1
2 /*
3 * Linux driver for Disk-On-Chip 2000 and Millennium
4 * (c) 1999 Machine Vision Holdings, Inc.
5 * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
6 *
7 * $Id: doc2000.c,v 1.50 2002/12/10 15:05:42 gleixner Exp $
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <asm/errno.h>
13 #include <asm/io.h>
14 #include <asm/uaccess.h>
15 #include <linux/miscdevice.h>
16 #include <linux/pci.h>
17 #include <linux/delay.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/nand.h>
25 #include <linux/mtd/doc2000.h>
26
27 #define DOC_SUPPORT_2000
28 #define DOC_SUPPORT_MILLENNIUM
29
30 #ifdef DOC_SUPPORT_2000
31 #define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
32 #else
33 #define DoC_is_2000(doc) (0)
34 #endif
35
36 #ifdef DOC_SUPPORT_MILLENNIUM
37 #define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
38 #else
39 #define DoC_is_Millennium(doc) (0)
40 #endif
41
42 /* #define ECC_DEBUG */
43
44 /* I have no idea why some DoC chips can not use memcpy_from|to_io().
45 * This may be due to the different revisions of the ASIC controller built-in or
46 * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
47 * this:
48 #undef USE_MEMCPY
49 */
50
51 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
52 size_t *retlen, u_char *buf);
53 static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
54 size_t *retlen, const u_char *buf);
55 static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
56 size_t *retlen, u_char *buf, u_char *eccbuf, int oobsel);
57 static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
58 size_t *retlen, const u_char *buf, u_char *eccbuf, int oobsel);
59 static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
60 size_t *retlen, u_char *buf);
61 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
62 size_t *retlen, const u_char *buf);
63 static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
64 size_t *retlen, const u_char *buf);
65 static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
66
67 static struct mtd_info *doc2klist = NULL;
68
69 /* Perform the required delay cycles by reading from the appropriate register */
DoC_Delay(struct DiskOnChip * doc,unsigned short cycles)70 static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
71 {
72 volatile char dummy;
73 int i;
74
75 for (i = 0; i < cycles; i++) {
76 if (DoC_is_Millennium(doc))
77 dummy = ReadDOC(doc->virtadr, NOP);
78 else
79 dummy = ReadDOC(doc->virtadr, DOCStatus);
80 }
81
82 }
83
84 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
_DoC_WaitReady(struct DiskOnChip * doc)85 static int _DoC_WaitReady(struct DiskOnChip *doc)
86 {
87 unsigned long docptr = doc->virtadr;
88 unsigned long timeo = jiffies + (HZ * 10);
89
90 DEBUG(MTD_DEBUG_LEVEL3,
91 "_DoC_WaitReady called for out-of-line wait\n");
92
93 /* Out-of-line routine to wait for chip response */
94 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
95 if (time_after(jiffies, timeo)) {
96 DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n");
97 return -EIO;
98 }
99 udelay(1);
100 cond_resched();
101 }
102
103 return 0;
104 }
105
DoC_WaitReady(struct DiskOnChip * doc)106 static inline int DoC_WaitReady(struct DiskOnChip *doc)
107 {
108 unsigned long docptr = doc->virtadr;
109 /* This is inline, to optimise the common case, where it's ready instantly */
110 int ret = 0;
111
112 /* 4 read form NOP register should be issued in prior to the read from CDSNControl
113 see Software Requirement 11.4 item 2. */
114 DoC_Delay(doc, 4);
115
116 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
117 /* Call the out-of-line routine to wait */
118 ret = _DoC_WaitReady(doc);
119
120 /* issue 2 read from NOP register after reading from CDSNControl register
121 see Software Requirement 11.4 item 2. */
122 DoC_Delay(doc, 2);
123
124 return ret;
125 }
126
127 /* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
128 bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
129 required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
130
DoC_Command(struct DiskOnChip * doc,unsigned char command,unsigned char xtraflags)131 static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command,
132 unsigned char xtraflags)
133 {
134 unsigned long docptr = doc->virtadr;
135
136 if (DoC_is_2000(doc))
137 xtraflags |= CDSN_CTRL_FLASH_IO;
138
139 /* Assert the CLE (Command Latch Enable) line to the flash chip */
140 WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
141 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
142
143 if (DoC_is_Millennium(doc))
144 WriteDOC(command, docptr, CDSNSlowIO);
145
146 /* Send the command */
147 WriteDOC_(command, docptr, doc->ioreg);
148
149 /* Lower the CLE line */
150 WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
151 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
152
153 /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
154 return DoC_WaitReady(doc);
155 }
156
157 /* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
158 bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
159 required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
160
DoC_Address(struct DiskOnChip * doc,int numbytes,unsigned long ofs,unsigned char xtraflags1,unsigned char xtraflags2)161 static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
162 unsigned char xtraflags1, unsigned char xtraflags2)
163 {
164 unsigned long docptr;
165 int i;
166
167 docptr = doc->virtadr;
168
169 if (DoC_is_2000(doc))
170 xtraflags1 |= CDSN_CTRL_FLASH_IO;
171
172 /* Assert the ALE (Address Latch Enable) line to the flash chip */
173 WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
174
175 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
176
177 /* Send the address */
178 /* Devices with 256-byte page are addressed as:
179 Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
180 * there is no device on the market with page256
181 and more than 24 bits.
182 Devices with 512-byte page are addressed as:
183 Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
184 * 25-31 is sent only if the chip support it.
185 * bit 8 changes the read command to be sent
186 (NAND_CMD_READ0 or NAND_CMD_READ1).
187 */
188
189 if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
190 if (DoC_is_Millennium(doc))
191 WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
192 WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
193 }
194
195 if (doc->page256) {
196 ofs = ofs >> 8;
197 } else {
198 ofs = ofs >> 9;
199 }
200
201 if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
202 for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
203 if (DoC_is_Millennium(doc))
204 WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
205 WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
206 }
207 }
208
209 DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */
210
211 /* FIXME: The SlowIO's for millennium could be replaced by
212 a single WritePipeTerm here. mf. */
213
214 /* Lower the ALE line */
215 WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
216 CDSNControl);
217
218 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
219
220 /* Wait for the chip to respond - Software requirement 11.4.1 */
221 return DoC_WaitReady(doc);
222 }
223
224 /* Read a buffer from DoC, taking care of Millennium odditys */
DoC_ReadBuf(struct DiskOnChip * doc,u_char * buf,int len)225 static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
226 {
227 volatile int dummy;
228 int modulus = 0xffff;
229 unsigned long docptr;
230 int i;
231
232 docptr = doc->virtadr;
233
234 if (len <= 0)
235 return;
236
237 if (DoC_is_Millennium(doc)) {
238 /* Read the data via the internal pipeline through CDSN IO register,
239 see Pipelined Read Operations 11.3 */
240 dummy = ReadDOC(docptr, ReadPipeInit);
241
242 /* Millennium should use the LastDataRead register - Pipeline Reads */
243 len--;
244
245 /* This is needed for correctly ECC calculation */
246 modulus = 0xff;
247 }
248
249 for (i = 0; i < len; i++)
250 buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));
251
252 if (DoC_is_Millennium(doc)) {
253 buf[i] = ReadDOC(docptr, LastDataRead);
254 }
255 }
256
257 /* Write a buffer to DoC, taking care of Millennium odditys */
DoC_WriteBuf(struct DiskOnChip * doc,const u_char * buf,int len)258 static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
259 {
260 unsigned long docptr;
261 int i;
262
263 docptr = doc->virtadr;
264
265 if (len <= 0)
266 return;
267
268 for (i = 0; i < len; i++)
269 WriteDOC_(buf[i], docptr, doc->ioreg + i);
270
271 if (DoC_is_Millennium(doc)) {
272 WriteDOC(0x00, docptr, WritePipeTerm);
273 }
274 }
275
276
277 /* DoC_SelectChip: Select a given flash chip within the current floor */
278
DoC_SelectChip(struct DiskOnChip * doc,int chip)279 static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
280 {
281 unsigned long docptr = doc->virtadr;
282
283 /* Software requirement 11.4.4 before writing DeviceSelect */
284 /* Deassert the CE line to eliminate glitches on the FCE# outputs */
285 WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
286 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
287
288 /* Select the individual flash chip requested */
289 WriteDOC(chip, docptr, CDSNDeviceSelect);
290 DoC_Delay(doc, 4);
291
292 /* Reassert the CE line */
293 WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr,
294 CDSNControl);
295 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
296
297 /* Wait for it to be ready */
298 return DoC_WaitReady(doc);
299 }
300
301 /* DoC_SelectFloor: Select a given floor (bank of flash chips) */
302
DoC_SelectFloor(struct DiskOnChip * doc,int floor)303 static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
304 {
305 unsigned long docptr = doc->virtadr;
306
307 /* Select the floor (bank) of chips required */
308 WriteDOC(floor, docptr, FloorSelect);
309
310 /* Wait for the chip to be ready */
311 return DoC_WaitReady(doc);
312 }
313
314 /* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
315
DoC_IdentChip(struct DiskOnChip * doc,int floor,int chip)316 static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
317 {
318 int mfr, id, i, j;
319 volatile char dummy;
320
321 /* Page in the required floor/chip */
322 DoC_SelectFloor(doc, floor);
323 DoC_SelectChip(doc, chip);
324
325 /* Reset the chip */
326 if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
327 DEBUG(MTD_DEBUG_LEVEL2,
328 "DoC_Command (reset) for %d,%d returned true\n",
329 floor, chip);
330 return 0;
331 }
332
333
334 /* Read the NAND chip ID: 1. Send ReadID command */
335 if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
336 DEBUG(MTD_DEBUG_LEVEL2,
337 "DoC_Command (ReadID) for %d,%d returned true\n",
338 floor, chip);
339 return 0;
340 }
341
342 /* Read the NAND chip ID: 2. Send address byte zero */
343 DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);
344
345 /* Read the manufacturer and device id codes from the device */
346
347 /* CDSN Slow IO register see Software Requirement 11.4 item 5. */
348 dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
349 DoC_Delay(doc, 2);
350 mfr = ReadDOC_(doc->virtadr, doc->ioreg);
351
352 /* CDSN Slow IO register see Software Requirement 11.4 item 5. */
353 dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
354 DoC_Delay(doc, 2);
355 id = ReadDOC_(doc->virtadr, doc->ioreg);
356
357 /* No response - return failure */
358 if (mfr == 0xff || mfr == 0)
359 return 0;
360
361 /* Check it's the same as the first chip we identified.
362 * M-Systems say that any given DiskOnChip device should only
363 * contain _one_ type of flash part, although that's not a
364 * hardware restriction. */
365 if (doc->mfr) {
366 if (doc->mfr == mfr && doc->id == id)
367 return 1; /* This is another the same the first */
368 else
369 printk(KERN_WARNING
370 "Flash chip at floor %d, chip %d is different:\n",
371 floor, chip);
372 }
373
374 /* Print and store the manufacturer and ID codes. */
375 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
376 if (id == nand_flash_ids[i].id) {
377 /* Try to identify manufacturer */
378 for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
379 if (nand_manuf_ids[j].id == mfr)
380 break;
381 }
382 printk(KERN_INFO
383 "Flash chip found: Manufacturer ID: %2.2X, "
384 "Chip ID: %2.2X (%s:%s)\n", mfr, id,
385 nand_manuf_ids[j].name, nand_flash_ids[i].name);
386 if (!doc->mfr) {
387 doc->mfr = mfr;
388 doc->id = id;
389 doc->chipshift =
390 nand_flash_ids[i].chipshift;
391 doc->page256 = nand_flash_ids[i].page256;
392 doc->pageadrlen =
393 nand_flash_ids[i].chipshift > 25 ? 3 : 2;
394 doc->erasesize =
395 nand_flash_ids[i].erasesize;
396 return 1;
397 }
398 return 0;
399 }
400 }
401
402
403 /* We haven't fully identified the chip. Print as much as we know. */
404 printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n",
405 id, mfr);
406
407 printk(KERN_WARNING "Please report to dwmw2@infradead.org\n");
408 return 0;
409 }
410
411 /* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
412
DoC_ScanChips(struct DiskOnChip * this)413 static void DoC_ScanChips(struct DiskOnChip *this)
414 {
415 int floor, chip;
416 int numchips[MAX_FLOORS];
417 int maxchips = MAX_CHIPS;
418 int ret = 1;
419
420 this->numchips = 0;
421 this->mfr = 0;
422 this->id = 0;
423
424 if (DoC_is_Millennium(this))
425 maxchips = MAX_CHIPS_MIL;
426
427 /* For each floor, find the number of valid chips it contains */
428 for (floor = 0; floor < MAX_FLOORS; floor++) {
429 ret = 1;
430 numchips[floor] = 0;
431 for (chip = 0; chip < maxchips && ret != 0; chip++) {
432
433 ret = DoC_IdentChip(this, floor, chip);
434 if (ret) {
435 numchips[floor]++;
436 this->numchips++;
437 }
438 }
439 }
440
441 /* If there are none at all that we recognise, bail */
442 if (!this->numchips) {
443 printk(KERN_NOTICE "No flash chips recognised.\n");
444 return;
445 }
446
447 /* Allocate an array to hold the information for each chip */
448 this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
449 if (!this->chips) {
450 printk(KERN_NOTICE "No memory for allocating chip info structures\n");
451 return;
452 }
453
454 ret = 0;
455
456 /* Fill out the chip array with {floor, chipno} for each
457 * detected chip in the device. */
458 for (floor = 0; floor < MAX_FLOORS; floor++) {
459 for (chip = 0; chip < numchips[floor]; chip++) {
460 this->chips[ret].floor = floor;
461 this->chips[ret].chip = chip;
462 this->chips[ret].curadr = 0;
463 this->chips[ret].curmode = 0x50;
464 ret++;
465 }
466 }
467
468 /* Calculate and print the total size of the device */
469 this->totlen = this->numchips * (1 << this->chipshift);
470
471 printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
472 this->numchips, this->totlen >> 20);
473 }
474
DoC2k_is_alias(struct DiskOnChip * doc1,struct DiskOnChip * doc2)475 static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
476 {
477 int tmp1, tmp2, retval;
478 if (doc1->physadr == doc2->physadr)
479 return 1;
480
481 /* Use the alias resolution register which was set aside for this
482 * purpose. If it's value is the same on both chips, they might
483 * be the same chip, and we write to one and check for a change in
484 * the other. It's unclear if this register is usuable in the
485 * DoC 2000 (it's in the Millennium docs), but it seems to work. */
486 tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
487 tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
488 if (tmp1 != tmp2)
489 return 0;
490
491 WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution);
492 tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
493 if (tmp2 == (tmp1 + 1) % 0xff)
494 retval = 1;
495 else
496 retval = 0;
497
498 /* Restore register contents. May not be necessary, but do it just to
499 * be safe. */
500 WriteDOC(tmp1, doc1->virtadr, AliasResolution);
501
502 return retval;
503 }
504
505 static const char im_name[] = "DoC2k_init";
506
507 /* This routine is made available to other mtd code via
508 * inter_module_register. It must only be accessed through
509 * inter_module_get which will bump the use count of this module. The
510 * addresses passed back in mtd are valid as long as the use count of
511 * this module is non-zero, i.e. between inter_module_get and
512 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
513 */
DoC2k_init(struct mtd_info * mtd)514 static void DoC2k_init(struct mtd_info *mtd)
515 {
516 struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
517 struct DiskOnChip *old = NULL;
518
519 /* We must avoid being called twice for the same device. */
520
521 if (doc2klist)
522 old = (struct DiskOnChip *) doc2klist->priv;
523
524 while (old) {
525 if (DoC2k_is_alias(old, this)) {
526 printk(KERN_NOTICE
527 "Ignoring DiskOnChip 2000 at 0x%lX - already configured\n",
528 this->physadr);
529 iounmap((void *) this->virtadr);
530 kfree(mtd);
531 return;
532 }
533 if (old->nextdoc)
534 old = (struct DiskOnChip *) old->nextdoc->priv;
535 else
536 old = NULL;
537 }
538
539
540 switch (this->ChipID) {
541 case DOC_ChipID_Doc2k:
542 mtd->name = "DiskOnChip 2000";
543 this->ioreg = DoC_2k_CDSN_IO;
544 break;
545 case DOC_ChipID_DocMil:
546 mtd->name = "DiskOnChip Millennium";
547 this->ioreg = DoC_Mil_CDSN_IO;
548 break;
549 }
550
551 printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name,
552 this->physadr);
553
554 mtd->type = MTD_NANDFLASH;
555 mtd->flags = MTD_CAP_NANDFLASH;
556 mtd->size = 0;
557 mtd->erasesize = 0;
558 mtd->oobblock = 512;
559 mtd->oobsize = 16;
560 mtd->module = THIS_MODULE;
561 mtd->erase = doc_erase;
562 mtd->point = NULL;
563 mtd->unpoint = NULL;
564 mtd->read = doc_read;
565 mtd->write = doc_write;
566 mtd->read_ecc = doc_read_ecc;
567 mtd->write_ecc = doc_write_ecc;
568 mtd->read_oob = doc_read_oob;
569 mtd->write_oob = doc_write_oob;
570 mtd->sync = NULL;
571
572 this->totlen = 0;
573 this->numchips = 0;
574
575 this->curfloor = -1;
576 this->curchip = -1;
577 init_MUTEX(&this->lock);
578
579 /* Ident all the chips present. */
580 DoC_ScanChips(this);
581
582 if (!this->totlen) {
583 kfree(mtd);
584 iounmap((void *) this->virtadr);
585 } else {
586 this->nextdoc = doc2klist;
587 doc2klist = mtd;
588 mtd->size = this->totlen;
589 mtd->erasesize = this->erasesize;
590 add_mtd_device(mtd);
591 return;
592 }
593 }
594
doc_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)595 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
596 size_t * retlen, u_char * buf)
597 {
598 /* Just a special case of doc_read_ecc */
599 return doc_read_ecc(mtd, from, len, retlen, buf, NULL, 0);
600 }
601
doc_read_ecc(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf,u_char * eccbuf,int oobsel)602 static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
603 size_t * retlen, u_char * buf, u_char * eccbuf, int oobsel)
604 {
605 struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
606 unsigned long docptr;
607 struct Nand *mychip;
608 unsigned char syndrome[6];
609 volatile char dummy;
610 int i, len256 = 0, ret=0;
611
612 docptr = this->virtadr;
613
614 /* Don't allow read past end of device */
615 if (from >= this->totlen)
616 return -EINVAL;
617
618 down(&this->lock);
619
620 /* Don't allow a single read to cross a 512-byte block boundary */
621 if (from + len > ((from | 0x1ff) + 1))
622 len = ((from | 0x1ff) + 1) - from;
623
624 /* The ECC will not be calculated correctly if less than 512 is read */
625 if (len != 0x200 && eccbuf)
626 printk(KERN_WARNING
627 "ECC needs a full sector read (adr: %lx size %lx)\n",
628 (long) from, (long) len);
629
630 /* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */
631
632
633 /* Find the chip which is to be used and select it */
634 mychip = &this->chips[from >> (this->chipshift)];
635
636 if (this->curfloor != mychip->floor) {
637 DoC_SelectFloor(this, mychip->floor);
638 DoC_SelectChip(this, mychip->chip);
639 } else if (this->curchip != mychip->chip) {
640 DoC_SelectChip(this, mychip->chip);
641 }
642
643 this->curfloor = mychip->floor;
644 this->curchip = mychip->chip;
645
646 DoC_Command(this,
647 (!this->page256
648 && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
649 CDSN_CTRL_WP);
650 DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP,
651 CDSN_CTRL_ECC_IO);
652
653 if (eccbuf) {
654 /* Prime the ECC engine */
655 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
656 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
657 } else {
658 /* disable the ECC engine */
659 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
660 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
661 }
662
663 /* treat crossing 256-byte sector for 2M x 8bits devices */
664 if (this->page256 && from + len > (from | 0xff) + 1) {
665 len256 = (from | 0xff) + 1 - from;
666 DoC_ReadBuf(this, buf, len256);
667
668 DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP);
669 DoC_Address(this, ADDR_COLUMN_PAGE, from + len256,
670 CDSN_CTRL_WP, CDSN_CTRL_ECC_IO);
671 }
672
673 DoC_ReadBuf(this, &buf[len256], len - len256);
674
675 /* Let the caller know we completed it */
676 *retlen = len;
677
678 if (eccbuf) {
679 /* Read the ECC data through the DiskOnChip ECC logic */
680 /* Note: this will work even with 2M x 8bit devices as */
681 /* they have 8 bytes of OOB per 256 page. mf. */
682 DoC_ReadBuf(this, eccbuf, 6);
683
684 /* Flush the pipeline */
685 if (DoC_is_Millennium(this)) {
686 dummy = ReadDOC(docptr, ECCConf);
687 dummy = ReadDOC(docptr, ECCConf);
688 i = ReadDOC(docptr, ECCConf);
689 } else {
690 dummy = ReadDOC(docptr, 2k_ECCStatus);
691 dummy = ReadDOC(docptr, 2k_ECCStatus);
692 i = ReadDOC(docptr, 2k_ECCStatus);
693 }
694
695 /* Check the ECC Status */
696 if (i & 0x80) {
697 int nb_errors;
698 /* There was an ECC error */
699 #ifdef ECC_DEBUG
700 printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from);
701 #endif
702 /* Read the ECC syndrom through the DiskOnChip ECC logic.
703 These syndrome will be all ZERO when there is no error */
704 for (i = 0; i < 6; i++) {
705 syndrome[i] =
706 ReadDOC(docptr, ECCSyndrome0 + i);
707 }
708 nb_errors = doc_decode_ecc(buf, syndrome);
709
710 #ifdef ECC_DEBUG
711 printk(KERN_ERR "Errors corrected: %x\n", nb_errors);
712 #endif
713 if (nb_errors < 0) {
714 /* We return error, but have actually done the read. Not that
715 this can be told to user-space, via sys_read(), but at least
716 MTD-aware stuff can know about it by checking *retlen */
717 ret = -EIO;
718 }
719 }
720
721 #ifdef PSYCHO_DEBUG
722 printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
723 (long)from, eccbuf[0], eccbuf[1], eccbuf[2],
724 eccbuf[3], eccbuf[4], eccbuf[5]);
725 #endif
726
727 /* disable the ECC engine */
728 WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
729 }
730
731 /* according to 11.4.1, we need to wait for the busy line
732 * drop if we read to the end of the page. */
733 if(0 == ((from + *retlen) & 0x1ff))
734 {
735 DoC_WaitReady(this);
736 }
737
738 up(&this->lock);
739
740 return ret;
741 }
742
doc_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)743 static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
744 size_t * retlen, const u_char * buf)
745 {
746 char eccbuf[6];
747 return doc_write_ecc(mtd, to, len, retlen, buf, eccbuf, 0);
748 }
749
doc_write_ecc(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf,u_char * eccbuf,int oobsel)750 static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
751 size_t * retlen, const u_char * buf,
752 u_char * eccbuf, int oobsel)
753 {
754 struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
755 int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */
756 unsigned long docptr;
757 volatile char dummy;
758 int len256 = 0;
759 struct Nand *mychip;
760
761 docptr = this->virtadr;
762
763 /* Don't allow write past end of device */
764 if (to >= this->totlen)
765 return -EINVAL;
766
767 down(&this->lock);
768
769 /* Don't allow a single write to cross a 512-byte block boundary */
770 if (to + len > ((to | 0x1ff) + 1))
771 len = ((to | 0x1ff) + 1) - to;
772
773 /* The ECC will not be calculated correctly if less than 512 is written */
774 if (len != 0x200 && eccbuf)
775 printk(KERN_WARNING
776 "ECC needs a full sector write (adr: %lx size %lx)\n",
777 (long) to, (long) len);
778
779 /* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */
780
781 /* Find the chip which is to be used and select it */
782 mychip = &this->chips[to >> (this->chipshift)];
783
784 if (this->curfloor != mychip->floor) {
785 DoC_SelectFloor(this, mychip->floor);
786 DoC_SelectChip(this, mychip->chip);
787 } else if (this->curchip != mychip->chip) {
788 DoC_SelectChip(this, mychip->chip);
789 }
790
791 this->curfloor = mychip->floor;
792 this->curchip = mychip->chip;
793
794 /* Set device to main plane of flash */
795 DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
796 DoC_Command(this,
797 (!this->page256
798 && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
799 CDSN_CTRL_WP);
800
801 DoC_Command(this, NAND_CMD_SEQIN, 0);
802 DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO);
803
804 if (eccbuf) {
805 /* Prime the ECC engine */
806 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
807 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
808 } else {
809 /* disable the ECC engine */
810 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
811 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
812 }
813
814 /* treat crossing 256-byte sector for 2M x 8bits devices */
815 if (this->page256 && to + len > (to | 0xff) + 1) {
816 len256 = (to | 0xff) + 1 - to;
817 DoC_WriteBuf(this, buf, len256);
818
819 DoC_Command(this, NAND_CMD_PAGEPROG, 0);
820
821 DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
822 /* There's an implicit DoC_WaitReady() in DoC_Command */
823
824 dummy = ReadDOC(docptr, CDSNSlowIO);
825 DoC_Delay(this, 2);
826
827 if (ReadDOC_(docptr, this->ioreg) & 1) {
828 printk(KERN_ERR "Error programming flash\n");
829 /* Error in programming */
830 *retlen = 0;
831 up(&this->lock);
832 return -EIO;
833 }
834
835 DoC_Command(this, NAND_CMD_SEQIN, 0);
836 DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0,
837 CDSN_CTRL_ECC_IO);
838 }
839
840 DoC_WriteBuf(this, &buf[len256], len - len256);
841
842 if (eccbuf) {
843 WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr,
844 CDSNControl);
845
846 if (DoC_is_Millennium(this)) {
847 WriteDOC(0, docptr, NOP);
848 WriteDOC(0, docptr, NOP);
849 WriteDOC(0, docptr, NOP);
850 } else {
851 WriteDOC_(0, docptr, this->ioreg);
852 WriteDOC_(0, docptr, this->ioreg);
853 WriteDOC_(0, docptr, this->ioreg);
854 }
855
856 /* Read the ECC data through the DiskOnChip ECC logic */
857 for (di = 0; di < 6; di++) {
858 eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di);
859 }
860
861 /* Reset the ECC engine */
862 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
863
864 #ifdef PSYCHO_DEBUG
865 printk
866 ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
867 (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
868 eccbuf[4], eccbuf[5]);
869 #endif
870 }
871
872 DoC_Command(this, NAND_CMD_PAGEPROG, 0);
873
874 DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
875 /* There's an implicit DoC_WaitReady() in DoC_Command */
876
877 dummy = ReadDOC(docptr, CDSNSlowIO);
878 DoC_Delay(this, 2);
879
880 if (ReadDOC_(docptr, this->ioreg) & 1) {
881 printk(KERN_ERR "Error programming flash\n");
882 /* Error in programming */
883 *retlen = 0;
884 up(&this->lock);
885 return -EIO;
886 }
887
888 /* Let the caller know we completed it */
889 *retlen = len;
890
891 if (eccbuf) {
892 unsigned char x[8];
893 size_t dummy;
894 int ret;
895
896 /* Write the ECC data to flash */
897 for (di=0; di<6; di++)
898 x[di] = eccbuf[di];
899
900 x[6]=0x55;
901 x[7]=0x55;
902
903 ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x);
904 up(&this->lock);
905 return ret;
906 }
907 up(&this->lock);
908 return 0;
909 }
910
doc_read_oob(struct mtd_info * mtd,loff_t ofs,size_t len,size_t * retlen,u_char * buf)911 static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
912 size_t * retlen, u_char * buf)
913 {
914 struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
915 int len256 = 0, ret;
916 unsigned long docptr;
917 struct Nand *mychip;
918
919 down(&this->lock);
920
921 docptr = this->virtadr;
922
923 mychip = &this->chips[ofs >> this->chipshift];
924
925 if (this->curfloor != mychip->floor) {
926 DoC_SelectFloor(this, mychip->floor);
927 DoC_SelectChip(this, mychip->chip);
928 } else if (this->curchip != mychip->chip) {
929 DoC_SelectChip(this, mychip->chip);
930 }
931 this->curfloor = mychip->floor;
932 this->curchip = mychip->chip;
933
934 /* update address for 2M x 8bit devices. OOB starts on the second */
935 /* page to maintain compatibility with doc_read_ecc. */
936 if (this->page256) {
937 if (!(ofs & 0x8))
938 ofs += 0x100;
939 else
940 ofs -= 0x8;
941 }
942
943 DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
944 DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0);
945
946 /* treat crossing 8-byte OOB data for 2M x 8bit devices */
947 /* Note: datasheet says it should automaticaly wrap to the */
948 /* next OOB block, but it didn't work here. mf. */
949 if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
950 len256 = (ofs | 0x7) + 1 - ofs;
951 DoC_ReadBuf(this, buf, len256);
952
953 DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
954 DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff),
955 CDSN_CTRL_WP, 0);
956 }
957
958 DoC_ReadBuf(this, &buf[len256], len - len256);
959
960 *retlen = len;
961 /* Reading the full OOB data drops us off of the end of the page,
962 * causing the flash device to go into busy mode, so we need
963 * to wait until ready 11.4.1 and Toshiba TC58256FT docs */
964
965 ret = DoC_WaitReady(this);
966
967 up(&this->lock);
968 return ret;
969
970 }
971
doc_write_oob_nolock(struct mtd_info * mtd,loff_t ofs,size_t len,size_t * retlen,const u_char * buf)972 static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
973 size_t * retlen, const u_char * buf)
974 {
975 struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
976 int len256 = 0;
977 unsigned long docptr = this->virtadr;
978 struct Nand *mychip = &this->chips[ofs >> this->chipshift];
979 volatile int dummy;
980
981 // printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len,
982 // buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]);
983
984 /* Find the chip which is to be used and select it */
985 if (this->curfloor != mychip->floor) {
986 DoC_SelectFloor(this, mychip->floor);
987 DoC_SelectChip(this, mychip->chip);
988 } else if (this->curchip != mychip->chip) {
989 DoC_SelectChip(this, mychip->chip);
990 }
991 this->curfloor = mychip->floor;
992 this->curchip = mychip->chip;
993
994 /* disable the ECC engine */
995 WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
996 WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
997
998 /* Reset the chip, see Software Requirement 11.4 item 1. */
999 DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
1000
1001 /* issue the Read2 command to set the pointer to the Spare Data Area. */
1002 DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
1003
1004 /* update address for 2M x 8bit devices. OOB starts on the second */
1005 /* page to maintain compatibility with doc_read_ecc. */
1006 if (this->page256) {
1007 if (!(ofs & 0x8))
1008 ofs += 0x100;
1009 else
1010 ofs -= 0x8;
1011 }
1012
1013 /* issue the Serial Data In command to initial the Page Program process */
1014 DoC_Command(this, NAND_CMD_SEQIN, 0);
1015 DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0);
1016
1017 /* treat crossing 8-byte OOB data for 2M x 8bit devices */
1018 /* Note: datasheet says it should automaticaly wrap to the */
1019 /* next OOB block, but it didn't work here. mf. */
1020 if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
1021 len256 = (ofs | 0x7) + 1 - ofs;
1022 DoC_WriteBuf(this, buf, len256);
1023
1024 DoC_Command(this, NAND_CMD_PAGEPROG, 0);
1025 DoC_Command(this, NAND_CMD_STATUS, 0);
1026 /* DoC_WaitReady() is implicit in DoC_Command */
1027
1028 dummy = ReadDOC(docptr, CDSNSlowIO);
1029 DoC_Delay(this, 2);
1030
1031 if (ReadDOC_(docptr, this->ioreg) & 1) {
1032 printk(KERN_ERR "Error programming oob data\n");
1033 /* There was an error */
1034 *retlen = 0;
1035 return -EIO;
1036 }
1037 DoC_Command(this, NAND_CMD_SEQIN, 0);
1038 DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0);
1039 }
1040
1041 DoC_WriteBuf(this, &buf[len256], len - len256);
1042
1043 DoC_Command(this, NAND_CMD_PAGEPROG, 0);
1044 DoC_Command(this, NAND_CMD_STATUS, 0);
1045 /* DoC_WaitReady() is implicit in DoC_Command */
1046
1047 dummy = ReadDOC(docptr, CDSNSlowIO);
1048 DoC_Delay(this, 2);
1049
1050 if (ReadDOC_(docptr, this->ioreg) & 1) {
1051 printk(KERN_ERR "Error programming oob data\n");
1052 /* There was an error */
1053 *retlen = 0;
1054 return -EIO;
1055 }
1056
1057 *retlen = len;
1058 return 0;
1059
1060 }
1061
doc_write_oob(struct mtd_info * mtd,loff_t ofs,size_t len,size_t * retlen,const u_char * buf)1062 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
1063 size_t * retlen, const u_char * buf)
1064 {
1065 struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
1066 int ret;
1067
1068 down(&this->lock);
1069 ret = doc_write_oob_nolock(mtd, ofs, len, retlen, buf);
1070
1071 up(&this->lock);
1072 return ret;
1073 }
1074
doc_erase(struct mtd_info * mtd,struct erase_info * instr)1075 static int doc_erase(struct mtd_info *mtd, struct erase_info *instr)
1076 {
1077 struct DiskOnChip *this = (struct DiskOnChip *) mtd->priv;
1078 __u32 ofs = instr->addr;
1079 __u32 len = instr->len;
1080 volatile int dummy;
1081 unsigned long docptr;
1082 struct Nand *mychip;
1083
1084 down(&this->lock);
1085
1086 if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) {
1087 up(&this->lock);
1088 return -EINVAL;
1089 }
1090
1091 instr->state = MTD_ERASING;
1092
1093 docptr = this->virtadr;
1094
1095 /* FIXME: Do this in the background. Use timers or schedule_task() */
1096 while(len) {
1097 mychip = &this->chips[ofs >> this->chipshift];
1098
1099 if (this->curfloor != mychip->floor) {
1100 DoC_SelectFloor(this, mychip->floor);
1101 DoC_SelectChip(this, mychip->chip);
1102 } else if (this->curchip != mychip->chip) {
1103 DoC_SelectChip(this, mychip->chip);
1104 }
1105 this->curfloor = mychip->floor;
1106 this->curchip = mychip->chip;
1107
1108 DoC_Command(this, NAND_CMD_ERASE1, 0);
1109 DoC_Address(this, ADDR_PAGE, ofs, 0, 0);
1110 DoC_Command(this, NAND_CMD_ERASE2, 0);
1111
1112 DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
1113
1114 dummy = ReadDOC(docptr, CDSNSlowIO);
1115 DoC_Delay(this, 2);
1116
1117 if (ReadDOC_(docptr, this->ioreg) & 1) {
1118 printk(KERN_ERR "Error erasing at 0x%x\n", ofs);
1119 /* There was an error */
1120 instr->state = MTD_ERASE_FAILED;
1121 goto callback;
1122 }
1123 ofs += mtd->erasesize;
1124 len -= mtd->erasesize;
1125 }
1126 instr->state = MTD_ERASE_DONE;
1127
1128 callback:
1129 if (instr->callback)
1130 instr->callback(instr);
1131
1132 up(&this->lock);
1133 return 0;
1134 }
1135
1136
1137 /****************************************************************************
1138 *
1139 * Module stuff
1140 *
1141 ****************************************************************************/
1142
init_doc2000(void)1143 int __init init_doc2000(void)
1144 {
1145 inter_module_register(im_name, THIS_MODULE, &DoC2k_init);
1146 return 0;
1147 }
1148
cleanup_doc2000(void)1149 static void __exit cleanup_doc2000(void)
1150 {
1151 struct mtd_info *mtd;
1152 struct DiskOnChip *this;
1153
1154 while ((mtd = doc2klist)) {
1155 this = (struct DiskOnChip *) mtd->priv;
1156 doc2klist = this->nextdoc;
1157
1158 del_mtd_device(mtd);
1159
1160 iounmap((void *) this->virtadr);
1161 kfree(this->chips);
1162 kfree(mtd);
1163 }
1164 inter_module_unregister(im_name);
1165 }
1166
1167 module_exit(cleanup_doc2000);
1168 module_init(init_doc2000);
1169
1170 MODULE_LICENSE("GPL");
1171 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
1172 MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium");
1173
1174