1 #ifndef _IDE_TIMING_H
2 #define _IDE_TIMING_H
3 
4 /*
5  * $Id: ide-timing.h,v 1.6 2001/12/23 22:47:56 vojtech Exp $
6  *
7  *  Copyright (c) 1999-2001 Vojtech Pavlik
8  */
9 
10 /*
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24  *
25  * Should you need to contact me, the author, you can do so either by
26  * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
27  * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
28  */
29 
30 #include <linux/hdreg.h>
31 
32 #define XFER_PIO_5		0x0d
33 #define XFER_UDMA_SLOW		0x4f
34 
35 struct ide_timing {
36 	short mode;
37 	short setup;	/* t1 */
38 	short act8b;	/* t2 for 8-bit io */
39 	short rec8b;	/* t2i for 8-bit io */
40 	short cyc8b;	/* t0 for 8-bit io */
41 	short active;	/* t2 or tD */
42 	short recover;	/* t2i or tK */
43 	short cycle;	/* t0 */
44 	short udma;	/* t2CYCTYP/2 */
45 };
46 
47 /*
48  * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
49  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
50  * for PIO 5, which is a nonstandard extension and UDMA6, which
51  * is currently supported only by Maxtor drives.
52  */
53 
54 static struct ide_timing ide_timing[] = {
55 
56 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0,   0,  15 },
57 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0,   0,  20 },
58 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0,   0,  30 },
59 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0,   0,  45 },
60 
61 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0,   0,  60 },
62 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0,   0,  80 },
63 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0,   0, 120 },
64 
65 	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0,   0, 150 },
66 
67 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 120,   0 },
68 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 150,   0 },
69 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 480,   0 },
70 
71 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 240,   0 },
72 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 480,   0 },
73 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 960,   0 },
74 
75 	{ XFER_PIO_5,     20,  50,  30, 100,  50,  30, 100,   0 },
76 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 120,   0 },
77 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 180,   0 },
78 
79 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 240,   0 },
80 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 383,   0 },
81 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 600,   0 },
82 
83 	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960,   0 },
84 
85 	{ -1 }
86 };
87 
88 #define IDE_TIMING_SETUP	0x01
89 #define IDE_TIMING_ACT8B	0x02
90 #define IDE_TIMING_REC8B	0x04
91 #define IDE_TIMING_CYC8B	0x08
92 #define IDE_TIMING_8BIT		0x0e
93 #define IDE_TIMING_ACTIVE	0x10
94 #define IDE_TIMING_RECOVER	0x20
95 #define IDE_TIMING_CYCLE	0x40
96 #define IDE_TIMING_UDMA		0x80
97 #define IDE_TIMING_ALL		0xff
98 
99 #define MIN(a,b)	((a)<(b)?(a):(b))
100 #define MAX(a,b)	((a)>(b)?(a):(b))
101 #define FIT(v,min,max)	MAX(MIN(v,max),min)
102 #define ENOUGH(v,unit)	(((v)-1)/(unit)+1)
103 #define EZ(v,unit)	((v)?ENOUGH(v,unit):0)
104 
105 #define XFER_MODE	0xf0
106 #define XFER_UDMA_133	0x48
107 #define XFER_UDMA_100	0x44
108 #define XFER_UDMA_66	0x42
109 #define XFER_UDMA	0x40
110 #define XFER_MWDMA	0x20
111 #define XFER_SWDMA	0x10
112 #define XFER_EPIO	0x01
113 #define XFER_PIO	0x00
114 
ide_find_best_mode(ide_drive_t * drive,int map)115 static short ide_find_best_mode(ide_drive_t *drive, int map)
116 {
117 	struct hd_driveid *id = drive->id;
118 	short best = 0;
119 
120 	if (!id)
121 		return XFER_PIO_SLOW;
122 
123 	if ((map & XFER_UDMA) && (id->field_valid & 4)) {	/* Want UDMA and UDMA bitmap valid */
124 
125 		if ((map & XFER_UDMA_133) == XFER_UDMA_133)
126 			if ((best = (id->dma_ultra & 0x0040) ? XFER_UDMA_6 : 0)) return best;
127 
128 		if ((map & XFER_UDMA_100) == XFER_UDMA_100)
129 			if ((best = (id->dma_ultra & 0x0020) ? XFER_UDMA_5 : 0)) return best;
130 
131 		if ((map & XFER_UDMA_66) == XFER_UDMA_66)
132 			if ((best = (id->dma_ultra & 0x0010) ? XFER_UDMA_4 :
133                 	    	    (id->dma_ultra & 0x0008) ? XFER_UDMA_3 : 0)) return best;
134 
135                 if ((best = (id->dma_ultra & 0x0004) ? XFER_UDMA_2 :
136                 	    (id->dma_ultra & 0x0002) ? XFER_UDMA_1 :
137                 	    (id->dma_ultra & 0x0001) ? XFER_UDMA_0 : 0)) return best;
138 	}
139 
140 	if ((map & XFER_MWDMA) && (id->field_valid & 2)) {	/* Want MWDMA and drive has EIDE fields */
141 
142 		if ((best = (id->dma_mword & 0x0004) ? XFER_MW_DMA_2 :
143                 	    (id->dma_mword & 0x0002) ? XFER_MW_DMA_1 :
144                 	    (id->dma_mword & 0x0001) ? XFER_MW_DMA_0 : 0)) return best;
145 	}
146 
147 	if (map & XFER_SWDMA) {					/* Want SWDMA */
148 
149  		if (id->field_valid & 2) {			/* EIDE SWDMA */
150 
151 			if ((best = (id->dma_1word & 0x0004) ? XFER_SW_DMA_2 :
152       				    (id->dma_1word & 0x0002) ? XFER_SW_DMA_1 :
153 				    (id->dma_1word & 0x0001) ? XFER_SW_DMA_0 : 0)) return best;
154 		}
155 
156 		if (id->capability & 1) {			/* Pre-EIDE style SWDMA */
157 
158 			if ((best = (id->tDMA == 2) ? XFER_SW_DMA_2 :
159 				    (id->tDMA == 1) ? XFER_SW_DMA_1 :
160 				    (id->tDMA == 0) ? XFER_SW_DMA_0 : 0)) return best;
161 		}
162 	}
163 
164 
165 	if ((map & XFER_EPIO) && (id->field_valid & 2)) {	/* EIDE PIO modes */
166 
167 		if ((best = (drive->id->eide_pio_modes & 4) ? XFER_PIO_5 :
168 			    (drive->id->eide_pio_modes & 2) ? XFER_PIO_4 :
169 			    (drive->id->eide_pio_modes & 1) ? XFER_PIO_3 : 0)) return best;
170 	}
171 
172 	return  (drive->id->tPIO == 2) ? XFER_PIO_2 :
173 		(drive->id->tPIO == 1) ? XFER_PIO_1 :
174 		(drive->id->tPIO == 0) ? XFER_PIO_0 : XFER_PIO_SLOW;
175 }
176 
ide_timing_quantize(struct ide_timing * t,struct ide_timing * q,int T,int UT)177 static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q, int T, int UT)
178 {
179 	q->setup   = EZ(t->setup   * 1000,  T);
180 	q->act8b   = EZ(t->act8b   * 1000,  T);
181 	q->rec8b   = EZ(t->rec8b   * 1000,  T);
182 	q->cyc8b   = EZ(t->cyc8b   * 1000,  T);
183 	q->active  = EZ(t->active  * 1000,  T);
184 	q->recover = EZ(t->recover * 1000,  T);
185 	q->cycle   = EZ(t->cycle   * 1000,  T);
186 	q->udma    = EZ(t->udma    * 1000, UT);
187 }
188 
ide_timing_merge(struct ide_timing * a,struct ide_timing * b,struct ide_timing * m,unsigned int what)189 static void ide_timing_merge(struct ide_timing *a, struct ide_timing *b, struct ide_timing *m, unsigned int what)
190 {
191 	if (what & IDE_TIMING_SETUP  ) m->setup   = MAX(a->setup,   b->setup);
192 	if (what & IDE_TIMING_ACT8B  ) m->act8b   = MAX(a->act8b,   b->act8b);
193 	if (what & IDE_TIMING_REC8B  ) m->rec8b   = MAX(a->rec8b,   b->rec8b);
194 	if (what & IDE_TIMING_CYC8B  ) m->cyc8b   = MAX(a->cyc8b,   b->cyc8b);
195 	if (what & IDE_TIMING_ACTIVE ) m->active  = MAX(a->active,  b->active);
196 	if (what & IDE_TIMING_RECOVER) m->recover = MAX(a->recover, b->recover);
197 	if (what & IDE_TIMING_CYCLE  ) m->cycle   = MAX(a->cycle,   b->cycle);
198 	if (what & IDE_TIMING_UDMA   ) m->udma    = MAX(a->udma,    b->udma);
199 }
200 
ide_timing_find_mode(short speed)201 static struct ide_timing* ide_timing_find_mode(short speed)
202 {
203 	struct ide_timing *t;
204 
205 	for (t = ide_timing; t->mode != speed; t++)
206 		if (t->mode < 0)
207 			return NULL;
208 	return t;
209 }
210 
ide_timing_compute(ide_drive_t * drive,short speed,struct ide_timing * t,int T,int UT)211 static int ide_timing_compute(ide_drive_t *drive, short speed, struct ide_timing *t, int T, int UT)
212 {
213 	struct hd_driveid *id = drive->id;
214 	struct ide_timing *s, p;
215 
216 /*
217  * Find the mode.
218  */
219 
220 	if (!(s = ide_timing_find_mode(speed)))
221 		return -EINVAL;
222 
223 /*
224  * If the drive is an EIDE drive, it can tell us it needs extended
225  * PIO/MWDMA cycle timing.
226  */
227 
228 	if (id && id->field_valid & 2) {	/* EIDE drive */
229 
230 		memset(&p, 0, sizeof(p));
231 
232 		switch (speed & XFER_MODE) {
233 
234 			case XFER_PIO:
235 				if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = id->eide_pio;
236 						    else p.cycle = p.cyc8b = id->eide_pio_iordy;
237 				break;
238 
239 			case XFER_MWDMA:
240 				p.cycle = id->eide_dma_min;
241 				break;
242 		}
243 
244 		ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B);
245 	}
246 
247 /*
248  * Convert the timing to bus clock counts.
249  */
250 
251 	ide_timing_quantize(s, t, T, UT);
252 
253 /*
254  * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
255  * and some other commands. We have to ensure that the DMA cycle timing is
256  * slower/equal than the fastest PIO timing.
257  */
258 
259 	if ((speed & XFER_MODE) != XFER_PIO) {
260 		ide_timing_compute(drive, ide_find_best_mode(drive, XFER_PIO | XFER_EPIO), &p, T, UT);
261 		ide_timing_merge(&p, t, t, IDE_TIMING_ALL);
262 	}
263 
264 /*
265  * Lenghten active & recovery time so that cycle time is correct.
266  */
267 
268 	if (t->act8b + t->rec8b < t->cyc8b) {
269 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
270 		t->rec8b = t->cyc8b - t->act8b;
271 	}
272 
273 	if (t->active + t->recover < t->cycle) {
274 		t->active += (t->cycle - (t->active + t->recover)) / 2;
275 		t->recover = t->cycle - t->active;
276 	}
277 
278 	return 0;
279 }
280 
281 #endif
282