1 /*
2  * linux/drivers/ide/ide-iops.c	Version 0.37	Mar 05, 2003
3  *
4  *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
5  *  Copyright (C) 2003		Red Hat <alan@redhat.com>
6  *
7  *
8  */
9 
10 #include <linux/config.h>
11 #define __NO_VERSION__
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/string.h>
15 #include <linux/kernel.h>
16 #include <linux/timer.h>
17 #include <linux/mm.h>
18 #include <linux/interrupt.h>
19 #include <linux/major.h>
20 #include <linux/errno.h>
21 #include <linux/genhd.h>
22 #include <linux/blkpg.h>
23 #include <linux/slab.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/hdreg.h>
27 #include <linux/ide.h>
28 
29 #include <asm/byteorder.h>
30 #include <asm/irq.h>
31 #include <asm/uaccess.h>
32 #include <asm/io.h>
33 #include <asm/bitops.h>
34 
35 /*
36  *	IDE operator we assign to an unplugged device so that
37  *	we don't trash new hardware assigned the same resources
38  */
39 
ide_unplugged_inb(unsigned long port)40 static u8 ide_unplugged_inb (unsigned long port)
41 {
42 	return 0xFF;
43 }
44 
ide_unplugged_inw(unsigned long port)45 static u16 ide_unplugged_inw (unsigned long port)
46 {
47 	return 0xFFFF;
48 }
49 
ide_unplugged_insw(unsigned long port,void * addr,u32 count)50 static void ide_unplugged_insw (unsigned long port, void *addr, u32 count)
51 {
52 }
53 
ide_unplugged_inl(unsigned long port)54 static u32 ide_unplugged_inl (unsigned long port)
55 {
56 	return 0xFFFFFFFF;
57 }
58 
ide_unplugged_insl(unsigned long port,void * addr,u32 count)59 static void ide_unplugged_insl (unsigned long port, void *addr, u32 count)
60 {
61 }
62 
ide_unplugged_outb(u8 addr,unsigned long port)63 static void ide_unplugged_outb (u8 addr, unsigned long port)
64 {
65 }
66 
ide_unplugged_outbsync(ide_drive_t * drive,u8 addr,unsigned long port)67 static void ide_unplugged_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
68 {
69 }
70 
ide_unplugged_outw(u16 addr,unsigned long port)71 static void ide_unplugged_outw (u16 addr, unsigned long port)
72 {
73 }
74 
ide_unplugged_outsw(unsigned long port,void * addr,u32 count)75 static void ide_unplugged_outsw (unsigned long port, void *addr, u32 count)
76 {
77 }
78 
ide_unplugged_outl(u32 addr,unsigned long port)79 static void ide_unplugged_outl (u32 addr, unsigned long port)
80 {
81 }
82 
ide_unplugged_outsl(unsigned long port,void * addr,u32 count)83 static void ide_unplugged_outsl (unsigned long port, void *addr, u32 count)
84 {
85 }
86 
unplugged_hwif_iops(ide_hwif_t * hwif)87 void unplugged_hwif_iops (ide_hwif_t *hwif)
88 {
89 	hwif->OUTB	= ide_unplugged_outb;
90 	hwif->OUTBSYNC	= ide_unplugged_outbsync;
91 	hwif->OUTW	= ide_unplugged_outw;
92 	hwif->OUTL	= ide_unplugged_outl;
93 	hwif->OUTSW	= ide_unplugged_outsw;
94 	hwif->OUTSL	= ide_unplugged_outsl;
95 	hwif->INB	= ide_unplugged_inb;
96 	hwif->INW	= ide_unplugged_inw;
97 	hwif->INL	= ide_unplugged_inl;
98 	hwif->INSW	= ide_unplugged_insw;
99 	hwif->INSL	= ide_unplugged_insl;
100 }
101 
102 EXPORT_SYMBOL(unplugged_hwif_iops);
103 
104 /*
105  *	Conventional PIO operations for ATA devices
106  */
107 
ide_inb(unsigned long port)108 static u8 ide_inb (unsigned long port)
109 {
110 	return (u8) inb(port);
111 }
112 
ide_inw(unsigned long port)113 static u16 ide_inw (unsigned long port)
114 {
115 	return (u16) inw(port);
116 }
117 
ide_insw(unsigned long port,void * addr,u32 count)118 static void ide_insw (unsigned long port, void *addr, u32 count)
119 {
120 	return insw(port, addr, count);
121 }
122 
ide_inl(unsigned long port)123 static u32 ide_inl (unsigned long port)
124 {
125 	return (u32) inl(port);
126 }
127 
ide_insl(unsigned long port,void * addr,u32 count)128 static void ide_insl (unsigned long port, void *addr, u32 count)
129 {
130 	insl(port, addr, count);
131 }
132 
ide_outb(u8 addr,unsigned long port)133 static void ide_outb (u8 addr, unsigned long port)
134 {
135 	outb(addr, port);
136 }
137 
ide_outbsync(ide_drive_t * drive,u8 addr,unsigned long port)138 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
139 {
140 	outb(addr, port);
141 }
142 
ide_outw(u16 addr,unsigned long port)143 static void ide_outw (u16 addr, unsigned long port)
144 {
145 	outw(addr, port);
146 }
147 
ide_outsw(unsigned long port,void * addr,u32 count)148 static void ide_outsw (unsigned long port, void *addr, u32 count)
149 {
150 	outsw(port, addr, count);
151 }
152 
ide_outl(u32 addr,unsigned long port)153 static void ide_outl (u32 addr, unsigned long port)
154 {
155 	outl(addr, port);
156 }
157 
ide_outsl(unsigned long port,void * addr,u32 count)158 static void ide_outsl (unsigned long port, void *addr, u32 count)
159 {
160 	outsl(port, addr, count);
161 }
162 
default_hwif_iops(ide_hwif_t * hwif)163 void default_hwif_iops (ide_hwif_t *hwif)
164 {
165 	hwif->OUTB	= ide_outb;
166 	hwif->OUTBSYNC	= ide_outbsync;
167 	hwif->OUTW	= ide_outw;
168 	hwif->OUTL	= ide_outl;
169 	hwif->OUTSW	= ide_outsw;
170 	hwif->OUTSL	= ide_outsl;
171 	hwif->INB	= ide_inb;
172 	hwif->INW	= ide_inw;
173 	hwif->INL	= ide_inl;
174 	hwif->INSW	= ide_insw;
175 	hwif->INSL	= ide_insl;
176 }
177 
178 EXPORT_SYMBOL(default_hwif_iops);
179 
180 /*
181  *	MMIO operations, typically used for SATA controllers
182  */
183 
ide_mm_inb(unsigned long port)184 static u8 ide_mm_inb (unsigned long port)
185 {
186 	return (u8) readb(port);
187 }
188 
ide_mm_inw(unsigned long port)189 static u16 ide_mm_inw (unsigned long port)
190 {
191 	return (u16) readw(port);
192 }
193 
ide_mm_insw(unsigned long port,void * addr,u32 count)194 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
195 {
196 	__ide_mm_insw(port, addr, count);
197 }
198 
ide_mm_inl(unsigned long port)199 static u32 ide_mm_inl (unsigned long port)
200 {
201 	return (u32) readl(port);
202 }
203 
ide_mm_insl(unsigned long port,void * addr,u32 count)204 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
205 {
206 	__ide_mm_insl(port, addr, count);
207 }
208 
ide_mm_outb(u8 value,unsigned long port)209 static void ide_mm_outb (u8 value, unsigned long port)
210 {
211 	writeb(value, port);
212 }
213 
ide_mm_outbsync(ide_drive_t * drive,u8 value,unsigned long port)214 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
215 {
216 	writeb(value, port);
217 }
218 
ide_mm_outw(u16 value,unsigned long port)219 static void ide_mm_outw (u16 value, unsigned long port)
220 {
221 	writew(value, port);
222 }
223 
ide_mm_outsw(unsigned long port,void * addr,u32 count)224 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
225 {
226 	__ide_mm_outsw(port, addr, count);
227 }
228 
ide_mm_outl(u32 value,unsigned long port)229 static void ide_mm_outl (u32 value, unsigned long port)
230 {
231 	writel(value, port);
232 }
233 
ide_mm_outsl(unsigned long port,void * addr,u32 count)234 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
235 {
236 	__ide_mm_outsl(port, addr, count);
237 }
238 
default_hwif_mmiops(ide_hwif_t * hwif)239 void default_hwif_mmiops (ide_hwif_t *hwif)
240 {
241 	hwif->OUTB	= ide_mm_outb;
242 	/* Most systems will need to override OUTBSYNC, alas however
243 	   this one is controller specific! */
244 	hwif->OUTBSYNC	= ide_mm_outbsync;
245 	hwif->OUTW	= ide_mm_outw;
246 	hwif->OUTL	= ide_mm_outl;
247 	hwif->OUTSW	= ide_mm_outsw;
248 	hwif->OUTSL	= ide_mm_outsl;
249 	hwif->INB	= ide_mm_inb;
250 	hwif->INW	= ide_mm_inw;
251 	hwif->INL	= ide_mm_inl;
252 	hwif->INSW	= ide_mm_insw;
253 	hwif->INSL	= ide_mm_insl;
254 }
255 
256 EXPORT_SYMBOL(default_hwif_mmiops);
257 
default_hwif_transport(ide_hwif_t * hwif)258 void default_hwif_transport (ide_hwif_t *hwif)
259 {
260 	hwif->ata_input_data		= ata_input_data;
261 	hwif->ata_output_data		= ata_output_data;
262 	hwif->atapi_input_bytes		= atapi_input_bytes;
263 	hwif->atapi_output_bytes	= atapi_output_bytes;
264 }
265 
266 EXPORT_SYMBOL(default_hwif_transport);
267 
read_24(ide_drive_t * drive)268 u32 read_24 (ide_drive_t *drive)
269 {
270 	u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
271 	u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
272 	u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
273 	return (hcyl<<16)|(lcyl<<8)|sect;
274 }
275 
276 EXPORT_SYMBOL(read_24);
277 
SELECT_DRIVE(ide_drive_t * drive)278 void SELECT_DRIVE (ide_drive_t *drive)
279 {
280 	if (HWIF(drive)->selectproc)
281 		HWIF(drive)->selectproc(drive);
282 	HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
283 }
284 
285 EXPORT_SYMBOL(SELECT_DRIVE);
286 
SELECT_INTERRUPT(ide_drive_t * drive)287 void SELECT_INTERRUPT (ide_drive_t *drive)
288 {
289 	if (HWIF(drive)->intrproc)
290 		HWIF(drive)->intrproc(drive);
291 	else
292 		HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
293 }
294 
295 EXPORT_SYMBOL(SELECT_INTERRUPT);
296 
SELECT_MASK(ide_drive_t * drive,int mask)297 void SELECT_MASK (ide_drive_t *drive, int mask)
298 {
299 	if (HWIF(drive)->maskproc)
300 		HWIF(drive)->maskproc(drive, mask);
301 }
302 
303 EXPORT_SYMBOL(SELECT_MASK);
304 
QUIRK_LIST(ide_drive_t * drive)305 void QUIRK_LIST (ide_drive_t *drive)
306 {
307 	if (HWIF(drive)->quirkproc)
308 		drive->quirk_list = HWIF(drive)->quirkproc(drive);
309 }
310 
311 EXPORT_SYMBOL(QUIRK_LIST);
312 
313 /*
314  * Some localbus EIDE interfaces require a special access sequence
315  * when using 32-bit I/O instructions to transfer data.  We call this
316  * the "vlb_sync" sequence, which consists of three successive reads
317  * of the sector count register location, with interrupts disabled
318  * to ensure that the reads all happen together.
319  */
ata_vlb_sync(ide_drive_t * drive,ide_ioreg_t port)320 void ata_vlb_sync (ide_drive_t *drive, ide_ioreg_t port)
321 {
322 	(void) HWIF(drive)->INB(port);
323 	(void) HWIF(drive)->INB(port);
324 	(void) HWIF(drive)->INB(port);
325 }
326 
327 EXPORT_SYMBOL(ata_vlb_sync);
328 
329 /*
330  * This is used for most PIO data transfers *from* the IDE interface
331  */
ata_input_data(ide_drive_t * drive,void * buffer,u32 wcount)332 void ata_input_data (ide_drive_t *drive, void *buffer, u32 wcount)
333 {
334 	ide_hwif_t *hwif	= HWIF(drive);
335 	u8 io_32bit		= drive->io_32bit;
336 
337 	if (io_32bit) {
338 		if (io_32bit & 2) {
339 			unsigned long flags;
340 			local_irq_save(flags);
341 			ata_vlb_sync(drive, IDE_NSECTOR_REG);
342 			hwif->INSL(IDE_DATA_REG, buffer, wcount);
343 			local_irq_restore(flags);
344 		} else
345 			hwif->INSL(IDE_DATA_REG, buffer, wcount);
346 	} else {
347 		hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
348 	}
349 }
350 
351 EXPORT_SYMBOL(ata_input_data);
352 
353 /*
354  * This is used for most PIO data transfers *to* the IDE interface
355  */
ata_output_data(ide_drive_t * drive,void * buffer,u32 wcount)356 void ata_output_data (ide_drive_t *drive, void *buffer, u32 wcount)
357 {
358 	ide_hwif_t *hwif	= HWIF(drive);
359 	u8 io_32bit		= drive->io_32bit;
360 
361 	if (io_32bit) {
362 		if (io_32bit & 2) {
363 			unsigned long flags;
364 			local_irq_save(flags);
365 			ata_vlb_sync(drive, IDE_NSECTOR_REG);
366 			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
367 			local_irq_restore(flags);
368 		} else
369 			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
370 	} else {
371 		hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
372 	}
373 }
374 
375 EXPORT_SYMBOL(ata_output_data);
376 
377 /*
378  * The following routines are mainly used by the ATAPI drivers.
379  *
380  * These routines will round up any request for an odd number of bytes,
381  * so if an odd bytecount is specified, be sure that there's at least one
382  * extra byte allocated for the buffer.
383  */
384 
atapi_input_bytes(ide_drive_t * drive,void * buffer,u32 bytecount)385 void atapi_input_bytes (ide_drive_t *drive, void *buffer, u32 bytecount)
386 {
387 	ide_hwif_t *hwif = HWIF(drive);
388 
389 	++bytecount;
390 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
391 	if (MACH_IS_ATARI || MACH_IS_Q40) {
392 		/* Atari has a byte-swapped IDE interface */
393 		insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
394 		return;
395 	}
396 #endif /* CONFIG_ATARI || CONFIG_Q40 */
397 	hwif->ata_input_data(drive, buffer, bytecount / 4);
398 	if ((bytecount & 0x03) >= 2)
399 		hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
400 }
401 
402 EXPORT_SYMBOL(atapi_input_bytes);
403 
atapi_output_bytes(ide_drive_t * drive,void * buffer,u32 bytecount)404 void atapi_output_bytes (ide_drive_t *drive, void *buffer, u32 bytecount)
405 {
406 	ide_hwif_t *hwif = HWIF(drive);
407 
408 	++bytecount;
409 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
410 	if (MACH_IS_ATARI || MACH_IS_Q40) {
411 		/* Atari has a byte-swapped IDE interface */
412 		outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
413 		return;
414 	}
415 #endif /* CONFIG_ATARI || CONFIG_Q40 */
416 	hwif->ata_output_data(drive, buffer, bytecount / 4);
417 	if ((bytecount & 0x03) >= 2)
418 		hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
419 }
420 
421 EXPORT_SYMBOL(atapi_output_bytes);
422 
423 /*
424  * Beginning of Taskfile OPCODE Library and feature sets.
425  */
ide_fix_driveid(struct hd_driveid * id)426 void ide_fix_driveid (struct hd_driveid *id)
427 {
428 #ifndef __LITTLE_ENDIAN
429 # ifdef __BIG_ENDIAN
430 	int i;
431 	u16 *stringcast;
432 
433 #ifdef __mc68000__
434 	if (!MACH_IS_AMIGA && !MACH_IS_MAC && !MACH_IS_Q40 && !MACH_IS_ATARI)
435 		return;
436 
437 #ifdef M68K_IDE_SWAPW
438 	if (M68K_IDE_SWAPW) {	/* fix bus byteorder first */
439 		u_char *p = (u_char *)id;
440 		u_char t;
441 		for (i = 0; i < 512; i += 2) {
442 			t = p[i];
443 			p[i] = p[i+1];
444 			p[i+1] = t;
445 		}
446 	}
447 #endif
448 #endif /* __mc68000__ */
449 
450 	id->config         = __le16_to_cpu(id->config);
451 	id->cyls           = __le16_to_cpu(id->cyls);
452 	id->reserved2      = __le16_to_cpu(id->reserved2);
453 	id->heads          = __le16_to_cpu(id->heads);
454 	id->track_bytes    = __le16_to_cpu(id->track_bytes);
455 	id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
456 	id->sectors        = __le16_to_cpu(id->sectors);
457 	id->vendor0        = __le16_to_cpu(id->vendor0);
458 	id->vendor1        = __le16_to_cpu(id->vendor1);
459 	id->vendor2        = __le16_to_cpu(id->vendor2);
460 	stringcast = (u16 *)&id->serial_no[0];
461 	for (i = 0; i < (20/2); i++)
462 		stringcast[i] = __le16_to_cpu(stringcast[i]);
463 	id->buf_type       = __le16_to_cpu(id->buf_type);
464 	id->buf_size       = __le16_to_cpu(id->buf_size);
465 	id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
466 	stringcast = (u16 *)&id->fw_rev[0];
467 	for (i = 0; i < (8/2); i++)
468 		stringcast[i] = __le16_to_cpu(stringcast[i]);
469 	stringcast = (u16 *)&id->model[0];
470 	for (i = 0; i < (40/2); i++)
471 		stringcast[i] = __le16_to_cpu(stringcast[i]);
472 	id->dword_io       = __le16_to_cpu(id->dword_io);
473 	id->reserved50     = __le16_to_cpu(id->reserved50);
474 	id->field_valid    = __le16_to_cpu(id->field_valid);
475 	id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
476 	id->cur_heads      = __le16_to_cpu(id->cur_heads);
477 	id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
478 	id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
479 	id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
480 	id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
481 	id->dma_1word      = __le16_to_cpu(id->dma_1word);
482 	id->dma_mword      = __le16_to_cpu(id->dma_mword);
483 	id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
484 	id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
485 	id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
486 	id->eide_pio       = __le16_to_cpu(id->eide_pio);
487 	id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
488 	for (i = 0; i < 2; ++i)
489 		id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
490 	for (i = 0; i < 4; ++i)
491 		id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
492 	id->queue_depth    = __le16_to_cpu(id->queue_depth);
493 	for (i = 0; i < 4; ++i)
494 		id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
495 	id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
496 	id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
497 	id->command_set_1  = __le16_to_cpu(id->command_set_1);
498 	id->command_set_2  = __le16_to_cpu(id->command_set_2);
499 	id->cfsse          = __le16_to_cpu(id->cfsse);
500 	id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
501 	id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
502 	id->csf_default    = __le16_to_cpu(id->csf_default);
503 	id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
504 	id->trseuc         = __le16_to_cpu(id->trseuc);
505 	id->trsEuc         = __le16_to_cpu(id->trsEuc);
506 	id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
507 	id->mprc           = __le16_to_cpu(id->mprc);
508 	id->hw_config      = __le16_to_cpu(id->hw_config);
509 	id->acoustic       = __le16_to_cpu(id->acoustic);
510 	id->msrqs          = __le16_to_cpu(id->msrqs);
511 	id->sxfert         = __le16_to_cpu(id->sxfert);
512 	id->sal            = __le16_to_cpu(id->sal);
513 	id->spg            = __le32_to_cpu(id->spg);
514 	id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
515 	for (i = 0; i < 22; i++)
516 		id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
517 	id->last_lun       = __le16_to_cpu(id->last_lun);
518 	id->word127        = __le16_to_cpu(id->word127);
519 	id->dlf            = __le16_to_cpu(id->dlf);
520 	id->csfo           = __le16_to_cpu(id->csfo);
521 	for (i = 0; i < 26; i++)
522 		id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
523 	id->word156        = __le16_to_cpu(id->word156);
524 	for (i = 0; i < 3; i++)
525 		id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
526 	id->cfa_power      = __le16_to_cpu(id->cfa_power);
527 	for (i = 0; i < 14; i++)
528 		id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
529 	for (i = 0; i < 31; i++)
530 		id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
531 	for (i = 0; i < 48; i++)
532 		id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
533 	id->integrity_word  = __le16_to_cpu(id->integrity_word);
534 # else
535 #  error "Please fix <asm/byteorder.h>"
536 # endif
537 #endif
538 }
539 
540 EXPORT_SYMBOL(ide_fix_driveid);
541 
ide_fixstring(u8 * s,const int bytecount,const int byteswap)542 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
543 {
544 	u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
545 
546 	if (byteswap) {
547 		/* convert from big-endian to host byte order */
548 		for (p = end ; p != s;) {
549 			unsigned short *pp = (unsigned short *) (p -= 2);
550 			*pp = ntohs(*pp);
551 		}
552 	}
553 	/* strip leading blanks */
554 	while (s != end && *s == ' ')
555 		++s;
556 	/* compress internal blanks and strip trailing blanks */
557 	while (s != end && *s) {
558 		if (*s++ != ' ' || (s != end && *s && *s != ' '))
559 			*p++ = *(s-1);
560 	}
561 	/* wipe out trailing garbage */
562 	while (p != end)
563 		*p++ = '\0';
564 }
565 
566 EXPORT_SYMBOL(ide_fixstring);
567 
568 /*
569  * Needed for PCI irq sharing
570  */
drive_is_ready(ide_drive_t * drive)571 int drive_is_ready (ide_drive_t *drive)
572 {
573 	ide_hwif_t *hwif	= HWIF(drive);
574 	u8 stat			= 0;
575 
576 	if (drive->waiting_for_dma)
577 		return hwif->ide_dma_test_irq(drive);
578 
579 #if 0
580 	/* need to guarantee 400ns since last command was issued */
581 	udelay(1);
582 #endif
583 
584 #ifdef CONFIG_IDEPCI_SHARE_IRQ
585 	/*
586 	 * We do a passive status test under shared PCI interrupts on
587 	 * cards that truly share the ATA side interrupt, but may also share
588 	 * an interrupt with another pci card/device.  We make no assumptions
589 	 * about possible isa-pnp and pci-pnp issues yet.
590 	 */
591 	if (IDE_CONTROL_REG)
592 		stat = hwif->INB(IDE_ALTSTATUS_REG);
593 	else
594 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
595 		/* Note: this may clear a pending IRQ!! */
596 		stat = hwif->INB(IDE_STATUS_REG);
597 
598 	if (stat & BUSY_STAT)
599 		/* drive busy:  definitely not interrupting */
600 		return 0;
601 
602 	/* drive ready: *might* be interrupting */
603 	return 1;
604 }
605 
606 EXPORT_SYMBOL(drive_is_ready);
607 
608 /*
609  * Global for All, and taken from ide-pmac.c. Can be called
610  * with spinlock held & IRQs disabled, so don't schedule !
611  */
wait_for_ready(ide_drive_t * drive,int timeout)612 int wait_for_ready (ide_drive_t *drive, int timeout)
613 {
614 	ide_hwif_t *hwif	= HWIF(drive);
615 	u8 stat			= 0;
616 
617 	while(--timeout) {
618 		stat = hwif->INB(IDE_STATUS_REG);
619 		if (!(stat & BUSY_STAT)) {
620 			if (drive->ready_stat == 0)
621 				break;
622 			else if ((stat & drive->ready_stat)||(stat & ERR_STAT))
623 				break;
624 		}
625 		mdelay(1);
626 	}
627 	if ((stat & ERR_STAT) || timeout <= 0) {
628 		if (stat & ERR_STAT) {
629 			printk(KERN_ERR "%s: wait_for_ready, "
630 				"error status: %x\n", drive->name, stat);
631 		}
632 		return 1;
633 	}
634 	return 0;
635 }
636 
637 EXPORT_SYMBOL(wait_for_ready);
638 
639 /*
640  * This routine busy-waits for the drive status to be not "busy".
641  * It then checks the status for all of the "good" bits and none
642  * of the "bad" bits, and if all is okay it returns 0.  All other
643  * cases return 1 after invoking ide_error() -- caller should just return.
644  *
645  * This routine should get fixed to not hog the cpu during extra long waits..
646  * That could be done by busy-waiting for the first jiffy or two, and then
647  * setting a timer to wake up at half second intervals thereafter,
648  * until timeout is achieved, before timing out.
649  */
ide_wait_stat(ide_startstop_t * startstop,ide_drive_t * drive,u8 good,u8 bad,unsigned long timeout)650 int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
651 {
652 	ide_hwif_t *hwif = HWIF(drive);
653 	u8 stat;
654 	int i;
655 	unsigned long flags;
656 
657 	/* bail early if we've exceeded max_failures */
658 	if (drive->max_failures && (drive->failures > drive->max_failures)) {
659 		*startstop = ide_stopped;
660 		return 1;
661 	}
662 
663 	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
664 	if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
665 		local_irq_set(flags);
666 		timeout += jiffies;
667 		while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
668 			if (time_after(jiffies, timeout)) {
669 				/*
670 				 * One last read after the timeout in case
671 				 * heavy interrupt load made us not make any
672 				 * progress during the timeout..
673 				 */
674 				stat = hwif->INB(IDE_STATUS_REG);
675 				if (!(stat & BUSY_STAT))
676 					break;
677 
678 				local_irq_restore(flags);
679 				*startstop = DRIVER(drive)->error(drive, "status timeout", stat);
680 				return 1;
681 			}
682 		}
683 		local_irq_restore(flags);
684 	}
685 	/*
686 	 * Allow status to settle, then read it again.
687 	 * A few rare drives vastly violate the 400ns spec here,
688 	 * so we'll wait up to 10usec for a "good" status
689 	 * rather than expensively fail things immediately.
690 	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
691 	 */
692 	for (i = 0; i < 10; i++) {
693 		udelay(1);
694 		if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad))
695 			return 0;
696 	}
697 	*startstop = DRIVER(drive)->error(drive, "status error", stat);
698 	return 1;
699 }
700 
701 EXPORT_SYMBOL(ide_wait_stat);
702 
703 /*
704  *  All hosts that use the 80c ribbon must use!
705  *  The name is derived from upper byte of word 93 and the 80c ribbon.
706  */
eighty_ninty_three(ide_drive_t * drive)707 u8 eighty_ninty_three (ide_drive_t *drive)
708 {
709 #if 0
710 	if (!HWIF(drive)->udma_four)
711 		return 0;
712 
713 	if (drive->id->major_rev_num) {
714 		int hssbd = 0;
715 		int i;
716 		/*
717 		 * Determime highest Supported SPEC
718 		 */
719 		for (i=1; i<=15; i++)
720 			if (drive->id->major_rev_num & (1<<i))
721 				hssbd++;
722 
723 		switch (hssbd) {
724 			case 7:
725 			case 6:
726 			case 5:
727 		/* ATA-4 and older do not support above Ultra 33 */
728 			default:
729 				return 0;
730 		}
731 	}
732 
733 	return ((u8) (
734 #ifndef CONFIG_IDEDMA_IVB
735 		(drive->id->hw_config & 0x4000) &&
736 #endif /* CONFIG_IDEDMA_IVB */
737 		 (drive->id->hw_config & 0x6000)) ? 1 : 0);
738 
739 #else
740 
741 	return ((u8) ((HWIF(drive)->udma_four) &&
742 #ifndef CONFIG_IDEDMA_IVB
743 			(drive->id->hw_config & 0x4000) &&
744 #endif /* CONFIG_IDEDMA_IVB */
745 			(drive->id->hw_config & 0x6000)) ? 1 : 0);
746 #endif
747 }
748 
749 EXPORT_SYMBOL(eighty_ninty_three);
750 
ide_ata66_check(ide_drive_t * drive,ide_task_t * args)751 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
752 {
753 	/* SATA has no cable restrictions */
754 	if (HWIF(drive)->sata)
755 		return 0;
756 
757 	if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
758 	    (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
759 	    (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
760 #ifndef CONFIG_IDEDMA_IVB
761 		if ((drive->id->hw_config & 0x6000) == 0) {
762 #else /* !CONFIG_IDEDMA_IVB */
763 		if (((drive->id->hw_config & 0x2000) == 0) ||
764 		    ((drive->id->hw_config & 0x4000) == 0)) {
765 #endif /* CONFIG_IDEDMA_IVB */
766 			printk("%s: Speed warnings UDMA 3/4/5 is not "
767 				"functional.\n", drive->name);
768 			return 1;
769 		}
770 		if (!HWIF(drive)->udma_four) {
771 			printk("%s: Speed warnings UDMA 3/4/5 is not "
772 				"functional.\n",
773 				HWIF(drive)->name);
774 			return 1;
775 		}
776 	}
777 	return 0;
778 }
779 
780 EXPORT_SYMBOL(ide_ata66_check);
781 
782 /*
783  * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
784  * 1 : Safe to update drive->id DMA registers.
785  * 0 : OOPs not allowed.
786  */
787 int set_transfer (ide_drive_t *drive, ide_task_t *args)
788 {
789 	if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
790 	    (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
791 	    (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
792 	    (drive->id->dma_ultra ||
793 	     drive->id->dma_mword ||
794 	     drive->id->dma_1word))
795 		return 1;
796 
797 	return 0;
798 }
799 
800 EXPORT_SYMBOL(set_transfer);
801 
802 u8 ide_auto_reduce_xfer (ide_drive_t *drive)
803 {
804 	if (!drive->crc_count)
805 		return drive->current_speed;
806 	drive->crc_count = 0;
807 
808 	switch(drive->current_speed) {
809 		case XFER_UDMA_7:	return XFER_UDMA_6;
810 		case XFER_UDMA_6:	return XFER_UDMA_5;
811 		case XFER_UDMA_5:	return XFER_UDMA_4;
812 		case XFER_UDMA_4:	return XFER_UDMA_3;
813 		case XFER_UDMA_3:	return XFER_UDMA_2;
814 		case XFER_UDMA_2:	return XFER_UDMA_1;
815 		case XFER_UDMA_1:	return XFER_UDMA_0;
816 			/*
817 			 * OOPS we do not goto non Ultra DMA modes
818 			 * without iCRC's available we force
819 			 * the system to PIO and make the user
820 			 * invoke the ATA-1 ATA-2 DMA modes.
821 			 */
822 		case XFER_UDMA_0:
823 		default:		return XFER_PIO_4;
824 	}
825 }
826 
827 EXPORT_SYMBOL(ide_auto_reduce_xfer);
828 
829 /*
830  * Update the
831  */
832 int ide_driveid_update (ide_drive_t *drive)
833 {
834 	ide_hwif_t *hwif	= HWIF(drive);
835 	struct hd_driveid *id;
836 #if 0
837 	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
838 	if (!id)
839 		return 0;
840 
841 	taskfile_lib_get_identify(drive, (char *)&id);
842 
843 	ide_fix_driveid(id);
844 	if (id) {
845 		drive->id->dma_ultra = id->dma_ultra;
846 		drive->id->dma_mword = id->dma_mword;
847 		drive->id->dma_1word = id->dma_1word;
848 		/* anything more ? */
849 		kfree(id);
850 	}
851 	return 1;
852 #else
853 	/*
854 	 * Re-read drive->id for possible DMA mode
855 	 * change (copied from ide-probe.c)
856 	 */
857 	unsigned long timeout, flags;
858 
859 	SELECT_MASK(drive, 1);
860 	if (IDE_CONTROL_REG)
861 		hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
862 	ide_delay_50ms();
863 	hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
864 	timeout = jiffies + WAIT_WORSTCASE;
865 	do {
866 		if (time_after(jiffies, timeout)) {
867 			SELECT_MASK(drive, 0);
868 			return 0;	/* drive timed-out */
869 		}
870 		ide_delay_50ms();	/* give drive a breather */
871 	} while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
872 	ide_delay_50ms();	/* wait for IRQ and DRQ_STAT */
873 	if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
874 		SELECT_MASK(drive, 0);
875 		printk("%s: CHECK for good STATUS\n", drive->name);
876 		return 0;
877 	}
878 	local_irq_save(flags);
879 	SELECT_MASK(drive, 0);
880 	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
881 	if (!id) {
882 		local_irq_restore(flags);
883 		return 0;
884 	}
885 	ata_input_data(drive, id, SECTOR_WORDS);
886 	(void) hwif->INB(IDE_STATUS_REG);	/* clear drive IRQ */
887 	local_irq_enable();
888 	local_irq_restore(flags);
889 	ide_fix_driveid(id);
890 
891 	drive->id->dma_ultra = id->dma_ultra;
892 	drive->id->dma_mword = id->dma_mword;
893 	drive->id->dma_1word = id->dma_1word;
894 	/* anything more ? */
895 	kfree(id);
896 
897 	return 1;
898 #endif
899 }
900 
901 EXPORT_SYMBOL(ide_driveid_update);
902 
903 /*
904  * Similar to ide_wait_stat(), except it never calls ide_error internally.
905  * This is a kludge to handle the new ide_config_drive_speed() function,
906  * and should not otherwise be used anywhere.  Eventually, the tuneproc's
907  * should be updated to return ide_startstop_t, in which case we can get
908  * rid of this abomination again.  :)   -ml
909  *
910  * It is gone..........
911  *
912  * const char *msg == consider adding for verbose errors.
913  */
914 int ide_config_drive_speed (ide_drive_t *drive, u8 speed)
915 {
916 	ide_hwif_t *hwif	= HWIF(drive);
917 	int	i, error	= 1;
918 	u8 stat;
919 
920 //	while (HWGROUP(drive)->busy)
921 //		ide_delay_50ms();
922 
923 #if defined(CONFIG_BLK_DEV_IDEDMA) && !defined(CONFIG_DMA_NONPCI)
924 	hwif->ide_dma_host_off(drive);
925 #endif /* (CONFIG_BLK_DEV_IDEDMA) && !(CONFIG_DMA_NONPCI) */
926 
927 	/*
928 	 * Don't use ide_wait_cmd here - it will
929 	 * attempt to set_geometry and recalibrate,
930 	 * but for some reason these don't work at
931 	 * this point (lost interrupt).
932 	 */
933         /*
934          * Select the drive, and issue the SETFEATURES command
935          */
936 	disable_irq_nosync(hwif->irq);
937 	udelay(1);
938 	SELECT_DRIVE(drive);
939 	SELECT_MASK(drive, 0);
940 	udelay(1);
941 	if (IDE_CONTROL_REG)
942 		hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
943 	hwif->OUTB(speed, IDE_NSECTOR_REG);
944 	hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
945 	hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG);
946 	if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
947 		hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
948 	udelay(1);
949 	/*
950 	 * Wait for drive to become non-BUSY
951 	 */
952 	if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
953 		unsigned long flags, timeout;
954 		local_irq_set(flags);
955 		timeout = jiffies + WAIT_CMD;
956 		while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
957 			if (time_after(jiffies, timeout))
958 				break;
959 		}
960 		local_irq_restore(flags);
961 	}
962 
963 	/*
964 	 * Allow status to settle, then read it again.
965 	 * A few rare drives vastly violate the 400ns spec here,
966 	 * so we'll wait up to 10usec for a "good" status
967 	 * rather than expensively fail things immediately.
968 	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
969 	 */
970 	for (i = 0; i < 10; i++) {
971 		udelay(1);
972 		if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), DRIVE_READY, BUSY_STAT|DRQ_STAT|ERR_STAT)) {
973 			error = 0;
974 			break;
975 		}
976 	}
977 
978 	SELECT_MASK(drive, 0);
979 
980 	enable_irq(hwif->irq);
981 
982 	if (error) {
983 		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
984 		return error;
985 	}
986 
987 	drive->id->dma_ultra &= ~0xFF00;
988 	drive->id->dma_mword &= ~0x0F00;
989 	drive->id->dma_1word &= ~0x0F00;
990 
991 #if defined(CONFIG_BLK_DEV_IDEDMA) && !defined(CONFIG_DMA_NONPCI)
992 	if (speed >= XFER_SW_DMA_0)
993 		hwif->ide_dma_host_on(drive);
994 	else
995 		hwif->ide_dma_off_quietly(drive);
996 #endif /* (CONFIG_BLK_DEV_IDEDMA) && !(CONFIG_DMA_NONPCI) */
997 
998 	switch(speed) {
999 		case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
1000 		case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
1001 		case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
1002 		case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
1003 		case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
1004 		case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
1005 		case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
1006 		case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
1007 		case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
1008 		case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
1009 		case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
1010 		case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
1011 		case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
1012 		case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
1013 		default: break;
1014 	}
1015 	if (!drive->init_speed)
1016 		drive->init_speed = speed;
1017 	drive->current_speed = speed;
1018 	return error;
1019 }
1020 
1021 EXPORT_SYMBOL(ide_config_drive_speed);
1022 
1023 
1024 /*
1025  * This should get invoked any time we exit the driver to
1026  * wait for an interrupt response from a drive.  handler() points
1027  * at the appropriate code to handle the next interrupt, and a
1028  * timer is started to prevent us from waiting forever in case
1029  * something goes wrong (see the ide_timer_expiry() handler later on).
1030  *
1031  * See also ide_execute_command
1032  */
1033 void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
1034 		      unsigned int timeout, ide_expiry_t *expiry)
1035 {
1036 	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1037 
1038 	if (hwgroup->handler != NULL) {
1039 		printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
1040 			"old=%p, new=%p\n",
1041 			drive->name, hwgroup->handler, handler);
1042 		BUG();
1043 	}
1044 	hwgroup->handler	= handler;
1045 	hwgroup->expiry		= expiry;
1046 	hwgroup->timer.expires	= jiffies + timeout;
1047 	add_timer(&hwgroup->timer);
1048 }
1049 
1050 EXPORT_SYMBOL(__ide_set_handler);
1051 
1052 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
1053 		      unsigned int timeout, ide_expiry_t *expiry)
1054 {
1055 	unsigned long flags;
1056 	spin_lock_irqsave(&io_request_lock, flags);
1057 	__ide_set_handler(drive, handler, timeout, expiry);
1058 	spin_unlock_irqrestore(&io_request_lock, flags);
1059 }
1060 
1061 EXPORT_SYMBOL(ide_set_handler);
1062 
1063 /**
1064  *	ide_execute_command	-	execute an IDE command
1065  *	@drive: IDE drive to issue the command against
1066  *	@command: command byte to write
1067  *	@handler: handler for next phase
1068  *	@timeout: timeout for command
1069  *	@expiry:  handler to run on timeout
1070  *
1071  *	Helper function to issue an IDE command. This handles the
1072  *	atomicity requirements, command timing and ensures that the
1073  *	handler and IRQ setup do not race. All IDE command kick off
1074  *	should go via this function or do equivalent locking.
1075  */
1076 
1077 void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
1078 {
1079 	unsigned long flags;
1080 	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1081 	ide_hwif_t *hwif = HWIF(drive);
1082 
1083 	spin_lock_irqsave(&io_request_lock, flags);
1084 
1085 	if(hwgroup->handler)
1086 		BUG();
1087 	hwgroup->handler	= handler;
1088 	hwgroup->expiry		= expiry;
1089 	hwgroup->timer.expires	= jiffies + timeout;
1090 	add_timer(&hwgroup->timer);
1091 	hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
1092 	/* Drive takes 400nS to respond, we must avoid the IRQ being
1093 	   serviced before that.
1094 
1095 	   FIXME: we could skip this delay with care on non shared
1096 	   devices
1097 
1098 	   For DMA transfers highpoint have a neat trick we could
1099 	   use. When they take an IRQ they check STS but also that
1100 	   the DMA count is not zero (see hpt's own driver)
1101 	*/
1102 	ndelay(400);
1103 	spin_unlock_irqrestore(&io_request_lock, flags);
1104 }
1105 
1106 EXPORT_SYMBOL(ide_execute_command);
1107 
1108 /* needed below */
1109 static ide_startstop_t do_reset1 (ide_drive_t *, int);
1110 
1111 /*
1112  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1113  * during an atapi drive reset operation. If the drive has not yet responded,
1114  * and we have not yet hit our maximum waiting time, then the timer is restarted
1115  * for another 50ms.
1116  */
1117 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
1118 {
1119 	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
1120 	ide_hwif_t *hwif	= HWIF(drive);
1121 	u8 stat;
1122 
1123 	SELECT_DRIVE(drive);
1124 	udelay (10);
1125 
1126 	if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1127 		printk("%s: ATAPI reset complete\n", drive->name);
1128 	} else {
1129 		if (time_before(jiffies, hwgroup->poll_timeout)) {
1130 			if (HWGROUP(drive)->handler != NULL)
1131 				BUG();
1132 			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1133 			/* continue polling */
1134 			return ide_started;
1135 		}
1136 		/* end of polling */
1137 		hwgroup->poll_timeout = 0;
1138 		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
1139 				drive->name, stat);
1140 		/* do it the old fashioned way */
1141 		return do_reset1(drive, 1);
1142 	}
1143 	/* done polling */
1144 	hwgroup->poll_timeout = 0;
1145 	return ide_stopped;
1146 }
1147 
1148 /*
1149  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1150  * during an ide reset operation. If the drives have not yet responded,
1151  * and we have not yet hit our maximum waiting time, then the timer is restarted
1152  * for another 50ms.
1153  */
1154 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
1155 {
1156 	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
1157 	ide_hwif_t *hwif	= HWIF(drive);
1158 	u8 tmp;
1159 
1160 	if (hwif->reset_poll != NULL) {
1161 		if (hwif->reset_poll(drive)) {
1162 			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
1163 				hwif->name, drive->name);
1164 			return ide_stopped;
1165 		}
1166 	}
1167 
1168 	if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1169 		if (time_before(jiffies, hwgroup->poll_timeout)) {
1170 			if (HWGROUP(drive)->handler != NULL)
1171 				BUG();
1172 			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1173 			/* continue polling */
1174 			return ide_started;
1175 		}
1176 		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1177 		drive->failures++;
1178 	} else  {
1179 		printk("%s: reset: ", hwif->name);
1180 		if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1181 			printk("success\n");
1182 			drive->failures = 0;
1183 		} else {
1184 			drive->failures++;
1185 #if FANCY_STATUS_DUMPS
1186 			printk("master: ");
1187 			switch (tmp & 0x7f) {
1188 				case 1: printk("passed");
1189 					break;
1190 				case 2: printk("formatter device error");
1191 					break;
1192 				case 3: printk("sector buffer error");
1193 					break;
1194 				case 4: printk("ECC circuitry error");
1195 					break;
1196 				case 5: printk("controlling MPU error");
1197 					break;
1198 				default:printk("error (0x%02x?)", tmp);
1199 			}
1200 			if (tmp & 0x80)
1201 				printk("; slave: failed");
1202 			printk("\n");
1203 #else
1204 			printk("failed\n");
1205 #endif /* FANCY_STATUS_DUMPS */
1206 		}
1207 	}
1208 	hwgroup->poll_timeout = 0;	/* done polling */
1209 	return ide_stopped;
1210 }
1211 
1212 void check_dma_crc (ide_drive_t *drive)
1213 {
1214 	if (drive->crc_count) {
1215 		(void) HWIF(drive)->ide_dma_off_quietly(drive);
1216 		ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1217 		if (drive->current_speed >= XFER_SW_DMA_0)
1218 			(void) HWIF(drive)->ide_dma_on(drive);
1219 	} else {
1220 		(void) HWIF(drive)->ide_dma_off(drive);
1221 	}
1222 }
1223 
1224 void pre_reset (ide_drive_t *drive)
1225 {
1226 	DRIVER(drive)->pre_reset(drive);
1227 
1228 	if (!drive->keep_settings) {
1229 		if (drive->using_dma) {
1230 			check_dma_crc(drive);
1231 		} else {
1232 			drive->unmask = 0;
1233 			drive->io_32bit = 0;
1234 		}
1235 		return;
1236 	}
1237 	if (drive->using_dma)
1238 		check_dma_crc(drive);
1239 
1240 	if (HWIF(drive)->pre_reset != NULL)
1241 		HWIF(drive)->pre_reset(drive);
1242 
1243 }
1244 
1245 /*
1246  * do_reset1() attempts to recover a confused drive by resetting it.
1247  * Unfortunately, resetting a disk drive actually resets all devices on
1248  * the same interface, so it can really be thought of as resetting the
1249  * interface rather than resetting the drive.
1250  *
1251  * ATAPI devices have their own reset mechanism which allows them to be
1252  * individually reset without clobbering other devices on the same interface.
1253  *
1254  * Unfortunately, the IDE interface does not generate an interrupt to let
1255  * us know when the reset operation has finished, so we must poll for this.
1256  * Equally poor, though, is the fact that this may a very long time to complete,
1257  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1258  * we set a timer to poll at 50ms intervals.
1259  */
1260 
1261 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1262 {
1263 	unsigned int unit;
1264 	unsigned long flags;
1265 	ide_hwif_t *hwif;
1266 	ide_hwgroup_t *hwgroup;
1267 
1268 	spin_lock_irqsave(&io_request_lock, flags);
1269 
1270 	hwgroup = HWGROUP(drive);
1271 	hwif = HWIF(drive);
1272 
1273 	/* We must not reset with running handlers */
1274 	if(hwgroup->handler != NULL)
1275 		BUG();
1276 
1277 	/* For an ATAPI device, first try an ATAPI SRST. */
1278 	if (drive->media != ide_disk && !do_not_try_atapi) {
1279 		pre_reset(drive);
1280 		SELECT_DRIVE(drive);
1281 		udelay (20);
1282 		hwif->OUTB(WIN_SRST, IDE_COMMAND_REG);
1283 		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1284 		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1285 		spin_unlock_irqrestore(&io_request_lock, flags);
1286 		return ide_started;
1287 	}
1288 
1289 	/*
1290 	 * First, reset any device state data we were maintaining
1291 	 * for any of the drives on this interface.
1292 	 */
1293 	for (unit = 0; unit < MAX_DRIVES; ++unit)
1294 		pre_reset(&hwif->drives[unit]);
1295 
1296 #if OK_TO_RESET_CONTROLLER
1297 	if (!IDE_CONTROL_REG) {
1298 		spin_unlock_irqrestore(&io_request_lock, flags);
1299 		return ide_stopped;
1300 	}
1301 
1302 	/*
1303 	 * Note that we also set nIEN while resetting the device,
1304 	 * to mask unwanted interrupts from the interface during the reset.
1305 	 * However, due to the design of PC hardware, this will cause an
1306 	 * immediate interrupt due to the edge transition it produces.
1307 	 * This single interrupt gives us a "fast poll" for drives that
1308 	 * recover from reset very quickly, saving us the first 50ms wait time.
1309 	 */
1310 	/* set SRST and nIEN */
1311 	hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1312 	/* more than enough time */
1313 	udelay(10);
1314 	if (drive->quirk_list == 2) {
1315 		/* clear SRST and nIEN */
1316 		hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1317 	} else {
1318 		/* clear SRST, leave nIEN */
1319 		hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1320 	}
1321 	/* more than enough time */
1322 	udelay(10);
1323 
1324 	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1325 	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1326 	/*
1327 	 * Some weird controller like resetting themselves to a strange
1328 	 * state when the disks are reset this way. At least, the Winbond
1329 	 * 553 documentation says that
1330 	 */
1331 	if (hwif->resetproc != NULL) {
1332 		hwif->resetproc(drive);
1333 	}
1334 
1335 #endif	/* OK_TO_RESET_CONTROLLER */
1336 	spin_unlock_irqrestore(&io_request_lock, flags);
1337 	return ide_started;
1338 }
1339 
1340 /*
1341  * ide_do_reset() is the entry point to the drive/interface reset code.
1342  *
1343  * Caller must not hold the io_request lock.
1344  */
1345 
1346 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1347 {
1348 	return do_reset1(drive, 0);
1349 }
1350 
1351 EXPORT_SYMBOL(ide_do_reset);
1352 
1353