 for (i = 0, txblock = OFFSET_CU;
3160 i < NTXBLOCKS; i++, txblock += TXBLOCKZ) {
3161 ac_tx_t tx;
3162 ac_nop_t nop;
3163 tbd_t tbd;
3164 unsigned short tx_addr;
3165 unsigned short nop_addr;
3166 unsigned short tbd_addr;
3167 unsigned short buf_addr;
3168
3169 tx_addr = txblock;
3170 nop_addr = tx_addr + sizeof(tx);
3171 tbd_addr = nop_addr + sizeof(nop);
3172 buf_addr = tbd_addr + sizeof(tbd);
3173
3174 tx.tx_h.ac_status = 0;
3175 tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I;
3176 tx.tx_h.ac_link = nop_addr;
3177 tx.tx_tbd_offset = tbd_addr;
3178 obram_write(ioaddr, tx_addr, (unsigned char *) &tx,
3179 sizeof(tx));
3180
3181 nop.nop_h.ac_status = 0;
3182 nop.nop_h.ac_command = acmd_nop;
3183 nop.nop_h.ac_link = nop_addr;
3184 obram_write(ioaddr, nop_addr, (unsigned char *) &nop,
3185 sizeof(nop));
3186
3187 tbd.tbd_status = TBD_STATUS_EOF;
3188 tbd.tbd_next_bd_offset = I82586NULL;
3189 tbd.tbd_bufl = buf_addr;
3190 tbd.tbd_bufh = 0;
3191 obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd,
3192 sizeof(tbd));
3193 }
3194
3195 first_nop =
3196 OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t);
3197 obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset),
3198 (unsigned char *) &first_nop, sizeof(first_nop));
3199
3200 scb_cs = SCB_CMD_CUC_GO;
3201 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3202 (unsigned char *) &scb_cs, sizeof(scb_cs));
3203
3204 set_chan_attn(ioaddr, lp->hacr);
3205
3206 for (i = 1000; i > 0; i--) {
3207 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3208 (unsigned char *) &scb_cs, sizeof(scb_cs));
3209 if (scb_cs == 0)
3210 break;
3211
3212 udelay(10);
3213 }
3214
3215 if (i <= 0) {
3216 #ifdef DEBUG_CONFIG_ERROR
3217 printk(KERN_INFO
3218 "%s: wavelan_cu_start(): board not accepting command.\n",
3219 dev->name);
3220 #endif
3221 return -1;
3222 }
3223
3224 lp->tx_n_in_use = 0;
3225 netif_start_queue(dev);
3226 #ifdef DEBUG_CONFIG_TRACE
3227 printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name);
3228 #endif
3229 return 0;
3230 }
3231
3232 /*------------------------------------------------------------------*/
3233 /*
3234 * This routine does a standard configuration of the WaveLAN
3235 * controller (i82586).
3236 *
3237 * It initialises the scp, iscp and scb structure
3238 * The first two are just pointers to the next.
3239 * The last one is used for basic configuration and for basic
3240 * communication (interrupt status).
3241 *
3242 * (called by wv_hw_reset())
3243 */
wv_82586_start(device * dev)3244 static inline int wv_82586_start(device * dev)
3245 {
3246 net_local *lp = (net_local *) dev->priv;
3247 unsigned long ioaddr = dev->base_addr;
3248 scp_t scp; /* system configuration pointer */
3249 iscp_t iscp; /* intermediate scp */
3250 scb_t scb; /* system control block */
3251 ach_t cb; /* Action command header */
3252 u8 zeroes[512];
3253 int i;
3254
3255 #ifdef DEBUG_CONFIG_TRACE
3256 printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name);
3257 #endif
3258
3259 /*
3260 * Clear the onboard RAM.
3261 */
3262 memset(&zeroes[0], 0x00, sizeof(zeroes));
3263 for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes))
3264 obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes));
3265
3266 /*
3267 * Construct the command unit structures:
3268 * scp, iscp, scb, cb.
3269 */
3270 memset(&scp, 0x00, sizeof(scp));
3271 scp.scp_sysbus = SCP_SY_16BBUS;
3272 scp.scp_iscpl = OFFSET_ISCP;
3273 obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp,
3274 sizeof(scp));
3275
3276 memset(&iscp, 0x00, sizeof(iscp));
3277 iscp.iscp_busy = 1;
3278 iscp.iscp_offset = OFFSET_SCB;
3279 obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3280 sizeof(iscp));
3281
3282 /* Our first command is to reset the i82586. */
3283 memset(&scb, 0x00, sizeof(scb));
3284 scb.scb_command = SCB_CMD_RESET;
3285 scb.scb_cbl_offset = OFFSET_CU;
3286 scb.scb_rfa_offset = OFFSET_RU;
3287 obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3288 sizeof(scb));
3289
3290 set_chan_attn(ioaddr, lp->hacr);
3291
3292 /* Wait for command to finish. */
3293 for (i = 1000; i > 0; i--) {
3294 obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3295 sizeof(iscp));
3296
3297 if (iscp.iscp_busy == (unsigned short) 0)
3298 break;
3299
3300 udelay(10);
3301 }
3302
3303 if (i <= 0) {
3304 #ifdef DEBUG_CONFIG_ERROR
3305 printk(KERN_INFO
3306 "%s: wv_82586_start(): iscp_busy timeout.\n",
3307 dev->name);
3308 #endif
3309 return -1;
3310 }
3311
3312 /* Check command completion. */
3313 for (i = 15; i > 0; i--) {
3314 obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3315 sizeof(scb));
3316
3317 if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA))
3318 break;
3319
3320 udelay(10);
3321 }
3322
3323 if (i <= 0) {
3324 #ifdef DEBUG_CONFIG_ERROR
3325 printk(KERN_INFO
3326 "%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n",
3327 dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status);
3328 #endif
3329 return -1;
3330 }
3331
3332 wv_ack(dev);
3333
3334 /* Set the action command header. */
3335 memset(&cb, 0x00, sizeof(cb));
3336 cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose);
3337 cb.ac_link = OFFSET_CU;
3338 obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3339
3340 if (wv_synchronous_cmd(dev, "diag()") == -1)
3341 return -1;
3342
3343 obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3344 if (cb.ac_status & AC_SFLD_FAIL) {
3345 #ifdef DEBUG_CONFIG_ERROR
3346 printk(KERN_INFO
3347 "%s: wv_82586_start(): i82586 Self Test failed.\n",
3348 dev->name);
3349 #endif
3350 return -1;
3351 }
3352 #ifdef DEBUG_I82586_SHOW
3353 wv_scb_show(ioaddr);
3354 #endif
3355
3356 #ifdef DEBUG_CONFIG_TRACE
3357 printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name);
3358 #endif
3359 return 0;
3360 }
3361
3362 /*------------------------------------------------------------------*/
3363 /*
3364 * This routine does a standard configuration of the WaveLAN
3365 * controller (i82586).
3366 *
3367 * This routine is a violent hack. We use the first free transmit block
3368 * to make our configuration. In the buffer area, we create the three
3369 * configuration commands (linked). We make the previous NOP point to
3370 * the beginning of the buffer instead of the tx command. After, we go
3371 * as usual to the NOP command.
3372 * Note that only the last command (mc_set) will generate an interrupt.
3373 *
3374 * (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit())
3375 */
wv_82586_config(device * dev)3376 static void wv_82586_config(device * dev)
3377 {
3378 net_local *lp = (net_local *) dev->priv;
3379 unsigned long ioaddr = dev->base_addr;
3380 unsigned short txblock;
3381 unsigned short txpred;
3382 unsigned short tx_addr;
3383 unsigned short nop_addr;
3384 unsigned short tbd_addr;
3385 unsigned short cfg_addr;
3386 unsigned short ias_addr;
3387 unsigned short mcs_addr;
3388 ac_tx_t tx;
3389 ac_nop_t nop;
3390 ac_cfg_t cfg; /* Configure action */
3391 ac_ias_t ias; /* IA-setup action */
3392 ac_mcs_t mcs; /* Multicast setup */
3393 struct dev_mc_list *dmi;
3394
3395 #ifdef DEBUG_CONFIG_TRACE
3396 printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name);
3397 #endif
3398
3399 /* Check nothing bad has happened */
3400 if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
3401 #ifdef DEBUG_CONFIG_ERROR
3402 printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n",
3403 dev->name);
3404 #endif
3405 return;
3406 }
3407
3408 /* Calculate addresses of next block and previous block. */
3409 txblock = lp->tx_first_free;
3410 txpred = txblock - TXBLOCKZ;
3411 if (txpred < OFFSET_CU)
3412 txpred += NTXBLOCKS * TXBLOCKZ;
3413 lp->tx_first_free += TXBLOCKZ;
3414 if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
3415 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
3416
3417 lp->tx_n_in_use++;
3418
3419 /* Calculate addresses of the different parts of the block. */
3420 tx_addr = txblock;
3421 nop_addr = tx_addr + sizeof(tx);
3422 tbd_addr = nop_addr + sizeof(nop);
3423 cfg_addr = tbd_addr + sizeof(tbd_t); /* beginning of the buffer */
3424 ias_addr = cfg_addr + sizeof(cfg);
3425 mcs_addr = ias_addr + sizeof(ias);
3426
3427 /*
3428 * Transmit command
3429 */
3430 tx.tx_h.ac_status = 0xFFFF; /* Fake completion value */
3431 obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
3432 (unsigned char *) &tx.tx_h.ac_status,
3433 sizeof(tx.tx_h.ac_status));
3434
3435 /*
3436 * NOP command
3437 */
3438 nop.nop_h.ac_status = 0;
3439 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3440 (unsigned char *) &nop.nop_h.ac_status,
3441 sizeof(nop.nop_h.ac_status));
3442 nop.nop_h.ac_link = nop_addr;
3443 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3444 (unsigned char *) &nop.nop_h.ac_link,
3445 sizeof(nop.nop_h.ac_link));
3446
3447 /* Create a configure action. */
3448 memset(&cfg, 0x00, sizeof(cfg));
3449
3450 /*
3451 * For Linux we invert AC_CFG_ALOC() so as to conform
3452 * to the way that net packets reach us from above.
3453 * (See also ac_tx_t.)
3454 *
3455 * Updated from Wavelan Manual WCIN085B
3456 */
3457 cfg.cfg_byte_cnt =
3458 AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t));
3459 cfg.cfg_fifolim = AC_CFG_FIFOLIM(4);
3460 cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0);
3461 cfg.cfg_byte9 = AC_CFG_ELPBCK(0) |
3462 AC_CFG_ILPBCK(0) |
3463 AC_CFG_PRELEN(AC_CFG_PLEN_2) |
3464 AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE);
3465 cfg.cfg_byte10 = AC_CFG_BOFMET(1) |
3466 AC_CFG_ACR(6) | AC_CFG_LINPRIO(0);
3467 cfg.cfg_ifs = 0x20;
3468 cfg.cfg_slotl = 0x0C;
3469 cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0);
3470 cfg.cfg_byte14 = AC_CFG_FLGPAD(0) |
3471 AC_CFG_BTSTF(0) |
3472 AC_CFG_CRC16(0) |
3473 AC_CFG_NCRC(0) |
3474 AC_CFG_TNCRS(1) |
3475 AC_CFG_MANCH(0) |
3476 AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous);
3477 cfg.cfg_byte15 = AC_CFG_ICDS(0) |
3478 AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0);
3479 /*
3480 cfg.cfg_min_frm_len = AC_CFG_MNFRM(64);
3481 */
3482 cfg.cfg_min_frm_len = AC_CFG_MNFRM(8);
3483
3484 cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure);
3485 cfg.cfg_h.ac_link = ias_addr;
3486 obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg));
3487
3488 /* Set up the MAC address */
3489 memset(&ias, 0x00, sizeof(ias));
3490 ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup);
3491 ias.ias_h.ac_link = mcs_addr;
3492 memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0],
3493 sizeof(ias.ias_addr));
3494 obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias));
3495
3496 /* Initialize adapter's Ethernet multicast addresses */
3497 memset(&mcs, 0x00, sizeof(mcs));
3498 mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup);
3499 mcs.mcs_h.ac_link = nop_addr;
3500 mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count;
3501 obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs));
3502
3503 /* Any address to set? */
3504 if (lp->mc_count) {
3505 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3506 outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr,
3507 WAVELAN_ADDR_SIZE >> 1);
3508
3509 #ifdef DEBUG_CONFIG_INFO
3510 printk(KERN_DEBUG
3511 "%s: wv_82586_config(): set %d multicast addresses:\n",
3512 dev->name, lp->mc_count);
3513 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3514 printk(KERN_DEBUG
3515 " %02x:%02x:%02x:%02x:%02x:%02x\n",
3516 dmi->dmi_addr[0], dmi->dmi_addr[1],
3517 dmi->dmi_addr[2], dmi->dmi_addr[3],
3518 dmi->dmi_addr[4], dmi->dmi_addr[5]);
3519 #endif
3520 }
3521
3522 /*
3523 * Overwrite the predecessor NOP link
3524 * so that it points to the configure action.
3525 */
3526 nop_addr = txpred + sizeof(tx);
3527 nop.nop_h.ac_status = 0;
3528 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3529 (unsigned char *) &nop.nop_h.ac_status,
3530 sizeof(nop.nop_h.ac_status));
3531 nop.nop_h.ac_link = cfg_addr;
3532 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3533 (unsigned char *) &nop.nop_h.ac_link,
3534 sizeof(nop.nop_h.ac_link));
3535
3536 /* Job done, clear the flag */
3537 lp->reconfig_82586 = 0;
3538
3539 if (lp->tx_first_in_use == I82586NULL)
3540 lp->tx_first_in_use = txblock;
3541
3542 if (lp->tx_n_in_use == (NTXBLOCKS - 1))
3543 netif_stop_queue(dev);
3544
3545 #ifdef DEBUG_CONFIG_TRACE
3546 printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name);
3547 #endif
3548 }
3549
3550 /*------------------------------------------------------------------*/
3551 /*
3552 * This routine, called by wavelan_close(), gracefully stops the
3553 * WaveLAN controller (i82586).
3554 * (called by wavelan_close())
3555 */
wv_82586_stop(device * dev)3556 static inline void wv_82586_stop(device * dev)
3557 {
3558 net_local *lp = (net_local *) dev->priv;
3559 unsigned long ioaddr = dev->base_addr;
3560 u16 scb_cmd;
3561
3562 #ifdef DEBUG_CONFIG_TRACE
3563 printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name);
3564 #endif
3565
3566 /* Suspend both command unit and receive unit. */
3567 scb_cmd =
3568 (SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC &
3569 SCB_CMD_RUC_SUS);
3570 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3571 (unsigned char *) &scb_cmd, sizeof(scb_cmd));
3572 set_chan_attn(ioaddr, lp->hacr);
3573
3574 /* No more interrupts */
3575 wv_ints_off(dev);
3576
3577 #ifdef DEBUG_CONFIG_TRACE
3578 printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name);
3579 #endif
3580 }
3581
3582 /*------------------------------------------------------------------*/
3583 /*
3584 * Totally reset the WaveLAN and restart it.
3585 * Performs the following actions:
3586 * 1. A power reset (reset DMA)
3587 * 2. Initialize the radio modem (using wv_mmc_init)
3588 * 3. Reset & Configure LAN controller (using wv_82586_start)
3589 * 4. Start the LAN controller's command unit
3590 * 5. Start the LAN controller's receive unit
3591 * (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open())
3592 */
wv_hw_reset(device * dev)3593 static int wv_hw_reset(device * dev)
3594 {
3595 net_local *lp = (net_local *) dev->priv;
3596 unsigned long ioaddr = dev->base_addr;
3597
3598 #ifdef DEBUG_CONFIG_TRACE
3599 printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name,
3600 (unsigned int) dev);
3601 #endif
3602
3603 /* Increase the number of resets done. */
3604 lp->nresets++;
3605
3606 wv_hacr_reset(ioaddr);
3607 lp->hacr = HACR_DEFAULT;
3608
3609 if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0))
3610 return -1;
3611
3612 /* Enable the card to send interrupts. */
3613 wv_ints_on(dev);
3614
3615 /* Start card functions */
3616 if (wv_cu_start(dev) < 0)
3617 return -1;
3618
3619 /* Setup the controller and parameters */
3620 wv_82586_config(dev);
3621
3622 /* Finish configuration with the receive unit */
3623 if (wv_ru_start(dev) < 0)
3624 return -1;
3625
3626 #ifdef DEBUG_CONFIG_TRACE
3627 printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
3628 #endif
3629 return 0;
3630 }
3631
3632 /*------------------------------------------------------------------*/
3633 /*
3634 * Check if there is a WaveLAN at the specific base address.
3635 * As a side effect, this reads the MAC address.
3636 * (called in wavelan_probe() and init_module())
3637 */
wv_check_ioaddr(unsigned long ioaddr,u8 * mac)3638 static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac)
3639 {
3640 int i; /* Loop counter */
3641
3642 /* Check if the base address if available. */
3643 if (check_region(ioaddr, sizeof(ha_t)))
3644 return -EADDRINUSE; /* ioaddr already used */
3645
3646 /* Reset host interface */
3647 wv_hacr_reset(ioaddr);
3648
3649 /* Read the MAC address from the parameter storage area. */
3650 psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr),
3651 mac, 6);
3652
3653 /*
3654 * Check the first three octets of the address for the manufacturer's code.
3655 * Note: if this can't find your WaveLAN card, you've got a
3656 * non-NCR/AT&T/Lucent ISA card. See wavelan.p.h for detail on
3657 * how to configure your card.
3658 */
3659 for (i = 0; i < (sizeof(MAC_ADDRESSES) / sizeof(char) / 3); i++)
3660 if ((mac[0] == MAC_ADDRESSES[i][0]) &&
3661 (mac[1] == MAC_ADDRESSES[i][1]) &&
3662 (mac[2] == MAC_ADDRESSES[i][2]))
3663 return 0;
3664
3665 #ifdef DEBUG_CONFIG_INFO
3666 printk(KERN_WARNING
3667 "WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n",
3668 ioaddr, mac[0], mac[1], mac[2]);
3669 #endif
3670 return -ENODEV;
3671 }
3672
3673 /************************ INTERRUPT HANDLING ************************/
3674
3675 /*
3676 * This function is the interrupt handler for the WaveLAN card. This
3677 * routine will be called whenever:
3678 */
wavelan_interrupt(int irq,void * dev_id,struct pt_regs * regs)3679 static void wavelan_interrupt(int irq, void *dev_id, struct pt_regs *regs)
3680 {
3681 device *dev;
3682 unsigned long ioaddr;
3683 net_local *lp;
3684 u16 hasr;
3685 u16 status;
3686 u16 ack_cmd;
3687
3688 dev = dev_id;
3689
3690 #ifdef DEBUG_INTERRUPT_TRACE
3691 printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
3692 #endif
3693
3694 lp = (net_local *) dev->priv;
3695 ioaddr = dev->base_addr;
3696
3697 #ifdef DEBUG_INTERRUPT_INFO
3698 /* Check state of our spinlock */
3699 if(spin_is_locked(&lp->spinlock))
3700 printk(KERN_DEBUG
3701 "%s: wavelan_interrupt(): spinlock is already locked !!!\n",
3702 dev->name);
3703 #endif
3704
3705 /* Prevent reentrancy. We need to do that because we may have
3706 * multiple interrupt handler running concurrently.
3707 * It is safe because wv_splhi() disables interrupts before acquiring
3708 * the spinlock. */
3709 spin_lock(&lp->spinlock);
3710
3711 /* Check modem interrupt */
3712 if ((hasr = hasr_read(ioaddr)) & HASR_MMC_INTR) {
3713 u8 dce_status;
3714
3715 /*
3716 * Interrupt from the modem management controller.
3717 * This will clear it -- ignored for now.
3718 */
3719 mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status,
3720 sizeof(dce_status));
3721 #ifdef DEBUG_INTERRUPT_ERROR
3722 printk(KERN_INFO
3723 "%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n",
3724 dev->name, dce_status);
3725 #endif
3726 }
3727
3728 /* Check if not controller interrupt */
3729 if ((hasr & HASR_82586_INTR) == 0) {
3730 #ifdef DEBUG_INTERRUPT_ERROR
3731 printk(KERN_INFO
3732 "%s: wavelan_interrupt(): interrupt not coming from i82586\n",
3733 dev->name);
3734 #endif
3735 spin_unlock (&lp->spinlock);
3736 return;
3737 }
3738
3739 /* Read interrupt data. */
3740 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3741 (unsigned char *) &status, sizeof(status));
3742
3743 /*
3744 * Acknowledge the interrupt(s).
3745 */
3746 ack_cmd = status & SCB_ST_INT;
3747 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3748 (unsigned char *) &ack_cmd, sizeof(ack_cmd));
3749 set_chan_attn(ioaddr, lp->hacr);
3750
3751 #ifdef DEBUG_INTERRUPT_INFO
3752 printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n",
3753 dev->name, status);
3754 #endif
3755
3756 /* Command completed. */
3757 if ((status & SCB_ST_CX) == SCB_ST_CX) {
3758 #ifdef DEBUG_INTERRUPT_INFO
3759 printk(KERN_DEBUG
3760 "%s: wavelan_interrupt(): command completed.\n",
3761 dev->name);
3762 #endif
3763 wv_complete(dev, ioaddr, lp);
3764 }
3765
3766 /* Frame received. */
3767 if ((status & SCB_ST_FR) == SCB_ST_FR) {
3768 #ifdef DEBUG_INTERRUPT_INFO
3769 printk(KERN_DEBUG
3770 "%s: wavelan_interrupt(): received packet.\n",
3771 dev->name);
3772 #endif
3773 wv_receive(dev);
3774 }
3775
3776 /* Check the state of the command unit. */
3777 if (((status & SCB_ST_CNA) == SCB_ST_CNA) ||
3778 (((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) &&
3779 (netif_running(dev)))) {
3780 #ifdef DEBUG_INTERRUPT_ERROR
3781 printk(KERN_INFO
3782 "%s: wavelan_interrupt(): CU inactive -- restarting\n",
3783 dev->name);
3784 #endif
3785 wv_hw_reset(dev);
3786 }
3787
3788 /* Check the state of the command unit. */
3789 if (((status & SCB_ST_RNR) == SCB_ST_RNR) ||
3790 (((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) &&
3791 (netif_running(dev)))) {
3792 #ifdef DEBUG_INTERRUPT_ERROR
3793 printk(KERN_INFO
3794 "%s: wavelan_interrupt(): RU not ready -- restarting\n",
3795 dev->name);
3796 #endif
3797 wv_hw_reset(dev);
3798 }
3799
3800 /* Release spinlock */
3801 spin_unlock (&lp->spinlock);
3802
3803 #ifdef DEBUG_INTERRUPT_TRACE
3804 printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
3805 #endif
3806 }
3807
3808 /*------------------------------------------------------------------*/
3809 /*
3810 * Watchdog: when we start a transmission, a timer is set for us in the
3811 * kernel. If the transmission completes, this timer is disabled. If
3812 * the timer expires, we are called and we try to unlock the hardware.
3813 */
wavelan_watchdog(device * dev)3814 static void wavelan_watchdog(device * dev)
3815 {
3816 net_local * lp = (net_local *)dev->priv;
3817 u_long ioaddr = dev->base_addr;
3818 unsigned long flags;
3819 unsigned int nreaped;
3820
3821 #ifdef DEBUG_INTERRUPT_TRACE
3822 printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
3823 #endif
3824
3825 #ifdef DEBUG_INTERRUPT_ERROR
3826 printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
3827 dev->name);
3828 #endif
3829
3830 /* Check that we came here for something */
3831 if (lp->tx_n_in_use <= 0) {
3832 return;
3833 }
3834
3835 wv_splhi(lp, &flags);
3836
3837 /* Try to see if some buffers are not free (in case we missed
3838 * an interrupt */
3839 nreaped = wv_complete(dev, ioaddr, lp);
3840
3841 #ifdef DEBUG_INTERRUPT_INFO
3842 printk(KERN_DEBUG
3843 "%s: wavelan_watchdog(): %d reaped, %d remain.\n",
3844 dev->name, nreaped, lp->tx_n_in_use);
3845 #endif
3846
3847 #ifdef DEBUG_PSA_SHOW
3848 {
3849 psa_t psa;
3850 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
3851 wv_psa_show(&psa);
3852 }
3853 #endif
3854 #ifdef DEBUG_MMC_SHOW
3855 wv_mmc_show(dev);
3856 #endif
3857 #ifdef DEBUG_I82586_SHOW
3858 wv_cu_show(dev);
3859 #endif
3860
3861 /* If no buffer has been freed */
3862 if (nreaped == 0) {
3863 #ifdef DEBUG_INTERRUPT_ERROR
3864 printk(KERN_INFO
3865 "%s: wavelan_watchdog(): cleanup failed, trying reset\n",
3866 dev->name);
3867 #endif
3868 wv_hw_reset(dev);
3869 }
3870
3871 /* At this point, we should have some free Tx buffer ;-) */
3872 if (lp->tx_n_in_use < NTXBLOCKS - 1)
3873 netif_wake_queue(dev);
3874
3875 wv_splx(lp, &flags);
3876
3877 #ifdef DEBUG_INTERRUPT_TRACE
3878 printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
3879 #endif
3880 }
3881
3882 /********************* CONFIGURATION CALLBACKS *********************/
3883 /*
3884 * Here are the functions called by the Linux networking code (NET3)
3885 * for initialization, configuration and deinstallations of the
3886 * WaveLAN ISA hardware.
3887 */
3888
3889 /*------------------------------------------------------------------*/
3890 /*
3891 * Configure and start up the WaveLAN PCMCIA adaptor.
3892 * Called by NET3 when it "opens" the device.
3893 */
wavelan_open(device * dev)3894 static int wavelan_open(device * dev)
3895 {
3896 net_local * lp = (net_local *)dev->priv;
3897 unsigned long flags;
3898
3899 #ifdef DEBUG_CALLBACK_TRACE
3900 printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
3901 (unsigned int) dev);
3902 #endif
3903
3904 /* Check irq */
3905 if (dev->irq == 0) {
3906 #ifdef DEBUG_CONFIG_ERROR
3907 printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n",
3908 dev->name);
3909 #endif
3910 return -ENXIO;
3911 }
3912
3913 if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0)
3914 {
3915 #ifdef DEBUG_CONFIG_ERROR
3916 printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n",
3917 dev->name);
3918 #endif
3919 return -EAGAIN;
3920 }
3921
3922 wv_splhi(lp, &flags);
3923
3924 if (wv_hw_reset(dev) != -1) {
3925 netif_start_queue(dev);
3926 } else {
3927 free_irq(dev->irq, dev);
3928 #ifdef DEBUG_CONFIG_ERROR
3929 printk(KERN_INFO
3930 "%s: wavelan_open(): impossible to start the card\n",
3931 dev->name);
3932 #endif
3933 wv_splx(lp, &flags);
3934 return -EAGAIN;
3935 }
3936 wv_splx(lp, &flags);
3937
3938 #ifdef DEBUG_CALLBACK_TRACE
3939 printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
3940 #endif
3941 return 0;
3942 }
3943
3944 /*------------------------------------------------------------------*/
3945 /*
3946 * Shut down the WaveLAN ISA card.
3947 * Called by NET3 when it "closes" the device.
3948 */
wavelan_close(device * dev)3949 static int wavelan_close(device * dev)
3950 {
3951 net_local *lp = (net_local *) dev->priv;
3952 unsigned long flags;
3953
3954 #ifdef DEBUG_CALLBACK_TRACE
3955 printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
3956 (unsigned int) dev);
3957 #endif
3958
3959 netif_stop_queue(dev);
3960
3961 /*
3962 * Flush the Tx and disable Rx.
3963 */
3964 wv_splhi(lp, &flags);
3965 wv_82586_stop(dev);
3966 wv_splx(lp, &flags);
3967
3968 free_irq(dev->irq, dev);
3969
3970 #ifdef DEBUG_CALLBACK_TRACE
3971 printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
3972 #endif
3973 return 0;
3974 }
3975
3976 /*------------------------------------------------------------------*/
3977 /*
3978 * Probe an I/O address, and if the WaveLAN is there configure the
3979 * device structure
3980 * (called by wavelan_probe() and via init_module()).
3981 */
wavelan_config(device * dev)3982 static int __init wavelan_config(device * dev)
3983 {
3984 unsigned long ioaddr = dev->base_addr;
3985 u8 irq_mask;
3986 int irq;
3987 net_local *lp;
3988
3989 #ifdef DEBUG_CALLBACK_TRACE
3990 printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n",
3991 dev->name, (unsigned int) dev, ioaddr);
3992 #endif
3993
3994 /* Check IRQ argument on command line. */
3995 if (dev->irq != 0) {
3996 irq_mask = wv_irq_to_psa(dev->irq);
3997
3998 if (irq_mask == 0) {
3999 #ifdef DEBUG_CONFIG_ERROR
4000 printk(KERN_WARNING
4001 "%s: wavelan_config(): invalid IRQ %d ignored.\n",
4002 dev->name, dev->irq);
4003 #endif
4004 dev->irq = 0;
4005 } else {
4006 #ifdef DEBUG_CONFIG_INFO
4007 printk(KERN_DEBUG
4008 "%s: wavelan_config(): changing IRQ to %d\n",
4009 dev->name, dev->irq);
4010 #endif
4011 psa_write(ioaddr, HACR_DEFAULT,
4012 psaoff(0, psa_int_req_no), &irq_mask, 1);
4013 /* update the Wavelan checksum */
4014 update_psa_checksum(dev, ioaddr, HACR_DEFAULT);
4015 wv_hacr_reset(ioaddr);
4016 }
4017 }
4018
4019 psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no),
4020 &irq_mask, 1);
4021 if ((irq = wv_psa_to_irq(irq_mask)) == -1) {
4022 #ifdef DEBUG_CONFIG_ERROR
4023 printk(KERN_INFO
4024 "%s: wavelan_config(): could not wavelan_map_irq(%d).\n",
4025 dev->name, irq_mask);
4026 #endif
4027 return -EAGAIN;
4028 }
4029
4030 dev->irq = irq;
4031
4032 if (!request_region(ioaddr, sizeof(ha_t), "wavelan"))
4033 return -EBUSY;
4034
4035 dev->mem_start = 0x0000;
4036 dev->mem_end = 0x0000;
4037 dev->if_port = 0;
4038
4039 /* Initialize device structures */
4040 dev->priv = kmalloc(sizeof(net_local), GFP_KERNEL);
4041 if (dev->priv == NULL) {
4042 release_region(ioaddr, sizeof(ha_t));
4043 return -ENOMEM;
4044 }
4045 memset(dev->priv, 0x00, sizeof(net_local));
4046 lp = (net_local *) dev->priv;
4047
4048 /* Back link to the device structure. */
4049 lp->dev = dev;
4050 /* Add the device at the beginning of the linked list. */
4051 lp->next = wavelan_list;
4052 wavelan_list = lp;
4053
4054 lp->hacr = HACR_DEFAULT;
4055
4056 /* Multicast stuff */
4057 lp->promiscuous = 0;
4058 lp->mc_count = 0;
4059
4060 /* Init spinlock */
4061 spin_lock_init(&lp->spinlock);
4062
4063 /*
4064 * Fill in the fields of the device structure
4065 * with generic Ethernet values.
4066 */
4067 ether_setup(dev);
4068
4069 SET_MODULE_OWNER(dev);
4070 dev->open = wavelan_open;
4071 dev->stop = wavelan_close;
4072 dev->hard_start_xmit = wavelan_packet_xmit;
4073 dev->get_stats = wavelan_get_stats;
4074 dev->set_multicast_list = &wavelan_set_multicast_list;
4075 dev->tx_timeout = &wavelan_watchdog;
4076 dev->watchdog_timeo = WATCHDOG_JIFFIES;
4077 #ifdef SET_MAC_ADDRESS
4078 dev->set_mac_address = &wavelan_set_mac_address;
4079 #endif /* SET_MAC_ADDRESS */
4080
4081 #ifdef WIRELESS_EXT /* if wireless extension exists in the kernel */
4082 dev->do_ioctl = wavelan_ioctl;
4083 dev->get_wireless_stats = wavelan_get_wireless_stats;
4084 #endif
4085
4086 dev->mtu = WAVELAN_MTU;
4087
4088 /* Display nice information. */
4089 wv_init_info(dev);
4090
4091 #ifdef DEBUG_CALLBACK_TRACE
4092 printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name);
4093 #endif
4094 return 0;
4095 }
4096
4097 /*------------------------------------------------------------------*/
4098 /*
4099 * Check for a network adaptor of this type. Return '0' iff one
4100 * exists. There seem to be different interpretations of
4101 * the initial value of dev->base_addr.
4102 * We follow the example in drivers/net/ne.c.
4103 * (called in "Space.c")
4104 */
wavelan_probe(device * dev)4105 int __init wavelan_probe(device * dev)
4106 {
4107 short base_addr;
4108 mac_addr mac; /* MAC address (check existence of WaveLAN) */
4109 int i;
4110 int r;
4111
4112 #ifdef DEBUG_CALLBACK_TRACE
4113 printk(KERN_DEBUG
4114 "%s: ->wavelan_probe(dev=0x%x (base_addr=0x%x))\n",
4115 dev->name, (unsigned int) dev,
4116 (unsigned int) dev->base_addr);
4117 #endif
4118
4119 #ifdef STRUCT_CHECK
4120 if (wv_struct_check() != (char *) NULL) {
4121 printk(KERN_WARNING
4122 "%s: wavelan_probe(): structure/compiler botch: \"%s\"\n",
4123 dev->name, wv_struct_check());
4124 return -ENODEV;
4125 }
4126 #endif /* STRUCT_CHECK */
4127
4128 /* Check the value of the command line parameter for base address. */
4129 base_addr = dev->base_addr;
4130
4131 /* Don't probe at all. */
4132 if (base_addr < 0) {
4133 #ifdef DEBUG_CONFIG_ERROR
4134 printk(KERN_WARNING
4135 "%s: wavelan_probe(): invalid base address\n",
4136 dev->name);
4137 #endif
4138 return -ENXIO;
4139 }
4140
4141 /* Check a single specified location. */
4142 if (base_addr > 0x100) {
4143 /* Check if there is something at this base address */
4144 if ((r = wv_check_ioaddr(base_addr, mac)) == 0) {
4145 memcpy(dev->dev_addr, mac, 6); /* Copy MAC address. */
4146 r = wavelan_config(dev);
4147 }
4148 #ifdef DEBUG_CONFIG_INFO
4149 if (r != 0)
4150 printk(KERN_DEBUG
4151 "%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n",
4152 dev->name, base_addr);
4153 #endif
4154
4155 #ifdef DEBUG_CALLBACK_TRACE
4156 printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name);
4157 #endif
4158 return r;
4159 }
4160
4161 /* Scan all possible addresses of the WaveLAN hardware. */
4162 for (i = 0; i < NELS(iobase); i++) {
4163 /* Check whether there is something at this base address. */
4164 if (wv_check_ioaddr(iobase[i], mac) == 0) {
4165 dev->base_addr = iobase[i]; /* Copy base address. */
4166 memcpy(dev->dev_addr, mac, 6); /* Copy MAC address. */
4167 if (wavelan_config(dev) == 0) {
4168 #ifdef DEBUG_CALLBACK_TRACE
4169 printk(KERN_DEBUG
4170 "%s: <-wavelan_probe()\n",
4171 dev->name);
4172 #endif
4173 return 0;
4174 }
4175 }
4176 }
4177
4178 /* We may have touched base_addr. Another driver may not like it. */
4179 dev->base_addr = base_addr;
4180
4181 #ifdef DEBUG_CONFIG_INFO
4182 printk(KERN_DEBUG "%s: wavelan_probe(): no device found\n",
4183 dev->name);
4184 #endif
4185
4186 return -ENODEV;
4187 }
4188
4189 /****************************** MODULE ******************************/
4190 /*
4191 * Module entry point: insertion and removal
4192 */
4193
4194 #ifdef MODULE
4195 /*------------------------------------------------------------------*/
4196 /*
4197 * Insertion of the module
4198 * I'm now quite proud of the multi-device support.
4199 */
init_module(void)4200 int init_module(void)
4201 {
4202 mac_addr mac; /* MAC address (check WaveLAN existence) */
4203 int ret = -EIO; /* Return error if no cards found */
4204 int i;
4205
4206 #ifdef DEBUG_MODULE_TRACE
4207 printk(KERN_DEBUG "-> init_module()\n");
4208 #endif
4209
4210 /* If probing is asked */
4211 if (io[0] == 0) {
4212 #ifdef DEBUG_CONFIG_ERROR
4213 printk(KERN_WARNING
4214 "WaveLAN init_module(): doing device probing (bad !)\n");
4215 printk(KERN_WARNING
4216 "Specify base addresses while loading module to correct the problem\n");
4217 #endif
4218
4219 /* Copy the basic set of address to be probed. */
4220 for (i = 0; i < NELS(iobase); i++)
4221 io[i] = iobase[i];
4222 }
4223
4224
4225 /* Loop on all possible base addresses. */
4226 i = -1;
4227 while ((io[++i] != 0) && (i < NELS(io))) {
4228 /* Check if there is something at this base address. */
4229 if (wv_check_ioaddr(io[i], mac) == 0) {
4230 device *dev;
4231
4232 /* Create device and set basic arguments. */
4233 dev =
4234 kmalloc(sizeof(struct net_device), GFP_KERNEL);
4235 if (dev == NULL) {
4236 ret = -ENOMEM;
4237 break;
4238 }
4239 memset(dev, 0x00, sizeof(struct net_device));
4240 memcpy(dev->name, name[i], IFNAMSIZ); /* Copy name */
4241 dev->base_addr = io[i];
4242 dev->irq = irq[i];
4243 dev->init = &wavelan_config;
4244 memcpy(dev->dev_addr, mac, 6); /* Copy MAC address. */
4245
4246 /* Try to create the device. */
4247 if (register_netdev(dev) != 0) {
4248 /* Deallocate everything. */
4249 /* Note: if dev->priv is mallocated, there is no way to fail. */
4250 kfree(dev);
4251 } else {
4252 /* If at least one device OK, we do not fail */
4253 ret = 0;
4254 }
4255 } /* if there is something at the address */
4256 } /* Loop on all addresses. */
4257
4258 #ifdef DEBUG_CONFIG_ERROR
4259 if (wavelan_list == (net_local *) NULL)
4260 printk(KERN_WARNING
4261 "WaveLAN init_module(): no device found\n");
4262 #endif
4263
4264 #ifdef DEBUG_MODULE_TRACE
4265 printk(KERN_DEBUG "<- init_module()\n");
4266 #endif
4267 return ret;
4268 }
4269
4270 /*------------------------------------------------------------------*/
4271 /*
4272 * Removal of the module
4273 */
cleanup_module(void)4274 void cleanup_module(void)
4275 {
4276 #ifdef DEBUG_MODULE_TRACE
4277 printk(KERN_DEBUG "-> cleanup_module()\n");
4278 #endif
4279
4280 /* Loop on all devices and release them. */
4281 while (wavelan_list != (net_local *) NULL) {
4282 device *dev = wavelan_list->dev;
4283
4284 #ifdef DEBUG_CONFIG_INFO
4285 printk(KERN_DEBUG
4286 "%s: cleanup_module(): removing device at 0x%x\n",
4287 dev->name, (unsigned int) dev);
4288 #endif
4289
4290 /* Release the ioport region. */
4291 release_region(dev->base_addr, sizeof(ha_t));
4292
4293 /* Definitely remove the device. */
4294 unregister_netdev(dev);
4295
4296 /* Unlink the device. */
4297 wavelan_list = wavelan_list->next;
4298
4299 /* Free pieces. */
4300 kfree(dev->priv);
4301 kfree(dev);
4302 }
4303
4304 #ifdef DEBUG_MODULE_TRACE
4305 printk(KERN_DEBUG "<- cleanup_module()\n");
4306 #endif
4307 }
4308 #endif /* MODULE */
4309 MODULE_LICENSE("GPL");
4310
4311 /*
4312 * This software may only be used and distributed
4313 * according to the terms of the GNU General Public License.
4314 *
4315 * This software was developed as a component of the
4316 * Linux operating system.
4317 * It is based on other device drivers and information
4318 * either written or supplied by:
4319 * Ajay Bakre (bakre@paul.rutgers.edu),
4320 * Donald Becker (becker@scyld.com),
4321 * Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com),
4322 * Anders Klemets (klemets@it.kth.se),
4323 * Vladimir V. Kolpakov (w@stier.koenig.ru),
4324 * Marc Meertens (Marc.Meertens@Utrecht.NCR.com),
4325 * Pauline Middelink (middelin@polyware.iaf.nl),
4326 * Robert Morris (rtm@das.harvard.edu),
4327 * Jean Tourrilhes (jt@hplb.hpl.hp.com),
4328 * Girish Welling (welling@paul.rutgers.edu),
4329 *
4330 * Thanks go also to:
4331 * James Ashton (jaa101@syseng.anu.edu.au),
4332 * Alan Cox (alan@redhat.com),
4333 * Allan Creighton (allanc@cs.usyd.edu.au),
4334 * Matthew Geier (matthew@cs.usyd.edu.au),
4335 * Remo di Giovanni (remo@cs.usyd.edu.au),
4336 * Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de),
4337 * Vipul Gupta (vgupta@cs.binghamton.edu),
4338 * Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM),
4339 * Tim Nicholson (tim@cs.usyd.edu.au),
4340 * Ian Parkin (ian@cs.usyd.edu.au),
4341 * John Rosenberg (johnr@cs.usyd.edu.au),
4342 * George Rossi (george@phm.gov.au),
4343 * Arthur Scott (arthur@cs.usyd.edu.au),
4344 * Peter Storey,
4345 * for their assistance and advice.
4346 *
4347 * Please send bug reports, updates, comments to:
4348 *
4349 * Bruce Janson Email: bruce@cs.usyd.edu.au
4350 * Basser Department of Computer Science Phone: +61-2-9351-3423
4351 * University of Sydney, N.S.W., 2006, AUSTRALIA Fax: +61-2-9351-3838
4352 */
4353