1 /* Intel EtherExpress 16 device driver for Linux
2  *
3  * Written by John Sullivan, 1995
4  *  based on original code by Donald Becker, with changes by
5  *  Alan Cox and Pauline Middelink.
6  *
7  * Support for 8-bit mode by Zoltan Szilagyi <zoltans@cs.arizona.edu>
8  *
9  * Many modifications, and currently maintained, by
10  *  Philip Blundell <philb@gnu.org>
11  * Added the Compaq LTE  Alan Cox <alan@redhat.com>
12  * Added MCA support Adam Fritzler <mid@auk.cx>
13  *
14  * Note - this driver is experimental still - it has problems on faster
15  * machines. Someone needs to sit down and go through it line by line with
16  * a databook...
17  */
18 
19 /* The EtherExpress 16 is a fairly simple card, based on a shared-memory
20  * design using the i82586 Ethernet coprocessor.  It bears no relationship,
21  * as far as I know, to the similarly-named "EtherExpress Pro" range.
22  *
23  * Historically, Linux support for these cards has been very bad.  However,
24  * things seem to be getting better slowly.
25  */
26 
27 /* If your card is confused about what sort of interface it has (eg it
28  * persistently reports "10baseT" when none is fitted), running 'SOFTSET /BART'
29  * or 'SOFTSET /LISA' from DOS seems to help.
30  */
31 
32 /* Here's the scoop on memory mapping.
33  *
34  * There are three ways to access EtherExpress card memory: either using the
35  * shared-memory mapping, or using PIO through the dataport, or using PIO
36  * through the "shadow memory" ports.
37  *
38  * The shadow memory system works by having the card map some of its memory
39  * as follows:
40  *
41  * (the low five bits of the SMPTR are ignored)
42  *
43  *  base+0x4000..400f      memory at SMPTR+0..15
44  *  base+0x8000..800f      memory at SMPTR+16..31
45  *  base+0xc000..c007      dubious stuff (memory at SMPTR+16..23 apparently)
46  *  base+0xc008..c00f      memory at 0x0008..0x000f
47  *
48  * This last set (the one at c008) is particularly handy because the SCB
49  * lives at 0x0008.  So that set of ports gives us easy random access to data
50  * in the SCB without having to mess around setting up pointers and the like.
51  * We always use this method to access the SCB (via the scb_xx() functions).
52  *
53  * Dataport access works by aiming the appropriate (read or write) pointer
54  * at the first address you're interested in, and then reading or writing from
55  * the dataport.  The pointers auto-increment after each transfer.  We use
56  * this for data transfer.
57  *
58  * We don't use the shared-memory system because it allegedly doesn't work on
59  * all cards, and because it's a bit more prone to go wrong (it's one more
60  * thing to configure...).
61  */
62 
63 /* Known bugs:
64  *
65  * - The card seems to want to give us two interrupts every time something
66  *   happens, where just one would be better.
67  */
68 
69 /*
70  *
71  * Note by Zoltan Szilagyi 10-12-96:
72  *
73  * I've succeeded in eliminating the "CU wedged" messages, and hence the
74  * lockups, which were only occurring with cards running in 8-bit mode ("force
75  * 8-bit operation" in Intel's SoftSet utility). This version of the driver
76  * sets the 82586 and the ASIC to 8-bit mode at startup; it also stops the
77  * CU before submitting a packet for transmission, and then restarts it as soon
78  * as the process of handing the packet is complete. This is definitely an
79  * unnecessary slowdown if the card is running in 16-bit mode; therefore one
80  * should detect 16-bit vs 8-bit mode from the EEPROM settings and act
81  * accordingly. In 8-bit mode with this bugfix I'm getting about 150 K/s for
82  * ftp's, which is significantly better than I get in DOS, so the overhead of
83  * stopping and restarting the CU with each transmit is not prohibitive in
84  * practice.
85  *
86  * Update by David Woodhouse 11/5/99:
87  *
88  * I've seen "CU wedged" messages in 16-bit mode, on the Alpha architecture.
89  * I assume that this is because 16-bit accesses are actually handled as two
90  * 8-bit accesses.
91  */
92 
93 #ifdef __alpha__
94 #define LOCKUP16 1
95 #endif
96 #ifndef LOCKUP16
97 #define LOCKUP16 0
98 #endif
99 
100 #include <linux/config.h>
101 #include <linux/module.h>
102 
103 #include <linux/kernel.h>
104 #include <linux/sched.h>
105 #include <linux/types.h>
106 #include <linux/fcntl.h>
107 #include <linux/interrupt.h>
108 #include <linux/ptrace.h>
109 #include <linux/ioport.h>
110 #include <linux/string.h>
111 #include <linux/in.h>
112 #include <asm/system.h>
113 #include <asm/bitops.h>
114 #include <asm/io.h>
115 #include <asm/irq.h>
116 #include <linux/delay.h>
117 #include <linux/errno.h>
118 #include <linux/init.h>
119 
120 #include <linux/netdevice.h>
121 #include <linux/etherdevice.h>
122 #include <linux/skbuff.h>
123 #include <linux/slab.h>
124 #include <linux/mca.h>
125 
126 #include <linux/spinlock.h>
127 
128 #ifndef NET_DEBUG
129 #define NET_DEBUG 4
130 #endif
131 
132 #include "eexpress.h"
133 
134 #define EEXP_IO_EXTENT  16
135 
136 /*
137  * Private data declarations
138  */
139 
140 struct net_local
141 {
142 	struct net_device_stats stats;
143 	unsigned long last_tx;       /* jiffies when last transmit started */
144 	unsigned long init_time;     /* jiffies when eexp_hw_init586 called */
145 	unsigned short rx_first;     /* first rx buf, same as RX_BUF_START */
146 	unsigned short rx_last;      /* last rx buf */
147 	unsigned short rx_ptr;       /* first rx buf to look at */
148 	unsigned short tx_head;      /* next free tx buf */
149 	unsigned short tx_reap;      /* first in-use tx buf */
150 	unsigned short tx_tail;      /* previous tx buf to tx_head */
151 	unsigned short tx_link;      /* last known-executing tx buf */
152 	unsigned short last_tx_restart;   /* set to tx_link when we
153 					     restart the CU */
154 	unsigned char started;
155 	unsigned short rx_buf_start;
156 	unsigned short rx_buf_end;
157 	unsigned short num_tx_bufs;
158 	unsigned short num_rx_bufs;
159 	unsigned char width;         /* 0 for 16bit, 1 for 8bit */
160 	unsigned char was_promisc;
161 	unsigned char old_mc_count;
162 	spinlock_t lock;
163 };
164 
165 /* This is the code and data that is downloaded to the EtherExpress card's
166  * memory at boot time.
167  */
168 
169 static unsigned short start_code[] = {
170 /* 0x0000 */
171 	0x0001,                 /* ISCP: busy - cleared after reset */
172 	0x0008,0x0000,0x0000,   /* offset,address (lo,hi) of SCB */
173 
174 	0x0000,0x0000,          /* SCB: status, commands */
175 	0x0000,0x0000,          /* links to first command block,
176 				   first receive descriptor */
177 	0x0000,0x0000,          /* CRC error, alignment error counts */
178 	0x0000,0x0000,          /* out of resources, overrun error counts */
179 
180 	0x0000,0x0000,          /* pad */
181 	0x0000,0x0000,
182 
183 /* 0x20 -- start of 82586 CU program */
184 #define CONF_LINK 0x20
185 	0x0000,Cmd_Config,
186 	0x0032,                 /* link to next command */
187 	0x080c,                 /* 12 bytes follow : fifo threshold=8 */
188 	0x2e40,                 /* don't rx bad frames
189 				 * SRDY/ARDY => ext. sync. : preamble len=8
190 	                         * take addresses from data buffers
191 				 * 6 bytes/address
192 				 */
193 	0x6000,                 /* default backoff method & priority
194 				 * interframe spacing = 0x60 */
195 	0xf200,                 /* slot time=0x200
196 				 * max collision retry = 0xf */
197 #define CONF_PROMISC  0x2e
198 	0x0000,                 /* no HDLC : normal CRC : enable broadcast
199 				 * disable promiscuous/multicast modes */
200 	0x003c,                 /* minimum frame length = 60 octets) */
201 
202 	0x0000,Cmd_SetAddr,
203 	0x003e,                 /* link to next command */
204 #define CONF_HWADDR  0x38
205 	0x0000,0x0000,0x0000,   /* hardware address placed here */
206 
207 	0x0000,Cmd_MCast,
208 	0x0076,                 /* link to next command */
209 #define CONF_NR_MULTICAST 0x44
210 	0x0000,                 /* number of multicast addresses */
211 #define CONF_MULTICAST 0x46
212 	0x0000, 0x0000, 0x0000, /* some addresses */
213 	0x0000, 0x0000, 0x0000,
214 	0x0000, 0x0000, 0x0000,
215 	0x0000, 0x0000, 0x0000,
216 	0x0000, 0x0000, 0x0000,
217 	0x0000, 0x0000, 0x0000,
218 	0x0000, 0x0000, 0x0000,
219 	0x0000, 0x0000, 0x0000,
220 
221 #define CONF_DIAG_RESULT  0x76
222 	0x0000, Cmd_Diag,
223 	0x007c,                 /* link to next command */
224 
225 	0x0000,Cmd_TDR|Cmd_INT,
226 	0x0084,
227 #define CONF_TDR_RESULT  0x82
228 	0x0000,
229 
230 	0x0000,Cmd_END|Cmd_Nop, /* end of configure sequence */
231 	0x0084                  /* dummy link */
232 };
233 
234 /* maps irq number to EtherExpress magic value */
235 static char irqrmap[] = { 0,0,1,2,3,4,0,0,0,1,5,6,0,0,0,0 };
236 
237 #ifdef CONFIG_MCA
238 /* mapping of the first four bits of the second POS register */
239 static unsigned short mca_iomap[] = {
240 	0x270, 0x260, 0x250, 0x240, 0x230, 0x220, 0x210, 0x200,
241 	0x370, 0x360, 0x350, 0x340, 0x330, 0x320, 0x310, 0x300
242 };
243 /* bits 5-7 of the second POS register */
244 static char mca_irqmap[] = { 12, 9, 3, 4, 5, 10, 11, 15 };
245 #endif
246 
247 /*
248  * Prototypes for Linux interface
249  */
250 
251 extern int express_probe(struct net_device *dev);
252 static int eexp_open(struct net_device *dev);
253 static int eexp_close(struct net_device *dev);
254 static void eexp_timeout(struct net_device *dev);
255 static struct net_device_stats *eexp_stats(struct net_device *dev);
256 static int eexp_xmit(struct sk_buff *buf, struct net_device *dev);
257 
258 static void eexp_irq(int irq, void *dev_addr, struct pt_regs *regs);
259 static void eexp_set_multicast(struct net_device *dev);
260 
261 /*
262  * Prototypes for hardware access functions
263  */
264 
265 static void eexp_hw_rx_pio(struct net_device *dev);
266 static void eexp_hw_tx_pio(struct net_device *dev, unsigned short *buf,
267 		       unsigned short len);
268 static int eexp_hw_probe(struct net_device *dev,unsigned short ioaddr);
269 static unsigned short eexp_hw_readeeprom(unsigned short ioaddr,
270 					 unsigned char location);
271 
272 static unsigned short eexp_hw_lasttxstat(struct net_device *dev);
273 static void eexp_hw_txrestart(struct net_device *dev);
274 
275 static void eexp_hw_txinit    (struct net_device *dev);
276 static void eexp_hw_rxinit    (struct net_device *dev);
277 
278 static void eexp_hw_init586   (struct net_device *dev);
279 static void eexp_setup_filter (struct net_device *dev);
280 
281 static char *eexp_ifmap[]={"AUI", "BNC", "RJ45"};
282 enum eexp_iftype {AUI=0, BNC=1, TPE=2};
283 
284 #define STARTED_RU      2
285 #define STARTED_CU      1
286 
287 /*
288  * Primitive hardware access functions.
289  */
290 
scb_status(struct net_device * dev)291 static inline unsigned short scb_status(struct net_device *dev)
292 {
293 	return inw(dev->base_addr + 0xc008);
294 }
295 
scb_rdcmd(struct net_device * dev)296 static inline unsigned short scb_rdcmd(struct net_device *dev)
297 {
298 	return inw(dev->base_addr + 0xc00a);
299 }
300 
scb_command(struct net_device * dev,unsigned short cmd)301 static inline void scb_command(struct net_device *dev, unsigned short cmd)
302 {
303 	outw(cmd, dev->base_addr + 0xc00a);
304 }
305 
scb_wrcbl(struct net_device * dev,unsigned short val)306 static inline void scb_wrcbl(struct net_device *dev, unsigned short val)
307 {
308 	outw(val, dev->base_addr + 0xc00c);
309 }
310 
scb_wrrfa(struct net_device * dev,unsigned short val)311 static inline void scb_wrrfa(struct net_device *dev, unsigned short val)
312 {
313 	outw(val, dev->base_addr + 0xc00e);
314 }
315 
set_loopback(struct net_device * dev)316 static inline void set_loopback(struct net_device *dev)
317 {
318 	outb(inb(dev->base_addr + Config) | 2, dev->base_addr + Config);
319 }
320 
clear_loopback(struct net_device * dev)321 static inline void clear_loopback(struct net_device *dev)
322 {
323 	outb(inb(dev->base_addr + Config) & ~2, dev->base_addr + Config);
324 }
325 
SHADOW(short int addr)326 static inline unsigned short int SHADOW(short int addr)
327 {
328 	addr &= 0x1f;
329 	if (addr > 0xf) addr += 0x3ff0;
330 	return addr + 0x4000;
331 }
332 
333 /*
334  * Linux interface
335  */
336 
337 /*
338  * checks for presence of EtherExpress card
339  */
340 
express_probe(struct net_device * dev)341 int __init express_probe(struct net_device *dev)
342 {
343 	unsigned short *port;
344 	static unsigned short ports[] = { 0x240,0x300,0x310,0x270,0x320,0x340,0 };
345 	unsigned short ioaddr = dev->base_addr;
346 
347 	SET_MODULE_OWNER(dev);
348 
349 	dev->if_port = 0xff; /* not set */
350 
351 #ifdef CONFIG_MCA
352 	if (MCA_bus) {
353 		int slot = 0;
354 
355 		/*
356 		 * Only find one card at a time.  Subsequent calls
357 		 * will find others, however, proper multicard MCA
358 		 * probing and setup can't be done with the
359 		 * old-style Space.c init routines.  -- ASF
360 		 */
361 		while (slot != MCA_NOTFOUND) {
362 			int pos0, pos1;
363 
364 			slot = mca_find_unused_adapter(0x628B, slot);
365 			if (slot == MCA_NOTFOUND)
366 				break;
367 
368 			pos0 = mca_read_stored_pos(slot, 2);
369 			pos1 = mca_read_stored_pos(slot, 3);
370 			ioaddr = mca_iomap[pos1&0xf];
371 
372 			dev->irq = mca_irqmap[(pos1>>4)&0x7];
373 
374 			/*
375 			 * XXX: Transciever selection is done
376 			 * differently on the MCA version.
377 			 * How to get it to select something
378 			 * other than external/AUI is currently
379 			 * unknown.  This code is just for looks. -- ASF
380 			 */
381 			if ((pos0 & 0x7) == 0x1)
382 				dev->if_port = AUI;
383 			else if ((pos0 & 0x7) == 0x5) {
384 				if (pos1 & 0x80)
385 					dev->if_port = BNC;
386 				else
387 					dev->if_port = TPE;
388 			}
389 
390 			mca_set_adapter_name(slot, "Intel EtherExpress 16 MCA");
391 			mca_set_adapter_procfn(slot, NULL, dev);
392 			mca_mark_as_used(slot);
393 
394 			break;
395 		}
396 	}
397 #endif
398 	if (ioaddr&0xfe00)
399 		return eexp_hw_probe(dev,ioaddr);
400 	else if (ioaddr)
401 		return -ENXIO;
402 
403 	for (port=&ports[0] ; *port ; port++ )
404 	{
405 		unsigned short sum = 0;
406 		int i;
407 		for ( i=0 ; i<4 ; i++ )
408 		{
409 			unsigned short t;
410 			t = inb(*port + ID_PORT);
411 			sum |= (t>>4) << ((t & 0x03)<<2);
412 		}
413 		if (sum==0xbaba && !eexp_hw_probe(dev,*port))
414 			return 0;
415 	}
416 	return -ENODEV;
417 }
418 
419 /*
420  * open and initialize the adapter, ready for use
421  */
422 
eexp_open(struct net_device * dev)423 static int eexp_open(struct net_device *dev)
424 {
425 	int ret;
426 	unsigned short ioaddr = dev->base_addr;
427 	struct net_local *lp = (struct net_local *)dev->priv;
428 
429 #if NET_DEBUG > 6
430 	printk(KERN_DEBUG "%s: eexp_open()\n", dev->name);
431 #endif
432 
433 	if (!dev->irq || !irqrmap[dev->irq])
434 		return -ENXIO;
435 
436 	ret = request_irq(dev->irq,&eexp_irq,0,dev->name,dev);
437 	if (ret) return ret;
438 
439 	if (!request_region(ioaddr, EEXP_IO_EXTENT, "EtherExpress")) {
440 		printk(KERN_WARNING "EtherExpress io port %x, is busy.\n"
441 			, ioaddr);
442 		goto err_out1;
443 	}
444 	if (!request_region(ioaddr+0x4000, EEXP_IO_EXTENT, "EtherExpress shadow")) {
445 		printk(KERN_WARNING "EtherExpress io port %x, is busy.\n"
446 			, ioaddr+0x4000);
447 		goto err_out2;
448 	}
449 	if (!request_region(ioaddr+0x8000, EEXP_IO_EXTENT, "EtherExpress shadow")) {
450 		printk(KERN_WARNING "EtherExpress io port %x, is busy.\n"
451 			, ioaddr+0x8000);
452 		goto err_out3;
453 	}
454 	if (!request_region(ioaddr+0xc000, EEXP_IO_EXTENT, "EtherExpress shadow")) {
455 		printk(KERN_WARNING "EtherExpress io port %x, is busy.\n"
456 			, ioaddr+0xc000);
457 		goto err_out4;
458 	}
459 
460 	if (lp->width) {
461 		printk("%s: forcing ASIC to 8-bit mode\n", dev->name);
462 		outb(inb(dev->base_addr+Config)&~4, dev->base_addr+Config);
463 	}
464 
465 	eexp_hw_init586(dev);
466 	netif_start_queue(dev);
467 #if NET_DEBUG > 6
468 	printk(KERN_DEBUG "%s: leaving eexp_open()\n", dev->name);
469 #endif
470 	return 0;
471 
472 	err_out4:
473 		release_region(ioaddr+0x8000, EEXP_IO_EXTENT);
474 	err_out3:
475 		release_region(ioaddr+0x4000, EEXP_IO_EXTENT);
476 	err_out2:
477 		release_region(ioaddr, EEXP_IO_EXTENT);
478 	err_out1:
479 		free_irq(dev->irq, dev);
480 		return -EBUSY;
481 }
482 
483 /*
484  * close and disable the interface, leaving the 586 in reset.
485  */
486 
eexp_close(struct net_device * dev)487 static int eexp_close(struct net_device *dev)
488 {
489 	unsigned short ioaddr = dev->base_addr;
490 	struct net_local *lp = dev->priv;
491 
492 	int irq = dev->irq;
493 
494 	netif_stop_queue(dev);
495 
496 	outb(SIRQ_dis|irqrmap[irq],ioaddr+SET_IRQ);
497 	lp->started = 0;
498 	scb_command(dev, SCB_CUsuspend|SCB_RUsuspend);
499 	outb(0,ioaddr+SIGNAL_CA);
500 	free_irq(irq,dev);
501 	outb(i586_RST,ioaddr+EEPROM_Ctrl);
502 	release_region(ioaddr, EEXP_IO_EXTENT);
503 	release_region(ioaddr+0x4000, 16);
504 	release_region(ioaddr+0x8000, 16);
505 	release_region(ioaddr+0xc000, 16);
506 
507 	return 0;
508 }
509 
510 /*
511  * Return interface stats
512  */
513 
eexp_stats(struct net_device * dev)514 static struct net_device_stats *eexp_stats(struct net_device *dev)
515 {
516 	struct net_local *lp = (struct net_local *)dev->priv;
517 
518 	return &lp->stats;
519 }
520 
521 /*
522  * This gets called when a higher level thinks we are broken.  Check that
523  * nothing has become jammed in the CU.
524  */
525 
unstick_cu(struct net_device * dev)526 static void unstick_cu(struct net_device *dev)
527 {
528 	struct net_local *lp = (struct net_local *)dev->priv;
529 	unsigned short ioaddr = dev->base_addr;
530 
531 	if (lp->started)
532 	{
533 		if ((jiffies - dev->trans_start)>50)
534 		{
535 			if (lp->tx_link==lp->last_tx_restart)
536 			{
537 				unsigned short boguscount=200,rsst;
538 				printk(KERN_WARNING "%s: Retransmit timed out, status %04x, resetting...\n",
539 				       dev->name, scb_status(dev));
540 				eexp_hw_txinit(dev);
541 				lp->last_tx_restart = 0;
542 				scb_wrcbl(dev, lp->tx_link);
543 				scb_command(dev, SCB_CUstart);
544 				outb(0,ioaddr+SIGNAL_CA);
545 				while (!SCB_complete(rsst=scb_status(dev)))
546 				{
547 					if (!--boguscount)
548 					{
549 						boguscount=200;
550 						printk(KERN_WARNING "%s: Reset timed out status %04x, retrying...\n",
551 						       dev->name,rsst);
552 						scb_wrcbl(dev, lp->tx_link);
553 						scb_command(dev, SCB_CUstart);
554 						outb(0,ioaddr+SIGNAL_CA);
555 					}
556 				}
557 				netif_wake_queue(dev);
558 			}
559 			else
560 			{
561 				unsigned short status = scb_status(dev);
562 				if (SCB_CUdead(status))
563 				{
564 					unsigned short txstatus = eexp_hw_lasttxstat(dev);
565 					printk(KERN_WARNING "%s: Transmit timed out, CU not active status %04x %04x, restarting...\n",
566 					       dev->name, status, txstatus);
567 					eexp_hw_txrestart(dev);
568 				}
569 				else
570 				{
571 					unsigned short txstatus = eexp_hw_lasttxstat(dev);
572 					if (netif_queue_stopped(dev) && !txstatus)
573 					{
574 						printk(KERN_WARNING "%s: CU wedged, status %04x %04x, resetting...\n",
575 						       dev->name,status,txstatus);
576 						eexp_hw_init586(dev);
577 						netif_wake_queue(dev);
578 					}
579 					else
580 					{
581 						printk(KERN_WARNING "%s: transmit timed out\n", dev->name);
582 					}
583 				}
584 			}
585 		}
586 	}
587 	else
588 	{
589 		if ((jiffies-lp->init_time)>10)
590 		{
591 			unsigned short status = scb_status(dev);
592 			printk(KERN_WARNING "%s: i82586 startup timed out, status %04x, resetting...\n",
593 			       dev->name, status);
594 			eexp_hw_init586(dev);
595 			netif_wake_queue(dev);
596 		}
597 	}
598 }
599 
eexp_timeout(struct net_device * dev)600 static void eexp_timeout(struct net_device *dev)
601 {
602 	struct net_local *lp = (struct net_local *)dev->priv;
603 #ifdef CONFIG_SMP
604 	unsigned long flags;
605 #endif
606 	int status;
607 
608 	disable_irq(dev->irq);
609 
610 	/*
611 	 *	Best would be to use synchronize_irq(); spin_lock() here
612 	 *	lets make it work first..
613 	 */
614 
615 #ifdef CONFIG_SMP
616 	spin_lock_irqsave(&lp->lock, flags);
617 #endif
618 
619 	status = scb_status(dev);
620 	unstick_cu(dev);
621 	printk(KERN_INFO "%s: transmit timed out, %s?\n", dev->name,
622 	       (SCB_complete(status)?"lost interrupt":
623 		"board on fire"));
624 	lp->stats.tx_errors++;
625 	lp->last_tx = jiffies;
626 	if (!SCB_complete(status)) {
627 		scb_command(dev, SCB_CUabort);
628 		outb(0,dev->base_addr+SIGNAL_CA);
629 	}
630 	netif_wake_queue(dev);
631 #ifdef CONFIG_SMP
632 	spin_unlock_irqrestore(&lp->lock, flags);
633 #endif
634 }
635 
636 /*
637  * Called to transmit a packet, or to allow us to right ourselves
638  * if the kernel thinks we've died.
639  */
eexp_xmit(struct sk_buff * buf,struct net_device * dev)640 static int eexp_xmit(struct sk_buff *buf, struct net_device *dev)
641 {
642 	struct net_local *lp = (struct net_local *)dev->priv;
643 	short length = buf->len;
644 #ifdef CONFIG_SMP
645 	unsigned long flags;
646 #endif
647 
648 #if NET_DEBUG > 6
649 	printk(KERN_DEBUG "%s: eexp_xmit()\n", dev->name);
650 #endif
651 
652 	if(buf->len < ETH_ZLEN)
653 	{
654 		buf = skb_padto(buf, ETH_ZLEN);
655 		if(buf == NULL)
656 			return 0;
657 		length = ETH_ZLEN;
658 	}
659 
660 	disable_irq(dev->irq);
661 
662 	/*
663 	 *	Best would be to use synchronize_irq(); spin_lock() here
664 	 *	lets make it work first..
665 	 */
666 
667 #ifdef CONFIG_SMP
668 	spin_lock_irqsave(&lp->lock, flags);
669 #endif
670 
671 	{
672 		unsigned short *data = (unsigned short *)buf->data;
673 
674 		lp->stats.tx_bytes += length;
675 
676 	        eexp_hw_tx_pio(dev,data,length);
677 	}
678 	dev_kfree_skb(buf);
679 #ifdef CONFIG_SMP
680 	spin_unlock_irqrestore(&lp->lock, flags);
681 #endif
682 	enable_irq(dev->irq);
683 	return 0;
684 }
685 
686 /*
687  * Handle an EtherExpress interrupt
688  * If we've finished initializing, start the RU and CU up.
689  * If we've already started, reap tx buffers, handle any received packets,
690  * check to make sure we've not become wedged.
691  */
692 
693 /*
694  * Handle an EtherExpress interrupt
695  * If we've finished initializing, start the RU and CU up.
696  * If we've already started, reap tx buffers, handle any received packets,
697  * check to make sure we've not become wedged.
698  */
699 
eexp_start_irq(struct net_device * dev,unsigned short status)700 static unsigned short eexp_start_irq(struct net_device *dev,
701 				     unsigned short status)
702 {
703 	unsigned short ack_cmd = SCB_ack(status);
704 	struct net_local *lp = (struct net_local *)dev->priv;
705 	unsigned short ioaddr = dev->base_addr;
706 	if ((dev->flags & IFF_UP) && !(lp->started & STARTED_CU)) {
707 		short diag_status, tdr_status;
708 		while (SCB_CUstat(status)==2)
709 			status = scb_status(dev);
710 #if NET_DEBUG > 4
711 		printk("%s: CU went non-active (status %04x)\n",
712 		       dev->name, status);
713 #endif
714 
715 		outw(CONF_DIAG_RESULT & ~31, ioaddr + SM_PTR);
716 		diag_status = inw(ioaddr + SHADOW(CONF_DIAG_RESULT));
717 		if (diag_status & 1<<11) {
718 			printk(KERN_WARNING "%s: 82586 failed self-test\n",
719 			       dev->name);
720 		} else if (!(diag_status & 1<<13)) {
721 			printk(KERN_WARNING "%s: 82586 self-test failed to complete\n", dev->name);
722 		}
723 
724 		outw(CONF_TDR_RESULT & ~31, ioaddr + SM_PTR);
725 		tdr_status = inw(ioaddr + SHADOW(CONF_TDR_RESULT));
726 		if (tdr_status & (TDR_SHORT|TDR_OPEN)) {
727 			printk(KERN_WARNING "%s: TDR reports cable %s at %d tick%s\n", dev->name, (tdr_status & TDR_SHORT)?"short":"broken", tdr_status & TDR_TIME, ((tdr_status & TDR_TIME) != 1) ? "s" : "");
728 		}
729 		else if (tdr_status & TDR_XCVRPROBLEM) {
730 			printk(KERN_WARNING "%s: TDR reports transceiver problem\n", dev->name);
731 		}
732 		else if (tdr_status & TDR_LINKOK) {
733 #if NET_DEBUG > 4
734 			printk(KERN_DEBUG "%s: TDR reports link OK\n", dev->name);
735 #endif
736 		} else {
737 			printk("%s: TDR is ga-ga (status %04x)\n", dev->name,
738 			       tdr_status);
739 		}
740 
741 		lp->started |= STARTED_CU;
742 		scb_wrcbl(dev, lp->tx_link);
743 		/* if the RU isn't running, start it now */
744 		if (!(lp->started & STARTED_RU)) {
745 			ack_cmd |= SCB_RUstart;
746 			scb_wrrfa(dev, lp->rx_buf_start);
747 			lp->rx_ptr = lp->rx_buf_start;
748 			lp->started |= STARTED_RU;
749 		}
750 		ack_cmd |= SCB_CUstart | 0x2000;
751 	}
752 
753 	if ((dev->flags & IFF_UP) && !(lp->started & STARTED_RU) && SCB_RUstat(status)==4)
754 		lp->started|=STARTED_RU;
755 
756 	return ack_cmd;
757 }
758 
eexp_cmd_clear(struct net_device * dev)759 static void eexp_cmd_clear(struct net_device *dev)
760 {
761 	unsigned long int oldtime = jiffies;
762 	while (scb_rdcmd(dev) && ((jiffies-oldtime)<10));
763 	if (scb_rdcmd(dev)) {
764 		printk("%s: command didn't clear\n", dev->name);
765 	}
766 }
767 
eexp_irq(int irq,void * dev_info,struct pt_regs * regs)768 static void eexp_irq(int irq, void *dev_info, struct pt_regs *regs)
769 {
770 	struct net_device *dev = dev_info;
771 	struct net_local *lp;
772 	unsigned short ioaddr,status,ack_cmd;
773 	unsigned short old_read_ptr, old_write_ptr;
774 
775 	if (dev==NULL)
776 	{
777 		printk(KERN_WARNING "eexpress: irq %d for unknown device\n",
778 		       irq);
779 		return;
780 	}
781 
782 	lp = (struct net_local *)dev->priv;
783 	ioaddr = dev->base_addr;
784 
785 	spin_lock(&lp->lock);
786 
787 	old_read_ptr = inw(ioaddr+READ_PTR);
788 	old_write_ptr = inw(ioaddr+WRITE_PTR);
789 
790 	outb(SIRQ_dis|irqrmap[irq],ioaddr+SET_IRQ);
791 
792 
793 	status = scb_status(dev);
794 
795 #if NET_DEBUG > 4
796 	printk(KERN_DEBUG "%s: interrupt (status %x)\n", dev->name, status);
797 #endif
798 
799 	if (lp->started == (STARTED_CU | STARTED_RU)) {
800 
801 		do {
802 			eexp_cmd_clear(dev);
803 
804 			ack_cmd = SCB_ack(status);
805 			scb_command(dev, ack_cmd);
806 			outb(0,ioaddr+SIGNAL_CA);
807 
808 			eexp_cmd_clear(dev);
809 
810 			if (SCB_complete(status)) {
811 				if (!eexp_hw_lasttxstat(dev)) {
812 					printk("%s: tx interrupt but no status\n", dev->name);
813 				}
814 			}
815 
816 			if (SCB_rxdframe(status))
817 				eexp_hw_rx_pio(dev);
818 
819 			status = scb_status(dev);
820 		} while (status & 0xc000);
821 
822 		if (SCB_RUdead(status))
823 		{
824 			printk(KERN_WARNING "%s: RU stopped: status %04x\n",
825 			       dev->name,status);
826 #if 0
827 			printk(KERN_WARNING "%s: cur_rfd=%04x, cur_rbd=%04x\n", dev->name, lp->cur_rfd, lp->cur_rbd);
828 			outw(lp->cur_rfd, ioaddr+READ_PTR);
829 			printk(KERN_WARNING "%s: [%04x]\n", dev->name, inw(ioaddr+DATAPORT));
830 			outw(lp->cur_rfd+6, ioaddr+READ_PTR);
831 			printk(KERN_WARNING "%s: rbd is %04x\n", dev->name, rbd= inw(ioaddr+DATAPORT));
832 			outw(rbd, ioaddr+READ_PTR);
833 			printk(KERN_WARNING "%s: [%04x %04x] ", dev->name, inw(ioaddr+DATAPORT), inw(ioaddr+DATAPORT));
834 			outw(rbd+8, ioaddr+READ_PTR);
835 			printk("[%04x]\n", inw(ioaddr+DATAPORT));
836 #endif
837 			lp->stats.rx_errors++;
838 #if 1
839 		        eexp_hw_rxinit(dev);
840 #else
841 			lp->cur_rfd = lp->first_rfd;
842 #endif
843 			scb_wrrfa(dev, lp->rx_buf_start);
844 			scb_command(dev, SCB_RUstart);
845 			outb(0,ioaddr+SIGNAL_CA);
846 		}
847 	} else {
848 		if (status & 0x8000)
849 			ack_cmd = eexp_start_irq(dev, status);
850 		else
851 			ack_cmd = SCB_ack(status);
852 		scb_command(dev, ack_cmd);
853 		outb(0,ioaddr+SIGNAL_CA);
854 	}
855 
856 	eexp_cmd_clear(dev);
857 
858 	outb(SIRQ_en|irqrmap[irq],ioaddr+SET_IRQ);
859 
860 #if NET_DEBUG > 6
861 	printk("%s: leaving eexp_irq()\n", dev->name);
862 #endif
863 	outw(old_read_ptr, ioaddr+READ_PTR);
864 	outw(old_write_ptr, ioaddr+WRITE_PTR);
865 
866 	spin_unlock(&lp->lock);
867 	return;
868 }
869 
870 /*
871  * Hardware access functions
872  */
873 
874 /*
875  * Set the cable type to use.
876  */
877 
eexp_hw_set_interface(struct net_device * dev)878 static void eexp_hw_set_interface(struct net_device *dev)
879 {
880 	unsigned char oldval = inb(dev->base_addr + 0x300e);
881 	oldval &= ~0x82;
882 	switch (dev->if_port) {
883 	case TPE:
884 		oldval |= 0x2;
885 	case BNC:
886 		oldval |= 0x80;
887 		break;
888 	}
889 	outb(oldval, dev->base_addr+0x300e);
890 	mdelay(20);
891 }
892 
893 /*
894  * Check all the receive buffers, and hand any received packets
895  * to the upper levels. Basic sanity check on each frame
896  * descriptor, though we don't bother trying to fix broken ones.
897  */
898 
eexp_hw_rx_pio(struct net_device * dev)899 static void eexp_hw_rx_pio(struct net_device *dev)
900 {
901 	struct net_local *lp = (struct net_local *)dev->priv;
902 	unsigned short rx_block = lp->rx_ptr;
903 	unsigned short boguscount = lp->num_rx_bufs;
904 	unsigned short ioaddr = dev->base_addr;
905 	unsigned short status;
906 
907 #if NET_DEBUG > 6
908 	printk(KERN_DEBUG "%s: eexp_hw_rx()\n", dev->name);
909 #endif
910 
911  	do {
912  		unsigned short rfd_cmd, rx_next, pbuf, pkt_len;
913 
914 		outw(rx_block, ioaddr + READ_PTR);
915 		status = inw(ioaddr + DATAPORT);
916 
917 		if (FD_Done(status))
918 		{
919 			rfd_cmd = inw(ioaddr + DATAPORT);
920 			rx_next = inw(ioaddr + DATAPORT);
921 			pbuf = inw(ioaddr + DATAPORT);
922 
923 			outw(pbuf, ioaddr + READ_PTR);
924 			pkt_len = inw(ioaddr + DATAPORT);
925 
926 			if (rfd_cmd!=0x0000)
927   			{
928 				printk(KERN_WARNING "%s: rfd_cmd not zero:0x%04x\n",
929 				       dev->name, rfd_cmd);
930 				continue;
931 			}
932 			else if (pbuf!=rx_block+0x16)
933 			{
934 				printk(KERN_WARNING "%s: rfd and rbd out of sync 0x%04x 0x%04x\n",
935 				       dev->name, rx_block+0x16, pbuf);
936 				continue;
937 			}
938 			else if ((pkt_len & 0xc000)!=0xc000)
939 			{
940 				printk(KERN_WARNING "%s: EOF or F not set on received buffer (%04x)\n",
941 				       dev->name, pkt_len & 0xc000);
942   				continue;
943   			}
944   			else if (!FD_OK(status))
945 			{
946 				lp->stats.rx_errors++;
947 				if (FD_CRC(status))
948 					lp->stats.rx_crc_errors++;
949 				if (FD_Align(status))
950 					lp->stats.rx_frame_errors++;
951 				if (FD_Resrc(status))
952 					lp->stats.rx_fifo_errors++;
953 				if (FD_DMA(status))
954 					lp->stats.rx_over_errors++;
955 				if (FD_Short(status))
956 					lp->stats.rx_length_errors++;
957 			}
958 			else
959 			{
960 				struct sk_buff *skb;
961 				pkt_len &= 0x3fff;
962 				skb = dev_alloc_skb(pkt_len+16);
963 				if (skb == NULL)
964 				{
965 					printk(KERN_WARNING "%s: Memory squeeze, dropping packet\n",dev->name);
966 					lp->stats.rx_dropped++;
967 					break;
968 				}
969 				skb->dev = dev;
970 				skb_reserve(skb, 2);
971 				outw(pbuf+10, ioaddr+READ_PTR);
972 			        insw(ioaddr+DATAPORT, skb_put(skb,pkt_len),(pkt_len+1)>>1);
973 				skb->protocol = eth_type_trans(skb,dev);
974 				netif_rx(skb);
975 				dev->last_rx = jiffies;
976 				lp->stats.rx_packets++;
977 				lp->stats.rx_bytes += pkt_len;
978 			}
979 			outw(rx_block, ioaddr+WRITE_PTR);
980 			outw(0, ioaddr+DATAPORT);
981 			outw(0, ioaddr+DATAPORT);
982 			rx_block = rx_next;
983 		}
984 	} while (FD_Done(status) && boguscount--);
985 	lp->rx_ptr = rx_block;
986 }
987 
988 /*
989  * Hand a packet to the card for transmission
990  * If we get here, we MUST have already checked
991  * to make sure there is room in the transmit
992  * buffer region.
993  */
994 
eexp_hw_tx_pio(struct net_device * dev,unsigned short * buf,unsigned short len)995 static void eexp_hw_tx_pio(struct net_device *dev, unsigned short *buf,
996 		       unsigned short len)
997 {
998 	struct net_local *lp = (struct net_local *)dev->priv;
999 	unsigned short ioaddr = dev->base_addr;
1000 
1001 	if (LOCKUP16 || lp->width) {
1002 		/* Stop the CU so that there is no chance that it
1003 		   jumps off to a bogus address while we are writing the
1004 		   pointer to the next transmit packet in 8-bit mode --
1005 		   this eliminates the "CU wedged" errors in 8-bit mode.
1006 		   (Zoltan Szilagyi 10-12-96) */
1007 		scb_command(dev, SCB_CUsuspend);
1008 		outw(0xFFFF, ioaddr+SIGNAL_CA);
1009 	}
1010 
1011  	outw(lp->tx_head, ioaddr + WRITE_PTR);
1012 
1013 	outw(0x0000, ioaddr + DATAPORT);
1014         outw(Cmd_INT|Cmd_Xmit, ioaddr + DATAPORT);
1015 	outw(lp->tx_head+0x08, ioaddr + DATAPORT);
1016 	outw(lp->tx_head+0x0e, ioaddr + DATAPORT);
1017 
1018 	outw(0x0000, ioaddr + DATAPORT);
1019 	outw(0x0000, ioaddr + DATAPORT);
1020 	outw(lp->tx_head+0x08, ioaddr + DATAPORT);
1021 
1022 	outw(0x8000|len, ioaddr + DATAPORT);
1023 	outw(-1, ioaddr + DATAPORT);
1024 	outw(lp->tx_head+0x16, ioaddr + DATAPORT);
1025 	outw(0, ioaddr + DATAPORT);
1026 
1027         outsw(ioaddr + DATAPORT, buf, (len+1)>>1);
1028 
1029 	outw(lp->tx_tail+0xc, ioaddr + WRITE_PTR);
1030 	outw(lp->tx_head, ioaddr + DATAPORT);
1031 
1032 	dev->trans_start = jiffies;
1033 	lp->tx_tail = lp->tx_head;
1034 	if (lp->tx_head==TX_BUF_START+((lp->num_tx_bufs-1)*TX_BUF_SIZE))
1035 		lp->tx_head = TX_BUF_START;
1036 	else
1037 		lp->tx_head += TX_BUF_SIZE;
1038 	if (lp->tx_head != lp->tx_reap)
1039 		netif_wake_queue(dev);
1040 
1041 	if (LOCKUP16 || lp->width) {
1042 		/* Restart the CU so that the packet can actually
1043 		   be transmitted. (Zoltan Szilagyi 10-12-96) */
1044 		scb_command(dev, SCB_CUresume);
1045 		outw(0xFFFF, ioaddr+SIGNAL_CA);
1046 	}
1047 
1048 	lp->stats.tx_packets++;
1049 	lp->last_tx = jiffies;
1050 }
1051 
1052 /*
1053  * Sanity check the suspected EtherExpress card
1054  * Read hardware address, reset card, size memory and initialize buffer
1055  * memory pointers. These are held in dev->priv, in case someone has more
1056  * than one card in a machine.
1057  */
1058 
eexp_hw_probe(struct net_device * dev,unsigned short ioaddr)1059 static int __init eexp_hw_probe(struct net_device *dev, unsigned short ioaddr)
1060 {
1061 	unsigned short hw_addr[3];
1062 	unsigned char buswidth;
1063 	unsigned int memory_size;
1064 	int i;
1065 	unsigned short xsum = 0;
1066 	struct net_local *lp;
1067 
1068 	printk("%s: EtherExpress 16 at %#x ",dev->name,ioaddr);
1069 
1070 	outb(ASIC_RST, ioaddr+EEPROM_Ctrl);
1071 	outb(0, ioaddr+EEPROM_Ctrl);
1072 	udelay(500);
1073 	outb(i586_RST, ioaddr+EEPROM_Ctrl);
1074 
1075 	hw_addr[0] = eexp_hw_readeeprom(ioaddr,2);
1076 	hw_addr[1] = eexp_hw_readeeprom(ioaddr,3);
1077 	hw_addr[2] = eexp_hw_readeeprom(ioaddr,4);
1078 
1079 	/* Standard Address or Compaq LTE Address */
1080 	if (!((hw_addr[2]==0x00aa && ((hw_addr[1] & 0xff00)==0x0000)) ||
1081 	      (hw_addr[2]==0x0080 && ((hw_addr[1] & 0xff00)==0x5F00))))
1082 	{
1083 		printk(" rejected: invalid address %04x%04x%04x\n",
1084 			hw_addr[2],hw_addr[1],hw_addr[0]);
1085 		return -ENODEV;
1086 	}
1087 
1088 	/* Calculate the EEPROM checksum.  Carry on anyway if it's bad,
1089 	 * though.
1090 	 */
1091 	for (i = 0; i < 64; i++)
1092 		xsum += eexp_hw_readeeprom(ioaddr, i);
1093 	if (xsum != 0xbaba)
1094 		printk(" (bad EEPROM xsum 0x%02x)", xsum);
1095 
1096 	dev->base_addr = ioaddr;
1097 	for ( i=0 ; i<6 ; i++ )
1098 		dev->dev_addr[i] = ((unsigned char *)hw_addr)[5-i];
1099 
1100 	{
1101 		static char irqmap[]={0, 9, 3, 4, 5, 10, 11, 0};
1102 		unsigned short setupval = eexp_hw_readeeprom(ioaddr,0);
1103 
1104 		/* Use the IRQ from EEPROM if none was given */
1105 		if (!dev->irq)
1106 			dev->irq = irqmap[setupval>>13];
1107 
1108 		if (dev->if_port == 0xff) {
1109 			dev->if_port = !(setupval & 0x1000) ? AUI :
1110 				eexp_hw_readeeprom(ioaddr,5) & 0x1 ? TPE : BNC;
1111 		}
1112 
1113 		buswidth = !((setupval & 0x400) >> 10);
1114 	}
1115 
1116 	dev->priv = lp = kmalloc(sizeof(struct net_local), GFP_KERNEL);
1117 	if (!dev->priv)
1118 		return -ENOMEM;
1119 
1120 	memset(dev->priv, 0, sizeof(struct net_local));
1121 	spin_lock_init(&lp->lock);
1122 
1123  	printk("(IRQ %d, %s connector, %d-bit bus", dev->irq,
1124  	       eexp_ifmap[dev->if_port], buswidth?8:16);
1125 
1126  	eexp_hw_set_interface(dev);
1127 
1128 	/* Find out how much RAM we have on the card */
1129 	outw(0, dev->base_addr + WRITE_PTR);
1130 	for (i = 0; i < 32768; i++)
1131 		outw(0, dev->base_addr + DATAPORT);
1132 
1133         for (memory_size = 0; memory_size < 64; memory_size++)
1134 	{
1135 		outw(memory_size<<10, dev->base_addr + READ_PTR);
1136 		if (inw(dev->base_addr+DATAPORT))
1137 			break;
1138 		outw(memory_size<<10, dev->base_addr + WRITE_PTR);
1139 		outw(memory_size | 0x5000, dev->base_addr+DATAPORT);
1140 		outw(memory_size<<10, dev->base_addr + READ_PTR);
1141 		if (inw(dev->base_addr+DATAPORT) != (memory_size | 0x5000))
1142 			break;
1143 	}
1144 
1145 	/* Sort out the number of buffers.  We may have 16, 32, 48 or 64k
1146 	 * of RAM to play with.
1147 	 */
1148 	lp->num_tx_bufs = 4;
1149 	lp->rx_buf_end = 0x3ff6;
1150 	switch (memory_size)
1151 	{
1152 	case 64:
1153 		lp->rx_buf_end += 0x4000;
1154 	case 48:
1155 		lp->num_tx_bufs += 4;
1156 		lp->rx_buf_end += 0x4000;
1157 	case 32:
1158 		lp->rx_buf_end += 0x4000;
1159 	case 16:
1160 		printk(", %dk RAM)\n", memory_size);
1161 		break;
1162 	default:
1163 		printk(") bad memory size (%dk).\n", memory_size);
1164 		kfree(dev->priv);
1165 		return -ENODEV;
1166 		break;
1167 	}
1168 
1169 	lp->rx_buf_start = TX_BUF_START + (lp->num_tx_bufs*TX_BUF_SIZE);
1170 	lp->width = buswidth;
1171 
1172 	dev->open = eexp_open;
1173 	dev->stop = eexp_close;
1174 	dev->hard_start_xmit = eexp_xmit;
1175 	dev->get_stats = eexp_stats;
1176 	dev->set_multicast_list = &eexp_set_multicast;
1177 	dev->tx_timeout = eexp_timeout;
1178 	dev->watchdog_timeo = 2*HZ;
1179 	ether_setup(dev);
1180 	return 0;
1181 }
1182 
1183 /*
1184  * Read a word from the EtherExpress on-board serial EEPROM.
1185  * The EEPROM contains 64 words of 16 bits.
1186  */
eexp_hw_readeeprom(unsigned short ioaddr,unsigned char location)1187 static unsigned short __init eexp_hw_readeeprom(unsigned short ioaddr,
1188 						    unsigned char location)
1189 {
1190 	unsigned short cmd = 0x180|(location&0x7f);
1191 	unsigned short rval = 0,wval = EC_CS|i586_RST;
1192 	int i;
1193 
1194 	outb(EC_CS|i586_RST,ioaddr+EEPROM_Ctrl);
1195 	for (i=0x100 ; i ; i>>=1 )
1196 	{
1197 		if (cmd&i)
1198 			wval |= EC_Wr;
1199 		else
1200 			wval &= ~EC_Wr;
1201 
1202 		outb(wval,ioaddr+EEPROM_Ctrl);
1203 		outb(wval|EC_Clk,ioaddr+EEPROM_Ctrl);
1204 		eeprom_delay();
1205 		outb(wval,ioaddr+EEPROM_Ctrl);
1206 		eeprom_delay();
1207 	}
1208 	wval &= ~EC_Wr;
1209 	outb(wval,ioaddr+EEPROM_Ctrl);
1210 	for (i=0x8000 ; i ; i>>=1 )
1211 	{
1212 		outb(wval|EC_Clk,ioaddr+EEPROM_Ctrl);
1213 		eeprom_delay();
1214 		if (inb(ioaddr+EEPROM_Ctrl)&EC_Rd)
1215 			rval |= i;
1216 		outb(wval,ioaddr+EEPROM_Ctrl);
1217 		eeprom_delay();
1218 	}
1219 	wval &= ~EC_CS;
1220 	outb(wval|EC_Clk,ioaddr+EEPROM_Ctrl);
1221 	eeprom_delay();
1222 	outb(wval,ioaddr+EEPROM_Ctrl);
1223 	eeprom_delay();
1224 	return rval;
1225 }
1226 
1227 /*
1228  * Reap tx buffers and return last transmit status.
1229  * if ==0 then either:
1230  *    a) we're not transmitting anything, so why are we here?
1231  *    b) we've died.
1232  * otherwise, Stat_Busy(return) means we've still got some packets
1233  * to transmit, Stat_Done(return) means our buffers should be empty
1234  * again
1235  */
1236 
eexp_hw_lasttxstat(struct net_device * dev)1237 static unsigned short eexp_hw_lasttxstat(struct net_device *dev)
1238 {
1239 	struct net_local *lp = (struct net_local *)dev->priv;
1240 	unsigned short tx_block = lp->tx_reap;
1241 	unsigned short status;
1242 
1243 	if (!netif_queue_stopped(dev) && lp->tx_head==lp->tx_reap)
1244 		return 0x0000;
1245 
1246 	do
1247 	{
1248 		outw(tx_block & ~31, dev->base_addr + SM_PTR);
1249 		status = inw(dev->base_addr + SHADOW(tx_block));
1250 		if (!Stat_Done(status))
1251 		{
1252 			lp->tx_link = tx_block;
1253 			return status;
1254 		}
1255 		else
1256 		{
1257 			lp->last_tx_restart = 0;
1258 			lp->stats.collisions += Stat_NoColl(status);
1259 			if (!Stat_OK(status))
1260 			{
1261 				char *whatsup = NULL;
1262 				lp->stats.tx_errors++;
1263   				if (Stat_Abort(status))
1264   					lp->stats.tx_aborted_errors++;
1265 				if (Stat_TNoCar(status)) {
1266 					whatsup = "aborted, no carrier";
1267 					lp->stats.tx_carrier_errors++;
1268 				}
1269 				if (Stat_TNoCTS(status)) {
1270 					whatsup = "aborted, lost CTS";
1271   					lp->stats.tx_carrier_errors++;
1272 				}
1273 				if (Stat_TNoDMA(status)) {
1274 					whatsup = "FIFO underran";
1275   					lp->stats.tx_fifo_errors++;
1276 				}
1277 				if (Stat_TXColl(status)) {
1278 					whatsup = "aborted, too many collisions";
1279 					lp->stats.tx_aborted_errors++;
1280 				}
1281 				if (whatsup)
1282 					printk(KERN_INFO "%s: transmit %s\n",
1283 					       dev->name, whatsup);
1284 			}
1285 			else
1286 				lp->stats.tx_packets++;
1287 		}
1288 		if (tx_block == TX_BUF_START+((lp->num_tx_bufs-1)*TX_BUF_SIZE))
1289 			lp->tx_reap = tx_block = TX_BUF_START;
1290 		else
1291 			lp->tx_reap = tx_block += TX_BUF_SIZE;
1292 		netif_wake_queue(dev);
1293 	}
1294 	while (lp->tx_reap != lp->tx_head);
1295 
1296 	lp->tx_link = lp->tx_tail + 0x08;
1297 
1298 	return status;
1299 }
1300 
1301 /*
1302  * This should never happen. It is called when some higher routine detects
1303  * that the CU has stopped, to try to restart it from the last packet we knew
1304  * we were working on, or the idle loop if we had finished for the time.
1305  */
1306 
eexp_hw_txrestart(struct net_device * dev)1307 static void eexp_hw_txrestart(struct net_device *dev)
1308 {
1309 	struct net_local *lp = (struct net_local *)dev->priv;
1310 	unsigned short ioaddr = dev->base_addr;
1311 
1312 	lp->last_tx_restart = lp->tx_link;
1313 	scb_wrcbl(dev, lp->tx_link);
1314 	scb_command(dev, SCB_CUstart);
1315 	outb(0,ioaddr+SIGNAL_CA);
1316 
1317 	{
1318 		unsigned short boguscount=50,failcount=5;
1319 		while (!scb_status(dev))
1320 		{
1321 			if (!--boguscount)
1322 			{
1323 				if (--failcount)
1324 				{
1325 					printk(KERN_WARNING "%s: CU start timed out, status %04x, cmd %04x\n", dev->name, scb_status(dev), scb_rdcmd(dev));
1326 				        scb_wrcbl(dev, lp->tx_link);
1327 					scb_command(dev, SCB_CUstart);
1328 					outb(0,ioaddr+SIGNAL_CA);
1329 					boguscount = 100;
1330 				}
1331 				else
1332 				{
1333 					printk(KERN_WARNING "%s: Failed to restart CU, resetting board...\n",dev->name);
1334 					eexp_hw_init586(dev);
1335 					netif_wake_queue(dev);
1336 					return;
1337 				}
1338 			}
1339 		}
1340 	}
1341 }
1342 
1343 /*
1344  * Writes down the list of transmit buffers into card memory.  Each
1345  * entry consists of an 82586 transmit command, followed by a jump
1346  * pointing to itself.  When we want to transmit a packet, we write
1347  * the data into the appropriate transmit buffer and then modify the
1348  * preceding jump to point at the new transmit command.  This means that
1349  * the 586 command unit is continuously active.
1350  */
1351 
eexp_hw_txinit(struct net_device * dev)1352 static void eexp_hw_txinit(struct net_device *dev)
1353 {
1354 	struct net_local *lp = (struct net_local *)dev->priv;
1355 	unsigned short tx_block = TX_BUF_START;
1356 	unsigned short curtbuf;
1357 	unsigned short ioaddr = dev->base_addr;
1358 
1359 	for ( curtbuf=0 ; curtbuf<lp->num_tx_bufs ; curtbuf++ )
1360 	{
1361 		outw(tx_block, ioaddr + WRITE_PTR);
1362 
1363 	        outw(0x0000, ioaddr + DATAPORT);
1364 		outw(Cmd_INT|Cmd_Xmit, ioaddr + DATAPORT);
1365 		outw(tx_block+0x08, ioaddr + DATAPORT);
1366 		outw(tx_block+0x0e, ioaddr + DATAPORT);
1367 
1368 		outw(0x0000, ioaddr + DATAPORT);
1369 		outw(0x0000, ioaddr + DATAPORT);
1370 		outw(tx_block+0x08, ioaddr + DATAPORT);
1371 
1372 		outw(0x8000, ioaddr + DATAPORT);
1373 		outw(-1, ioaddr + DATAPORT);
1374 		outw(tx_block+0x16, ioaddr + DATAPORT);
1375 		outw(0x0000, ioaddr + DATAPORT);
1376 
1377 		tx_block += TX_BUF_SIZE;
1378 	}
1379 	lp->tx_head = TX_BUF_START;
1380 	lp->tx_reap = TX_BUF_START;
1381 	lp->tx_tail = tx_block - TX_BUF_SIZE;
1382 	lp->tx_link = lp->tx_tail + 0x08;
1383 	lp->rx_buf_start = tx_block;
1384 
1385 }
1386 
1387 /*
1388  * Write the circular list of receive buffer descriptors to card memory.
1389  * The end of the list isn't marked, which means that the 82586 receive
1390  * unit will loop until buffers become available (this avoids it giving us
1391  * "out of resources" messages).
1392  */
1393 
eexp_hw_rxinit(struct net_device * dev)1394 static void eexp_hw_rxinit(struct net_device *dev)
1395 {
1396 	struct net_local *lp = (struct net_local *)dev->priv;
1397 	unsigned short rx_block = lp->rx_buf_start;
1398 	unsigned short ioaddr = dev->base_addr;
1399 
1400 	lp->num_rx_bufs = 0;
1401 	lp->rx_first = lp->rx_ptr = rx_block;
1402 	do
1403 	{
1404 		lp->num_rx_bufs++;
1405 
1406 		outw(rx_block, ioaddr + WRITE_PTR);
1407 
1408 		outw(0, ioaddr + DATAPORT);  outw(0, ioaddr+DATAPORT);
1409 		outw(rx_block + RX_BUF_SIZE, ioaddr+DATAPORT);
1410 		outw(0xffff, ioaddr+DATAPORT);
1411 
1412 		outw(0x0000, ioaddr+DATAPORT);
1413 		outw(0xdead, ioaddr+DATAPORT);
1414 		outw(0xdead, ioaddr+DATAPORT);
1415 		outw(0xdead, ioaddr+DATAPORT);
1416 		outw(0xdead, ioaddr+DATAPORT);
1417 		outw(0xdead, ioaddr+DATAPORT);
1418 		outw(0xdead, ioaddr+DATAPORT);
1419 
1420 		outw(0x0000, ioaddr+DATAPORT);
1421 		outw(rx_block + RX_BUF_SIZE + 0x16, ioaddr+DATAPORT);
1422 		outw(rx_block + 0x20, ioaddr+DATAPORT);
1423 		outw(0, ioaddr+DATAPORT);
1424 		outw(RX_BUF_SIZE-0x20, ioaddr+DATAPORT);
1425 
1426 		lp->rx_last = rx_block;
1427 		rx_block += RX_BUF_SIZE;
1428 	} while (rx_block <= lp->rx_buf_end-RX_BUF_SIZE);
1429 
1430 
1431 	/* Make first Rx frame descriptor point to first Rx buffer
1432            descriptor */
1433 	outw(lp->rx_first + 6, ioaddr+WRITE_PTR);
1434 	outw(lp->rx_first + 0x16, ioaddr+DATAPORT);
1435 
1436 	/* Close Rx frame descriptor ring */
1437   	outw(lp->rx_last + 4, ioaddr+WRITE_PTR);
1438   	outw(lp->rx_first, ioaddr+DATAPORT);
1439 
1440 	/* Close Rx buffer descriptor ring */
1441 	outw(lp->rx_last + 0x16 + 2, ioaddr+WRITE_PTR);
1442 	outw(lp->rx_first + 0x16, ioaddr+DATAPORT);
1443 
1444 }
1445 
1446 /*
1447  * Un-reset the 586, and start the configuration sequence. We don't wait for
1448  * this to finish, but allow the interrupt handler to start the CU and RU for
1449  * us.  We can't start the receive/transmission system up before we know that
1450  * the hardware is configured correctly.
1451  */
1452 
eexp_hw_init586(struct net_device * dev)1453 static void eexp_hw_init586(struct net_device *dev)
1454 {
1455 	struct net_local *lp = (struct net_local *)dev->priv;
1456 	unsigned short ioaddr = dev->base_addr;
1457 	int i;
1458 
1459 #if NET_DEBUG > 6
1460 	printk("%s: eexp_hw_init586()\n", dev->name);
1461 #endif
1462 
1463 	lp->started = 0;
1464 
1465 	set_loopback(dev);
1466 
1467 	outb(SIRQ_dis|irqrmap[dev->irq],ioaddr+SET_IRQ);
1468 
1469 	/* Download the startup code */
1470 	outw(lp->rx_buf_end & ~31, ioaddr + SM_PTR);
1471 	outw(lp->width?0x0001:0x0000, ioaddr + 0x8006);
1472 	outw(0x0000, ioaddr + 0x8008);
1473 	outw(0x0000, ioaddr + 0x800a);
1474 	outw(0x0000, ioaddr + 0x800c);
1475 	outw(0x0000, ioaddr + 0x800e);
1476 
1477 	for (i = 0; i < (sizeof(start_code)); i+=32) {
1478 		int j;
1479 		outw(i, ioaddr + SM_PTR);
1480 		for (j = 0; j < 16; j+=2)
1481 			outw(start_code[(i+j)/2],
1482 			     ioaddr+0x4000+j);
1483 		for (j = 0; j < 16; j+=2)
1484 			outw(start_code[(i+j+16)/2],
1485 			     ioaddr+0x8000+j);
1486 	}
1487 
1488 	/* Do we want promiscuous mode or multicast? */
1489 	outw(CONF_PROMISC & ~31, ioaddr+SM_PTR);
1490 	i = inw(ioaddr+SHADOW(CONF_PROMISC));
1491 	outw((dev->flags & IFF_PROMISC)?(i|1):(i & ~1),
1492 	     ioaddr+SHADOW(CONF_PROMISC));
1493 	lp->was_promisc = dev->flags & IFF_PROMISC;
1494 #if 0
1495 	eexp_setup_filter(dev);
1496 #endif
1497 
1498 	/* Write our hardware address */
1499 	outw(CONF_HWADDR & ~31, ioaddr+SM_PTR);
1500 	outw(((unsigned short *)dev->dev_addr)[0], ioaddr+SHADOW(CONF_HWADDR));
1501 	outw(((unsigned short *)dev->dev_addr)[1],
1502 	     ioaddr+SHADOW(CONF_HWADDR+2));
1503 	outw(((unsigned short *)dev->dev_addr)[2],
1504 	     ioaddr+SHADOW(CONF_HWADDR+4));
1505 
1506 	eexp_hw_txinit(dev);
1507 	eexp_hw_rxinit(dev);
1508 
1509 	outb(0,ioaddr+EEPROM_Ctrl);
1510 	mdelay(5);
1511 
1512 	scb_command(dev, 0xf000);
1513 	outb(0,ioaddr+SIGNAL_CA);
1514 
1515 	outw(0, ioaddr+SM_PTR);
1516 
1517 	{
1518 		unsigned short rboguscount=50,rfailcount=5;
1519 		while (inw(ioaddr+0x4000))
1520 		{
1521 			if (!--rboguscount)
1522 			{
1523 				printk(KERN_WARNING "%s: i82586 reset timed out, kicking...\n",
1524 					dev->name);
1525 				scb_command(dev, 0);
1526 				outb(0,ioaddr+SIGNAL_CA);
1527 				rboguscount = 100;
1528 				if (!--rfailcount)
1529 				{
1530 					printk(KERN_WARNING "%s: i82586 not responding, giving up.\n",
1531 						dev->name);
1532 					return;
1533 				}
1534 			}
1535 		}
1536 	}
1537 
1538         scb_wrcbl(dev, CONF_LINK);
1539 	scb_command(dev, 0xf000|SCB_CUstart);
1540 	outb(0,ioaddr+SIGNAL_CA);
1541 
1542 	{
1543 		unsigned short iboguscount=50,ifailcount=5;
1544 		while (!scb_status(dev))
1545 		{
1546 			if (!--iboguscount)
1547 			{
1548 				if (--ifailcount)
1549 				{
1550 					printk(KERN_WARNING "%s: i82586 initialization timed out, status %04x, cmd %04x\n",
1551 						dev->name, scb_status(dev), scb_rdcmd(dev));
1552 					scb_wrcbl(dev, CONF_LINK);
1553 				        scb_command(dev, 0xf000|SCB_CUstart);
1554 					outb(0,ioaddr+SIGNAL_CA);
1555 					iboguscount = 100;
1556 				}
1557 				else
1558 				{
1559 					printk(KERN_WARNING "%s: Failed to initialize i82586, giving up.\n",dev->name);
1560 					return;
1561 				}
1562 			}
1563 		}
1564 	}
1565 
1566 	clear_loopback(dev);
1567 	outb(SIRQ_en|irqrmap[dev->irq],ioaddr+SET_IRQ);
1568 
1569 	lp->init_time = jiffies;
1570 #if NET_DEBUG > 6
1571         printk("%s: leaving eexp_hw_init586()\n", dev->name);
1572 #endif
1573 	return;
1574 }
1575 
eexp_setup_filter(struct net_device * dev)1576 static void eexp_setup_filter(struct net_device *dev)
1577 {
1578 	struct dev_mc_list *dmi = dev->mc_list;
1579 	unsigned short ioaddr = dev->base_addr;
1580 	int count = dev->mc_count;
1581 	int i;
1582 	if (count > 8) {
1583 		printk(KERN_INFO "%s: too many multicast addresses (%d)\n",
1584 		       dev->name, count);
1585 		count = 8;
1586 	}
1587 
1588 	outw(CONF_NR_MULTICAST & ~31, ioaddr+SM_PTR);
1589 	outw(count, ioaddr+SHADOW(CONF_NR_MULTICAST));
1590 	for (i = 0; i < count; i++) {
1591 		unsigned short *data = (unsigned short *)dmi->dmi_addr;
1592 		if (!dmi) {
1593 			printk(KERN_INFO "%s: too few multicast addresses\n", dev->name);
1594 			break;
1595 		}
1596 		if (dmi->dmi_addrlen != ETH_ALEN) {
1597 			printk(KERN_INFO "%s: invalid multicast address length given.\n", dev->name);
1598 			continue;
1599 		}
1600 		outw((CONF_MULTICAST+(6*i)) & ~31, ioaddr+SM_PTR);
1601 		outw(data[0], ioaddr+SHADOW(CONF_MULTICAST+(6*i)));
1602 		outw((CONF_MULTICAST+(6*i)+2) & ~31, ioaddr+SM_PTR);
1603 		outw(data[1], ioaddr+SHADOW(CONF_MULTICAST+(6*i)+2));
1604 		outw((CONF_MULTICAST+(6*i)+4) & ~31, ioaddr+SM_PTR);
1605 		outw(data[2], ioaddr+SHADOW(CONF_MULTICAST+(6*i)+4));
1606 	}
1607 }
1608 
1609 /*
1610  * Set or clear the multicast filter for this adaptor.
1611  */
1612 static void
eexp_set_multicast(struct net_device * dev)1613 eexp_set_multicast(struct net_device *dev)
1614 {
1615         unsigned short ioaddr = dev->base_addr;
1616         struct net_local *lp = (struct net_local *)dev->priv;
1617         int kick = 0, i;
1618         if ((dev->flags & IFF_PROMISC) != lp->was_promisc) {
1619                 outw(CONF_PROMISC & ~31, ioaddr+SM_PTR);
1620                 i = inw(ioaddr+SHADOW(CONF_PROMISC));
1621                 outw((dev->flags & IFF_PROMISC)?(i|1):(i & ~1),
1622                      ioaddr+SHADOW(CONF_PROMISC));
1623                 lp->was_promisc = dev->flags & IFF_PROMISC;
1624                 kick = 1;
1625         }
1626         if (!(dev->flags & IFF_PROMISC)) {
1627                 eexp_setup_filter(dev);
1628                 if (lp->old_mc_count != dev->mc_count) {
1629                         kick = 1;
1630                         lp->old_mc_count = dev->mc_count;
1631                 }
1632         }
1633         if (kick) {
1634                 unsigned long oj;
1635                 scb_command(dev, SCB_CUsuspend);
1636                 outb(0, ioaddr+SIGNAL_CA);
1637                 outb(0, ioaddr+SIGNAL_CA);
1638 #if 0
1639                 printk("%s: waiting for CU to go suspended\n", dev->name);
1640 #endif
1641                 oj = jiffies;
1642                 while ((SCB_CUstat(scb_status(dev)) == 2) &&
1643                        ((jiffies-oj) < 2000));
1644 		if (SCB_CUstat(scb_status(dev)) == 2)
1645 			printk("%s: warning, CU didn't stop\n", dev->name);
1646                 lp->started &= ~(STARTED_CU);
1647                 scb_wrcbl(dev, CONF_LINK);
1648                 scb_command(dev, SCB_CUstart);
1649                 outb(0, ioaddr+SIGNAL_CA);
1650         }
1651 }
1652 
1653 
1654 /*
1655  * MODULE stuff
1656  */
1657 
1658 #ifdef MODULE
1659 
1660 #define EEXP_MAX_CARDS     4    /* max number of cards to support */
1661 
1662 static struct net_device dev_eexp[EEXP_MAX_CARDS];
1663 static int irq[EEXP_MAX_CARDS];
1664 static int io[EEXP_MAX_CARDS];
1665 
1666 MODULE_PARM(io, "1-" __MODULE_STRING(EEXP_MAX_CARDS) "i");
1667 MODULE_PARM(irq, "1-" __MODULE_STRING(EEXP_MAX_CARDS) "i");
1668 MODULE_PARM_DESC(io, "EtherExpress 16 I/O base address(es)");
1669 MODULE_PARM_DESC(irq, "EtherExpress 16 IRQ number(s)");
1670 MODULE_LICENSE("GPL");
1671 
1672 
1673 /* Ideally the user would give us io=, irq= for every card.  If any parameters
1674  * are specified, we verify and then use them.  If no parameters are given, we
1675  * autoprobe for one card only.
1676  */
init_module(void)1677 int init_module(void)
1678 {
1679 	int this_dev, found = 0;
1680 
1681 	for (this_dev = 0; this_dev < EEXP_MAX_CARDS; this_dev++) {
1682 		struct net_device *dev = &dev_eexp[this_dev];
1683 		dev->irq = irq[this_dev];
1684 		dev->base_addr = io[this_dev];
1685 		dev->init = express_probe;
1686 		if (io[this_dev] == 0) {
1687 			if (this_dev) break;
1688 			printk(KERN_NOTICE "eexpress.c: Module autoprobe not recommended, give io=xx.\n");
1689 		}
1690 		if (register_netdev(dev) != 0) {
1691 			printk(KERN_WARNING "eexpress.c: Failed to register card at 0x%x.\n", io[this_dev]);
1692 			if (found != 0) return 0;
1693 			return -ENXIO;
1694 		}
1695 		found++;
1696 	}
1697 	return 0;
1698 }
1699 
cleanup_module(void)1700 void cleanup_module(void)
1701 {
1702 	int this_dev;
1703 
1704 	for (this_dev = 0; this_dev < EEXP_MAX_CARDS; this_dev++) {
1705 		struct net_device *dev = &dev_eexp[this_dev];
1706 		if (dev->priv != NULL) {
1707 			unregister_netdev(dev);
1708 			kfree(dev->priv);
1709 			dev->priv = NULL;
1710 		}
1711 	}
1712 }
1713 #endif
1714 
1715 /*
1716  * Local Variables:
1717  *  c-file-style: "linux"
1718  *  tab-width: 8
1719  * End:
1720  */
1721