1 
2 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
3  *                            FireStream  50 (MB86695) device driver
4  */
5 
6 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
7  * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
8  * and ambassador.c Copyright (C) 1995-1999  Madge Networks Ltd
9  */
10 
11 /*
12   This program is free software; you can redistribute it and/or modify
13   it under the terms of the GNU General Public License as published by
14   the Free Software Foundation; either version 2 of the License, or
15   (at your option) any later version.
16 
17   This program is distributed in the hope that it will be useful,
18   but WITHOUT ANY WARRANTY; without even the implied warranty of
19   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20   GNU General Public License for more details.
21 
22   You should have received a copy of the GNU General Public License
23   along with this program; if not, write to the Free Software
24   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25 
26   The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
27   system and in the file COPYING in the Linux kernel source.
28 */
29 
30 
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/pci.h>
36 #include <linux/errno.h>
37 #include <linux/atm.h>
38 #include <linux/atmdev.h>
39 #include <linux/sonet.h>
40 #include <linux/skbuff.h>
41 #include <linux/netdevice.h>
42 #include <linux/delay.h>
43 #include <linux/ioport.h> /* for request_region */
44 #include <linux/uio.h>
45 #include <linux/init.h>
46 #include <linux/capability.h>
47 #include <linux/bitops.h>
48 #include <asm/byteorder.h>
49 #include <asm/system.h>
50 #include <asm/string.h>
51 #include <asm/io.h>
52 #include <asm/atomic.h>
53 #include <asm/uaccess.h>
54 #include <linux/wait.h>
55 
56 #include "firestream.h"
57 
58 static int loopback = 0;
59 static int num=0x5a;
60 
61 /* According to measurements (but they look suspicious to me!) done in
62  * '97, 37% of the packets are one cell in size. So it pays to have
63  * buffers allocated at that size. A large jump in percentage of
64  * packets occurs at packets around 536 bytes in length. So it also
65  * pays to have those pre-allocated. Unfortunately, we can't fully
66  * take advantage of this as the majority of the packets is likely to
67  * be TCP/IP (As where obviously the measurement comes from) There the
68  * link would be opened with say a 1500 byte MTU, and we can't handle
69  * smaller buffers more efficiently than the larger ones. -- REW
70  */
71 
72 /* Due to the way Linux memory management works, specifying "576" as
73  * an allocation size here isn't going to help. They are allocated
74  * from 1024-byte regions anyway. With the size of the sk_buffs (quite
75  * large), it doesn't pay to allocate the smallest size (64) -- REW */
76 
77 /* This is all guesswork. Hard numbers to back this up or disprove this,
78  * are appreciated. -- REW */
79 
80 /* The last entry should be about 64k. However, the "buffer size" is
81  * passed to the chip in a 16 bit field. I don't know how "65536"
82  * would be interpreted. -- REW */
83 
84 #define NP FS_NR_FREE_POOLS
85 int rx_buf_sizes[NP]  = {128,  256,  512, 1024, 2048, 4096, 16384, 65520};
86 /* log2:                 7     8     9    10    11    12    14     16 */
87 
88 #if 0
89 int rx_pool_sizes[NP] = {1024, 1024, 512, 256,  128,  64,   32,    32};
90 #else
91 /* debug */
92 int rx_pool_sizes[NP] = {128,  128,  128, 64,   64,   64,   32,    32};
93 #endif
94 /* log2:                 10    10    9    8     7     6     5      5  */
95 /* sumlog2:              17    18    18   18    18    18    19     21 */
96 /* mem allocated:        128k  256k  256k 256k  256k  256k  512k   2M */
97 /* tot mem: almost 4M */
98 
99 /* NP is shorter, so that it fits on a single line. */
100 #undef NP
101 
102 
103 /* Small hardware gotcha:
104 
105    The FS50 CAM (VP/VC match registers) always take the lowest channel
106    number that matches. This is not a problem.
107 
108    However, they also ignore wether the channel is enabled or
109    not. This means that if you allocate channel 0 to 1.2 and then
110    channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
111    match channel for channel 0 will "steal" the traffic from channel
112    1, even if you correctly disable channel 0.
113 
114    Workaround:
115 
116    - When disabling channels, write an invalid VP/VC value to the
117    match register. (We use 0xffffffff, which in the worst case
118    matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
119    anything as some "when not in use, program to 0" bits are now
120    programmed to 1...)
121 
122    - Don't initialize the match registers to 0, as 0.0 is a valid
123    channel.
124 */
125 
126 
127 /* Optimization hints and tips.
128 
129    The FireStream chips are very capable of reducing the amount of
130    "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
131    action. You could try to minimize this a bit.
132 
133    Besides that, the userspace->kernel copy and the PCI bus are the
134    performance limiting issues for this driver.
135 
136    You could queue up a bunch of outgoing packets without telling the
137    FireStream. I'm not sure that's going to win you much though. The
138    Linux layer won't tell us in advance when it's not going to give us
139    any more packets in a while. So this is tricky to implement right without
140    introducing extra delays.
141 
142    -- REW
143  */
144 
145 
146 
147 
148 /* The strings that define what the RX queue entry is all about. */
149 /* Fujitsu: Please tell me which ones can have a pointer to a
150    freepool descriptor! */
151 static char *res_strings[] = {
152 	"RX OK: streaming not EOP",
153 	"RX OK: streaming EOP",
154 	"RX OK: Single buffer packet",
155 	"RX OK: packet mode",
156 	"RX OK: F4 OAM (end to end)",
157 	"RX OK: F4 OAM (Segment)",
158 	"RX OK: F5 OAM (end to end)",
159 	"RX OK: F5 OAM (Segment)",
160 	"RX OK: RM cell",
161 	"RX OK: TRANSP cell",
162 	"RX OK: TRANSPC cell",
163 	"Unmatched cell",
164 	"reserved 12",
165 	"reserved 13",
166 	"reserved 14",
167 	"Unrecognized cell",
168 	"reserved 16",
169 	"reassemby abort: AAL5 abort",
170 	"packet purged",
171 	"packet ageing timeout",
172 	"channel ageing timeout",
173 	"calculated lenght error",
174 	"programmed lenght limit error",
175 	"aal5 crc32 error",
176 	"oam transp or transpc crc10 error",
177 	"reserved 25",
178 	"reserved 26",
179 	"reserved 27",
180 	"reserved 28",
181 	"reserved 29",
182 	"reserved 30",
183 	"reassembly abort: no buffers",
184 	"receive buffer overflow",
185 	"change in GFC",
186 	"receive buffer full",
187 	"low priority discard - no receive descriptor",
188 	"low priority discard - missing end of packet",
189 	"reserved 41",
190 	"reserved 42",
191 	"reserved 43",
192 	"reserved 44",
193 	"reserved 45",
194 	"reserved 46",
195 	"reserved 47",
196 	"reserved 48",
197 	"reserved 49",
198 	"reserved 50",
199 	"reserved 51",
200 	"reserved 52",
201 	"reserved 53",
202 	"reserved 54",
203 	"reserved 55",
204 	"reserved 56",
205 	"reserved 57",
206 	"reserved 58",
207 	"reserved 59",
208 	"reserved 60",
209 	"reserved 61",
210 	"reserved 62",
211 	"reserved 63",
212 };
213 
214 static char *irq_bitname[] = {
215 	"LPCO",
216 	"DPCO",
217 	"RBRQ0_W",
218 	"RBRQ1_W",
219 	"RBRQ2_W",
220 	"RBRQ3_W",
221 	"RBRQ0_NF",
222 	"RBRQ1_NF",
223 	"RBRQ2_NF",
224 	"RBRQ3_NF",
225 	"BFP_SC",
226 	"INIT",
227 	"INIT_ERR",
228 	"USCEO",
229 	"UPEC0",
230 	"VPFCO",
231 	"CRCCO",
232 	"HECO",
233 	"TBRQ_W",
234 	"TBRQ_NF",
235 	"CTPQ_E",
236 	"GFC_C0",
237 	"PCI_FTL",
238 	"CSQ_W",
239 	"CSQ_NF",
240 	"EXT_INT",
241 	"RXDMA_S"
242 };
243 
244 
245 #define PHY_EOF -1
246 #define PHY_CLEARALL -2
247 
248 struct reginit_item {
249 	int reg, val;
250 };
251 
252 
253 struct reginit_item PHY_NTC_INIT[] __initdata = {
254 	{ PHY_CLEARALL, 0x40 },
255 	{ 0x12,  0x0001 },
256 	{ 0x13,  0x7605 },
257 	{ 0x1A,  0x0001 },
258 	{ 0x1B,  0x0005 },
259 	{ 0x38,  0x0003 },
260 	{ 0x39,  0x0006 },   /* changed here to make loopback */
261 	{ 0x01,  0x5262 },
262 	{ 0x15,  0x0213 },
263 	{ 0x00,  0x0003 },
264 	{ PHY_EOF, 0},    /* -1 signals end of list */
265 };
266 
267 
268 /* Safetyfeature: If the card interrupts more than this number of times
269    in a jiffy (1/100th of a second) then we just disable the interrupt and
270    print a message. This prevents the system from hanging.
271 
272    150000 packets per second is close to the limit a PC is going to have
273    anyway. We therefore have to disable this for production. -- REW */
274 #undef IRQ_RATE_LIMIT // 100
275 
276 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
277    that great without interrupts. -- REW */
278 #undef FS_POLL_FREQ // 100
279 
280 /*
281    This driver can spew a whole lot of debugging output at you. If you
282    need maximum performance, you should disable the DEBUG define. To
283    aid in debugging in the field, I'm leaving the compile-time debug
284    features enabled, and disable them "runtime". That allows me to
285    instruct people with problems to enable debugging without requiring
286    them to recompile... -- REW
287 */
288 #define DEBUG
289 
290 #ifdef DEBUG
291 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
292 #else
293 #define fs_dprintk(f, str...) /* nothing */
294 #endif
295 
296 
297 static int fs_keystream = 0;
298 
299 #ifdef DEBUG
300 /* I didn't forget to set this to zero before shipping. Hit me with a stick
301    if you get this with the debug default not set to zero again. -- REW */
302 static int fs_debug = 0;
303 #else
304 #define fs_debug 0
305 #endif
306 
307 #ifdef MODULE
308 #ifdef DEBUG
309 MODULE_PARM(fs_debug, "i");
310 #endif
311 MODULE_PARM(loopback, "i");
312 MODULE_PARM(num, "i");
313 MODULE_PARM(fs_keystream, "i");
314 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
315 #endif
316 
317 
318 #define FS_DEBUG_FLOW    0x00000001
319 #define FS_DEBUG_OPEN    0x00000002
320 #define FS_DEBUG_QUEUE   0x00000004
321 #define FS_DEBUG_IRQ     0x00000008
322 #define FS_DEBUG_INIT    0x00000010
323 #define FS_DEBUG_SEND    0x00000020
324 #define FS_DEBUG_PHY     0x00000040
325 #define FS_DEBUG_CLEANUP 0x00000080
326 #define FS_DEBUG_QOS     0x00000100
327 #define FS_DEBUG_TXQ     0x00000200
328 #define FS_DEBUG_ALLOC   0x00000400
329 #define FS_DEBUG_TXMEM   0x00000800
330 #define FS_DEBUG_QSIZE   0x00001000
331 
332 
333 #define func_enter() fs_dprintk (FS_DEBUG_FLOW, "fs: enter %s\n", __FUNCTION__)
334 #define func_exit()  fs_dprintk (FS_DEBUG_FLOW, "fs: exit  %s\n", __FUNCTION__)
335 
336 
337 struct fs_dev *fs_boards = NULL;
338 
339 #ifdef DEBUG
340 
my_hd(void * addr,int len)341 static void my_hd (void *addr, int len)
342 {
343 	int j, ch;
344 	unsigned char *ptr = addr;
345 
346 	while (len > 0) {
347 		printk ("%p ", ptr);
348 		for (j=0;j < ((len < 16)?len:16);j++) {
349 			printk ("%02x %s", ptr[j], (j==7)?" ":"");
350 		}
351 		for (  ;j < 16;j++) {
352 			printk ("   %s", (j==7)?" ":"");
353 		}
354 		for (j=0;j < ((len < 16)?len:16);j++) {
355 			ch = ptr[j];
356 			printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
357 		}
358 		printk ("\n");
359 		ptr += 16;
360 		len -= 16;
361 	}
362 }
363 #else /* DEBUG */
my_hd(void * addr,int len)364 static void my_hd (void *addr, int len){}
365 #endif /* DEBUG */
366 
367 /********** free an skb (as per ATM device driver documentation) **********/
368 
369 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
370  * I copied it over from the ambassador driver. -- REW */
371 
fs_kfree_skb(struct sk_buff * skb)372 static inline void fs_kfree_skb (struct sk_buff * skb)
373 {
374 	if (ATM_SKB(skb)->vcc->pop)
375 		ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
376 	else
377 		dev_kfree_skb_any (skb);
378 }
379 
380 
381 
382 
383 /* It seems the ATM forum recommends this horribly complicated 16bit
384  * floating point format. Turns out the Ambassador uses the exact same
385  * encoding. I just copied it over. If Mitch agrees, I'll move it over
386  * to the atm_misc file or something like that. (and remove it from
387  * here and the ambassador driver) -- REW
388  */
389 
390 /* The good thing about this format is that it is monotonic. So,
391    a conversion routine need not be very complicated. To be able to
392    round "nearest" we need to take along a few extra bits. Lets
393    put these after 16 bits, so that we can just return the top 16
394    bits of the 32bit number as the result:
395 
396    int mr (unsigned int rate, int r)
397      {
398      int e = 16+9;
399      static int round[4]={0, 0, 0xffff, 0x8000};
400      if (!rate) return 0;
401      while (rate & 0xfc000000) {
402        rate >>= 1;
403        e++;
404      }
405      while (! (rate & 0xfe000000)) {
406        rate <<= 1;
407        e--;
408      }
409 
410 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
411      rate &= ~0x02000000;
412 // Next add in the exponent
413      rate |= e << (16+9);
414 // And perform the rounding:
415      return (rate + round[r]) >> 16;
416    }
417 
418    14 lines-of-code. Compare that with the 120 that the Ambassador
419    guys needed. (would be 8 lines shorter if I'd try to really reduce
420    the number of lines:
421 
422    int mr (unsigned int rate, int r)
423    {
424      int e = 16+9;
425      static int round[4]={0, 0, 0xffff, 0x8000};
426      if (!rate) return 0;
427      for (;  rate & 0xfc000000 ;rate >>= 1, e++);
428      for (;!(rate & 0xfe000000);rate <<= 1, e--);
429      return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
430    }
431 
432    Exercise for the reader: Remove one more line-of-code, without
433    cheating. (Just joining two lines is cheating). (I know it's
434    possible, don't think you've beat me if you found it... If you
435    manage to lose two lines or more, keep me updated! ;-)
436 
437    -- REW */
438 
439 
440 #define ROUND_UP      1
441 #define ROUND_DOWN    2
442 #define ROUND_NEAREST 3
443 /********** make rate (not quite as much fun as Horizon) **********/
444 
make_rate(unsigned int rate,int r,u16 * bits,unsigned int * actual)445 static unsigned int make_rate (unsigned int rate, int r,
446 			       u16 * bits, unsigned int * actual)
447 {
448 	unsigned char exp = -1; /* hush gcc */
449 	unsigned int man = -1;  /* hush gcc */
450 
451 	fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
452 
453 	/* rates in cells per second, ITU format (nasty 16-bit floating-point)
454 	   given 5-bit e and 9-bit m:
455 	   rate = EITHER (1+m/2^9)*2^e    OR 0
456 	   bits = EITHER 1<<14 | e<<9 | m OR 0
457 	   (bit 15 is "reserved", bit 14 "non-zero")
458 	   smallest rate is 0 (special representation)
459 	   largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
460 	   smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
461 	   simple algorithm:
462 	   find position of top bit, this gives e
463 	   remove top bit and shift (rounding if feeling clever) by 9-e
464 	*/
465 	/* Ambassador ucode bug: please don't set bit 14! so 0 rate not
466 	   representable. // This should move into the ambassador driver
467 	   when properly merged. -- REW */
468 
469 	if (rate > 0xffc00000U) {
470 		/* larger than largest representable rate */
471 
472 		if (r == ROUND_UP) {
473 			return -EINVAL;
474 		} else {
475 			exp = 31;
476 			man = 511;
477 		}
478 
479 	} else if (rate) {
480 		/* representable rate */
481 
482 		exp = 31;
483 		man = rate;
484 
485 		/* invariant: rate = man*2^(exp-31) */
486 		while (!(man & (1<<31))) {
487 			exp = exp - 1;
488 			man = man<<1;
489 		}
490 
491 		/* man has top bit set
492 		   rate = (2^31+(man-2^31))*2^(exp-31)
493 		   rate = (1+(man-2^31)/2^31)*2^exp
494 		*/
495 		man = man<<1;
496 		man &= 0xffffffffU; /* a nop on 32-bit systems */
497 		/* rate = (1+man/2^32)*2^exp
498 
499 		   exp is in the range 0 to 31, man is in the range 0 to 2^32-1
500 		   time to lose significance... we want m in the range 0 to 2^9-1
501 		   rounding presents a minor problem... we first decide which way
502 		   we are rounding (based on given rounding direction and possibly
503 		   the bits of the mantissa that are to be discarded).
504 		*/
505 
506 		switch (r) {
507 		case ROUND_DOWN: {
508 			/* just truncate */
509 			man = man>>(32-9);
510 			break;
511 		}
512 		case ROUND_UP: {
513 			/* check all bits that we are discarding */
514 			if (man & (-1>>9)) {
515 				man = (man>>(32-9)) + 1;
516 				if (man == (1<<9)) {
517 					/* no need to check for round up outside of range */
518 					man = 0;
519 					exp += 1;
520 				}
521 			} else {
522 				man = (man>>(32-9));
523 			}
524 			break;
525 		}
526 		case ROUND_NEAREST: {
527 			/* check msb that we are discarding */
528 			if (man & (1<<(32-9-1))) {
529 				man = (man>>(32-9)) + 1;
530 				if (man == (1<<9)) {
531 					/* no need to check for round up outside of range */
532 					man = 0;
533 					exp += 1;
534 				}
535 			} else {
536 				man = (man>>(32-9));
537 			}
538 			break;
539 		}
540 		}
541 
542 	} else {
543 		/* zero rate - not representable */
544 
545 		if (r == ROUND_DOWN) {
546 			return -EINVAL;
547 		} else {
548 			exp = 0;
549 			man = 0;
550 		}
551 	}
552 
553 	fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
554 
555 	if (bits)
556 		*bits = /* (1<<14) | */ (exp<<9) | man;
557 
558 	if (actual)
559 		*actual = (exp >= 9)
560 			? (1 << exp) + (man << (exp-9))
561 			: (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
562 
563 	return 0;
564 }
565 
566 
567 
568 
569 /* FireStream access routines */
570 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
571    certain registers or to just log all accesses. */
572 
write_fs(struct fs_dev * dev,int offset,u32 val)573 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
574 {
575 	writel (val, dev->base + offset);
576 }
577 
578 
read_fs(struct fs_dev * dev,int offset)579 static inline u32  read_fs (struct fs_dev *dev, int offset)
580 {
581 	return readl (dev->base + offset);
582 }
583 
584 
585 
get_qentry(struct fs_dev * dev,struct queue * q)586 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
587 {
588 	return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
589 }
590 
591 
submit_qentry(struct fs_dev * dev,struct queue * q,struct FS_QENTRY * qe)592 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
593 {
594 	u32 wp;
595 	struct FS_QENTRY *cqe;
596 
597 	/* XXX Sanity check: the write pointer can be checked to be
598 	   still the same as the value passed as qe... -- REW */
599 	/*  udelay (5); */
600 	while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
601 		fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
602 			    q->offset);
603 		schedule ();
604 	}
605 
606 	wp &= ~0xf;
607 	cqe = bus_to_virt (wp);
608 	if (qe != cqe) {
609 		fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
610 	}
611 
612 	write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
613 
614 	{
615 		static int c;
616 		if (!(c++ % 100))
617 			{
618 				int rp, wp;
619 				rp =  read_fs (dev, Q_RP(q->offset));
620 				wp =  read_fs (dev, Q_WP(q->offset));
621 				fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
622 					    q->offset, rp, wp, wp-rp);
623 			}
624 	}
625 }
626 
627 #ifdef DEBUG_EXTRA
628 static struct FS_QENTRY pq[60];
629 static int qp;
630 
631 static struct FS_BPENTRY dq[60];
632 static int qd;
633 static void *da[60];
634 #endif
635 
submit_queue(struct fs_dev * dev,struct queue * q,u32 cmd,u32 p1,u32 p2,u32 p3)636 static void submit_queue (struct fs_dev *dev, struct queue *q,
637 			  u32 cmd, u32 p1, u32 p2, u32 p3)
638 {
639 	struct FS_QENTRY *qe;
640 
641 	qe = get_qentry (dev, q);
642 	qe->cmd = cmd;
643 	qe->p0 = p1;
644 	qe->p1 = p2;
645 	qe->p2 = p3;
646 	submit_qentry (dev,  q, qe);
647 
648 #ifdef DEBUG_EXTRA
649 	pq[qp].cmd = cmd;
650 	pq[qp].p0 = p1;
651 	pq[qp].p1 = p2;
652 	pq[qp].p2 = p3;
653 	qp++;
654 	if (qp >= 60) qp = 0;
655 #endif
656 }
657 
658 /* Test the "other" way one day... -- REW */
659 #if 1
660 #define submit_command submit_queue
661 #else
662 
submit_command(struct fs_dev * dev,struct queue * q,u32 cmd,u32 p1,u32 p2,u32 p3)663 static void submit_command (struct fs_dev *dev, struct queue *q,
664 			    u32 cmd, u32 p1, u32 p2, u32 p3)
665 {
666 	write_fs (dev, CMDR0, cmd);
667 	write_fs (dev, CMDR1, p1);
668 	write_fs (dev, CMDR2, p2);
669 	write_fs (dev, CMDR3, p3);
670 }
671 #endif
672 
673 
674 
process_return_queue(struct fs_dev * dev,struct queue * q)675 static void process_return_queue (struct fs_dev *dev, struct queue *q)
676 {
677 	long rq;
678 	struct FS_QENTRY *qe;
679 	void *tc;
680 
681 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
682 		fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
683 		qe = bus_to_virt (rq);
684 
685 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
686 			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
687 
688 		switch (STATUS_CODE (qe)) {
689 		case 5:
690 			tc = bus_to_virt (qe->p0);
691 			fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
692 			kfree (tc);
693 			break;
694 		}
695 
696 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
697 	}
698 }
699 
700 
process_txdone_queue(struct fs_dev * dev,struct queue * q)701 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
702 {
703 	long rq;
704 	long tmp;
705 	struct FS_QENTRY *qe;
706 	struct sk_buff *skb;
707 	struct FS_BPENTRY *td;
708 
709 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
710 		fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
711 		qe = bus_to_virt (rq);
712 
713 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
714 			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
715 
716 		if (STATUS_CODE (qe) != 2)
717 			fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
718 				    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
719 
720 
721 		switch (STATUS_CODE (qe)) {
722 		case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
723 			/* Fall through */
724 		case 0x02:
725 			/* Process a real txdone entry. */
726 			tmp = qe->p0;
727 			if (tmp & 0x0f)
728 				printk (KERN_WARNING "td not aligned: %ld\n", tmp);
729 			tmp &= ~0x0f;
730 			td = bus_to_virt (tmp);
731 
732 			fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
733 				    td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
734 
735 			skb = td->skb;
736 			if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
737 				wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
738 				FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
739 			}
740 			td->dev->ntxpckts--;
741 
742 			{
743 				static int c=0;
744 
745 				if (!(c++ % 100)) {
746 					fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
747 				}
748 			}
749 
750 			atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
751 
752 			fs_dprintk (FS_DEBUG_TXMEM, "i");
753 			fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
754 			fs_kfree_skb (skb);
755 
756 			fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
757 			memset (td, 0x12, sizeof (struct FS_BPENTRY));
758 			kfree (td);
759 			break;
760 		default:
761 			/* Here we get the tx purge inhibit command ... */
762 			/* Action, I believe, is "don't do anything". -- REW */
763 			break;
764 		}
765 
766 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
767 	}
768 }
769 
770 
process_incoming(struct fs_dev * dev,struct queue * q)771 static void process_incoming (struct fs_dev *dev, struct queue *q)
772 {
773 	long rq;
774 	struct FS_QENTRY *qe;
775 	struct FS_BPENTRY *pe;
776 	struct sk_buff *skb;
777 	unsigned int channo;
778 	struct atm_vcc *atm_vcc;
779 
780 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
781 		fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
782 		qe = bus_to_virt (rq);
783 
784 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x.  ",
785 			    qe->cmd, qe->p0, qe->p1, qe->p2);
786 
787 		fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
788 			    STATUS_CODE (qe),
789 			    res_strings[STATUS_CODE(qe)]);
790 
791 		pe = bus_to_virt (qe->p0);
792 		fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
793 			    pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
794 			    pe->skb, pe->fp);
795 
796 		channo = qe->cmd & 0xffff;
797 
798 		if (channo < dev->nchannels)
799 			atm_vcc = dev->atm_vccs[channo];
800 		else
801 			atm_vcc = NULL;
802 
803 		/* Single buffer packet */
804 		switch (STATUS_CODE (qe)) {
805 		case 0x1:
806 			/* Fall through for streaming mode */
807 		case 0x2:/* Packet received OK.... */
808 			if (atm_vcc) {
809 				skb = pe->skb;
810 				pe->fp->n--;
811 #if 0
812 				fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
813 				if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
814 #endif
815 				skb_put (skb, qe->p1 & 0xffff);
816 				ATM_SKB(skb)->vcc = atm_vcc;
817 				atomic_inc(&atm_vcc->stats->rx);
818 				skb->stamp = xtime;
819 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
820 				atm_vcc->push (atm_vcc, skb);
821 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
822 				kfree (pe);
823 			} else {
824 				printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
825 			}
826 			break;
827 		case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
828 			     has been consumed and needs to be processed. -- REW */
829 			if (qe->p1 & 0xffff) {
830 				pe = bus_to_virt (qe->p0);
831 				pe->fp->n--;
832 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
833 				dev_kfree_skb_any (pe->skb);
834 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
835 				kfree (pe);
836 			}
837 			if (atm_vcc)
838 				atomic_inc(&atm_vcc->stats->rx_drop);
839 			break;
840 		case 0x1f: /*  Reassembly abort: no buffers. */
841 			/* Silently increment error counter. */
842 			if (atm_vcc)
843 				atomic_inc(&atm_vcc->stats->rx_drop);
844 			break;
845 		default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
846 			printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
847 				STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
848 		}
849 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
850 	}
851 }
852 
853 
854 
855 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
856 
fs_open(struct atm_vcc * atm_vcc,short vpi,int vci)857 static int fs_open(struct atm_vcc *atm_vcc, short vpi, int vci)
858 {
859 	struct fs_dev *dev;
860 	struct fs_vcc *vcc;
861 	struct fs_transmit_config *tc;
862 	struct atm_trafprm * txtp;
863 	struct atm_trafprm * rxtp;
864 	/*  struct fs_receive_config *rc;*/
865 	/*  struct FS_QENTRY *qe; */
866 	int error;
867 	int bfp;
868 	int to;
869 	unsigned short tmc0;
870 
871 	func_enter ();
872 
873 	dev = FS_DEV(atm_vcc->dev);
874 	fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
875 		    dev, atm_vcc);
876 
877 	error = atm_find_ci(atm_vcc, &vpi, &vci);
878 	if (error) {
879 		fs_dprintk (FS_DEBUG_OPEN, "fs: find_ci failed.\n");
880 		return error;
881 	}
882 
883 	atm_vcc->vpi = vpi;
884 	atm_vcc->vci = vci;
885 	if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
886 		set_bit(ATM_VF_ADDR, &atm_vcc->flags);
887 
888 	if ((atm_vcc->qos.aal != ATM_AAL5) &&
889 	    (atm_vcc->qos.aal != ATM_AAL2))
890 	  return -EINVAL; /* XXX AAL0 */
891 
892 	fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
893 		    atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
894 
895 	/* XXX handle qos parameters (rate limiting) ? */
896 
897 	vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
898 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%d)\n", vcc, sizeof(struct fs_vcc));
899 	if (!vcc) {
900 		clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
901 		return -ENOMEM;
902 	}
903 
904 	atm_vcc->dev_data = vcc;
905 	vcc->last_skb = NULL;
906 
907 	init_waitqueue_head (&vcc->close_wait);
908 
909 	txtp = &atm_vcc->qos.txtp;
910 	rxtp = &atm_vcc->qos.rxtp;
911 
912 	if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
913 		if (IS_FS50(dev)) {
914 			/* Increment the channel numer: take a free one next time.  */
915 			for (to=33;to;to--, dev->channo++) {
916 				/* We only have 32 channels */
917 				if (dev->channo >= 32)
918 					dev->channo = 0;
919 				/* If we need to do RX, AND the RX is inuse, try the next */
920 				if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
921 					continue;
922 				/* If we need to do TX, AND the TX is inuse, try the next */
923 				if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
924 					continue;
925 				/* Ok, both are free! (or not needed) */
926 				break;
927 			}
928 			if (!to) {
929 				printk ("No more free channels for FS50..\n");
930 				return -EBUSY;
931 			}
932 			vcc->channo = dev->channo;
933 			dev->channo &= dev->channel_mask;
934 
935 		} else {
936 			vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
937 			if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
938 			    ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
939 				printk ("Channel is in use for FS155.\n");
940 				return -EBUSY;
941 			}
942 		}
943 		fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
944 			    vcc->channo, vcc->channo);
945 	}
946 
947 	if (DO_DIRECTION (txtp)) {
948 		tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
949 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%d)\n",
950 			    tc, sizeof (struct fs_transmit_config));
951 		if (!tc) {
952 			fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
953 			return -ENOMEM;
954 		}
955 
956 		/* Allocate the "open" entry from the high priority txq. This makes
957 		   it most likely that the chip will notice it. It also prevents us
958 		   from having to wait for completion. On the other hand, we may
959 		   need to wait for completion anyway, to see if it completed
960 		   succesfully. */
961 
962 		switch (atm_vcc->qos.aal) {
963 		case ATM_AAL2:
964 		case ATM_AAL0:
965 		  tc->flags = 0
966 		    | TC_FLAGS_TRANSPARENT_PAYLOAD
967 		    | TC_FLAGS_PACKET
968 		    | (1 << 28)
969 		    | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
970 		    | TC_FLAGS_CAL0;
971 		  break;
972 		case ATM_AAL5:
973 		  tc->flags = 0
974 			| TC_FLAGS_AAL5
975 			| TC_FLAGS_PACKET  /* ??? */
976 			| TC_FLAGS_TYPE_CBR
977 			| TC_FLAGS_CAL0;
978 		  break;
979 		default:
980 			printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
981 			tc->flags = 0;
982 		}
983 		/* Docs are vague about this atm_hdr field. By the way, the FS
984 		 * chip makes odd errors if lower bits are set.... -- REW */
985 		tc->atm_hdr =  (vpi << 20) | (vci << 4);
986 		{
987 			int pcr = atm_pcr_goal (txtp);
988 
989 			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
990 
991 			/* XXX Hmm. officially we're only allowed to do this if rounding
992 			   is round_down -- REW */
993 			if (IS_FS50(dev)) {
994 				if (pcr > 51840000/53/8)  pcr = 51840000/53/8;
995 			} else {
996 				if (pcr > 155520000/53/8) pcr = 155520000/53/8;
997 			}
998 			if (!pcr) {
999 				/* no rate cap */
1000 				tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
1001 			} else {
1002 				int r;
1003 				if (pcr < 0) {
1004 					r = ROUND_DOWN;
1005 					pcr = -pcr;
1006 				} else {
1007 					r = ROUND_UP;
1008 				}
1009 				error = make_rate (pcr, r, &tmc0, 0);
1010 			}
1011 			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1012 		}
1013 
1014 		tc->TMC[0] = tmc0 | 0x4000;
1015 		tc->TMC[1] = 0; /* Unused */
1016 		tc->TMC[2] = 0; /* Unused */
1017 		tc->TMC[3] = 0; /* Unused */
1018 
1019 		tc->spec = 0;    /* UTOPIA address, UDF, HEC: Unused -> 0 */
1020 		tc->rtag[0] = 0; /* What should I do with routing tags???
1021 				    -- Not used -- AS -- Thanks -- REW*/
1022 		tc->rtag[1] = 0;
1023 		tc->rtag[2] = 0;
1024 
1025 		if (fs_debug & FS_DEBUG_OPEN) {
1026 			fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1027 			my_hd (tc, sizeof (*tc));
1028 		}
1029 
1030 		/* We now use the "submit_command" function to submit commands to
1031 		   the firestream. There is a define up near the definition of
1032 		   that routine that switches this routine between immediate write
1033 		   to the immediate comamnd registers and queuing the commands in
1034 		   the HPTXQ for execution. This last technique might be more
1035 		   efficient if we know we're going to submit a whole lot of
1036 		   commands in one go, but this driver is not setup to be able to
1037 		   use such a construct. So it probably doen't matter much right
1038 		   now. -- REW */
1039 
1040 		/* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1041 		submit_command (dev, &dev->hp_txq,
1042 				QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1043 				virt_to_bus (tc), 0, 0);
1044 
1045 		submit_command (dev, &dev->hp_txq,
1046 				QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1047 				0, 0, 0);
1048 		set_bit (vcc->channo, dev->tx_inuse);
1049 	}
1050 
1051 	if (DO_DIRECTION (rxtp)) {
1052 		dev->atm_vccs[vcc->channo] = atm_vcc;
1053 
1054 		for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1055 			if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1056 		if (bfp >= FS_NR_FREE_POOLS) {
1057 			fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1058 				    atm_vcc->qos.rxtp.max_sdu);
1059 			/* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1060 
1061 			/* XXX clear tx inuse. Close TX part? */
1062 			dev->atm_vccs[vcc->channo] = NULL;
1063 			kfree (vcc);
1064 			return -EINVAL;
1065 		}
1066 
1067 		switch (atm_vcc->qos.aal) {
1068 		case ATM_AAL0:
1069 		case ATM_AAL2:
1070 			submit_command (dev, &dev->hp_txq,
1071 					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1072 					RC_FLAGS_TRANSP |
1073 					RC_FLAGS_BFPS_BFP * bfp |
1074 					RC_FLAGS_RXBM_PSB, 0, 0);
1075 			break;
1076 		case ATM_AAL5:
1077 			submit_command (dev, &dev->hp_txq,
1078 					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1079 					RC_FLAGS_AAL5 |
1080 					RC_FLAGS_BFPS_BFP * bfp |
1081 					RC_FLAGS_RXBM_PSB, 0, 0);
1082 			break;
1083 		};
1084 		if (IS_FS50 (dev)) {
1085 			submit_command (dev, &dev->hp_txq,
1086 					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1087 					0x80 + vcc->channo,
1088 					(vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1089 		}
1090 		submit_command (dev, &dev->hp_txq,
1091 				QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1092 				0, 0, 0);
1093 	}
1094 
1095 	/* Indicate we're done! */
1096 	set_bit(ATM_VF_READY, &atm_vcc->flags);
1097 
1098 	func_exit ();
1099 	return 0;
1100 }
1101 
1102 
fs_close(struct atm_vcc * atm_vcc)1103 static void fs_close(struct atm_vcc *atm_vcc)
1104 {
1105 	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1106 	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1107 	struct atm_trafprm * txtp;
1108 	struct atm_trafprm * rxtp;
1109 
1110 	func_enter ();
1111 
1112 	clear_bit(ATM_VF_READY, &atm_vcc->flags);
1113 
1114 	fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1115 	if (vcc->last_skb) {
1116 		fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1117 			    vcc->last_skb);
1118 		/* We're going to wait for the last packet to get sent on this VC. It would
1119 		   be impolite not to send them don't you think?
1120 		   XXX
1121 		   We don't know which packets didn't get sent. So if we get interrupted in
1122 		   this sleep_on, we'll lose any reference to these packets. Memory leak!
1123 		   On the other hand, it's awfully convenient that we can abort a "close" that
1124 		   is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1125 		interruptible_sleep_on (& vcc->close_wait);
1126 	}
1127 
1128 	txtp = &atm_vcc->qos.txtp;
1129 	rxtp = &atm_vcc->qos.rxtp;
1130 
1131 
1132 	/* See App note XXX (Unpublished as of now) for the reason for the
1133 	   removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1134 
1135 	if (DO_DIRECTION (txtp)) {
1136 		submit_command (dev,  &dev->hp_txq,
1137 				QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1138 		clear_bit (vcc->channo, dev->tx_inuse);
1139 	}
1140 
1141 	if (DO_DIRECTION (rxtp)) {
1142 		submit_command (dev,  &dev->hp_txq,
1143 				QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1144 		dev->atm_vccs [vcc->channo] = NULL;
1145 
1146 		/* This means that this is configured as a receive channel */
1147 		if (IS_FS50 (dev)) {
1148 			/* Disable the receive filter. Is 0/0 indeed an invalid receive
1149 			   channel? -- REW.  Yes it is. -- Hang. Ok. I'll use -1
1150 			   (0xfff...) -- REW */
1151 			submit_command (dev, &dev->hp_txq,
1152 					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1153 					0x80 + vcc->channo, -1, 0 );
1154 		}
1155 	}
1156 
1157 	fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1158 	kfree (vcc);
1159 
1160 	func_exit ();
1161 }
1162 
1163 
fs_send(struct atm_vcc * atm_vcc,struct sk_buff * skb)1164 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1165 {
1166 	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1167 	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1168 	struct FS_BPENTRY *td;
1169 
1170 	func_enter ();
1171 
1172 	fs_dprintk (FS_DEBUG_TXMEM, "I");
1173 	fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1174 		    atm_vcc, skb, vcc, dev);
1175 
1176 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1177 
1178 	ATM_SKB(skb)->vcc = atm_vcc;
1179 
1180 	vcc->last_skb = skb;
1181 
1182 	td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1183 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%d)\n", td, sizeof (struct FS_BPENTRY));
1184 	if (!td) {
1185 		/* Oops out of mem */
1186 		return -ENOMEM;
1187 	}
1188 
1189 	fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1190 		    *(int *) skb->data);
1191 
1192 	td->flags =  TD_EPI | TD_DATA | skb->len;
1193 	td->next = 0;
1194 	td->bsa  = virt_to_bus (skb->data);
1195 	td->skb = skb;
1196 	td->dev = dev;
1197 	dev->ntxpckts++;
1198 
1199 #ifdef DEBUG_EXTRA
1200 	da[qd] = td;
1201 	dq[qd].flags = td->flags;
1202 	dq[qd].next  = td->next;
1203 	dq[qd].bsa   = td->bsa;
1204 	dq[qd].skb   = td->skb;
1205 	dq[qd].dev   = td->dev;
1206 	qd++;
1207 	if (qd >= 60) qd = 0;
1208 #endif
1209 
1210 	submit_queue (dev, &dev->hp_txq,
1211 		      QE_TRANSMIT_DE | vcc->channo,
1212 		      virt_to_bus (td), 0,
1213 		      virt_to_bus (td));
1214 
1215 	fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1216 		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1217 		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1218 		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1219 		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1220 
1221 	func_exit ();
1222 	return 0;
1223 }
1224 
1225 
1226 /* Some function placeholders for functions we don't yet support. */
1227 
1228 #if 0
1229 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void *arg)
1230 {
1231 	func_enter ();
1232 	func_exit ();
1233 	return -ENOIOCTLCMD;
1234 }
1235 
1236 
1237 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1238 			 void *optval,int optlen)
1239 {
1240 	func_enter ();
1241 	func_exit ();
1242 	return 0;
1243 }
1244 
1245 
1246 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1247 			 void *optval,int optlen)
1248 {
1249 	func_enter ();
1250 	func_exit ();
1251 	return 0;
1252 }
1253 
1254 
1255 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1256 		       unsigned long addr)
1257 {
1258 	func_enter ();
1259 	func_exit ();
1260 }
1261 
1262 
1263 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1264 {
1265 	func_enter ();
1266 	func_exit ();
1267 	return 0;
1268 }
1269 
1270 
1271 static void fs_feedback(struct atm_vcc *vcc,struct sk_buff *skb,
1272 			unsigned long start,unsigned long dest,int len)
1273 {
1274 	func_enter ();
1275 	func_exit ();
1276 }
1277 
1278 
1279 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1280 {
1281 	func_enter ();
1282 	func_exit ();
1283 	return 0;
1284 };
1285 
1286 #endif
1287 
1288 
1289 static const struct atmdev_ops ops = {
1290 	open:           fs_open,
1291 	close:          fs_close,
1292 	send:           fs_send,
1293 #if 0
1294 	owner:          THIS_MODULE,
1295 #endif
1296 	/*                 fs_sg_send */
1297 	/* ioctl:          fs_ioctl, */
1298 	/* getsockopt:     fs_getsockopt, */
1299 	/* setsockopt:     fs_setsockopt, */
1300 	/* feedback:       fs_feedback, */
1301 	/* change_qos:     fs_change_qos, */
1302 
1303 	/* For now implement these internally here... */
1304 	/* phy_put:        fs_phy_put, */
1305 	/* phy_get:        fs_phy_get, */
1306 };
1307 
1308 
undocumented_pci_fix(struct pci_dev * pdev)1309 static void __init undocumented_pci_fix (struct pci_dev *pdev)
1310 {
1311 	int tint;
1312 
1313 	/* The Windows driver says: */
1314 	/* Switch off FireStream Retry Limit Threshold
1315 	 */
1316 
1317 	/* The register at 0x28 is documented as "reserved", no further
1318 	   comments. */
1319 
1320 	pci_read_config_dword (pdev, 0x28, &tint);
1321 	if (tint != 0x80) {
1322 		tint = 0x80;
1323 		pci_write_config_dword (pdev, 0x28, tint);
1324 	}
1325 }
1326 
1327 
1328 
1329 /**************************************************************************
1330  *                              PHY routines                              *
1331  **************************************************************************/
1332 
write_phy(struct fs_dev * dev,int regnum,int val)1333 static void __init write_phy (struct fs_dev *dev, int regnum, int val)
1334 {
1335 	submit_command (dev,  &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1336 			regnum, val, 0);
1337 }
1338 
init_phy(struct fs_dev * dev,struct reginit_item * reginit)1339 static int __init init_phy (struct fs_dev *dev, struct reginit_item *reginit)
1340 {
1341 	int i;
1342 
1343 	func_enter ();
1344 	while (reginit->reg != PHY_EOF) {
1345 		if (reginit->reg == PHY_CLEARALL) {
1346 			/* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1347 			for (i=0;i<reginit->val;i++) {
1348 				write_phy (dev, i, 0);
1349 			}
1350 		} else {
1351 			write_phy (dev, reginit->reg, reginit->val);
1352 		}
1353 		reginit++;
1354 	}
1355 	func_exit ();
1356 	return 0;
1357 }
1358 
reset_chip(struct fs_dev * dev)1359 static void reset_chip (struct fs_dev *dev)
1360 {
1361 	int i;
1362 
1363 	write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1364 
1365 	/* Undocumented delay */
1366 	udelay (128);
1367 
1368 	/* The "internal registers are documented to all reset to zero, but
1369 	   comments & code in the Windows driver indicates that the pools are
1370 	   NOT reset. */
1371 	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1372 		write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1373 		write_fs (dev, FP_SA  (RXB_FP(i)), 0);
1374 		write_fs (dev, FP_EA  (RXB_FP(i)), 0);
1375 		write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1376 		write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1377 	}
1378 
1379 	/* The same goes for the match channel registers, although those are
1380 	   NOT documented that way in the Windows driver. -- REW */
1381 	/* The Windows driver DOES write 0 to these registers somewhere in
1382 	   the init sequence. However, a small hardware-feature, will
1383 	   prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1384 	   allocated happens to have no disabled channels that have a lower
1385 	   number. -- REW */
1386 
1387 	/* Clear the match channel registers. */
1388 	if (IS_FS50 (dev)) {
1389 		for (i=0;i<FS50_NR_CHANNELS;i++) {
1390 			write_fs (dev, 0x200 + i * 4, -1);
1391 		}
1392 	}
1393 }
1394 
aligned_kmalloc(int size,int flags,int alignment)1395 static void __init *aligned_kmalloc (int size, int flags, int alignment)
1396 {
1397 	void  *t;
1398 
1399 	if (alignment <= 0x10) {
1400 		t = kmalloc (size, flags);
1401 		if ((unsigned int)t & (alignment-1)) {
1402 			printk ("Kmalloc doesn't align things correctly! %p\n", t);
1403 			kfree (t);
1404 			return aligned_kmalloc (size, flags, alignment * 4);
1405 		}
1406 		return t;
1407 	}
1408 	printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1409 	return NULL;
1410 }
1411 
init_q(struct fs_dev * dev,struct queue * txq,int queue,int nentries,int is_rq)1412 static int __init init_q (struct fs_dev *dev,
1413 			  struct queue *txq, int queue, int nentries, int is_rq)
1414 {
1415 	int sz = nentries * sizeof (struct FS_QENTRY);
1416 	struct FS_QENTRY *p;
1417 
1418 	func_enter ();
1419 
1420 	fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n",
1421 		    queue, nentries);
1422 
1423 	p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1424 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1425 
1426 	if (!p) return 0;
1427 
1428 	write_fs (dev, Q_SA(queue), virt_to_bus(p));
1429 	write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1430 	write_fs (dev, Q_WP(queue), virt_to_bus(p));
1431 	write_fs (dev, Q_RP(queue), virt_to_bus(p));
1432 	if (is_rq) {
1433 		/* Configuration for the receive queue: 0: interrupt immediately,
1434 		   no pre-warning to empty queues: We do our best to keep the
1435 		   queue filled anyway. */
1436 		write_fs (dev, Q_CNF(queue), 0 );
1437 	}
1438 
1439 	txq->sa = p;
1440 	txq->ea = p;
1441 	txq->offset = queue;
1442 
1443 	func_exit ();
1444 	return 1;
1445 }
1446 
1447 
init_fp(struct fs_dev * dev,struct freepool * fp,int queue,int bufsize,int nr_buffers)1448 static int __init init_fp (struct fs_dev *dev,
1449 			   struct freepool *fp, int queue, int bufsize, int nr_buffers)
1450 {
1451 	func_enter ();
1452 
1453 	fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1454 
1455 	write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1456 	write_fs (dev, FP_SA(queue),  0);
1457 	write_fs (dev, FP_EA(queue),  0);
1458 	write_fs (dev, FP_CTU(queue), 0);
1459 	write_fs (dev, FP_CNT(queue), 0);
1460 
1461 	fp->offset = queue;
1462 	fp->bufsize = bufsize;
1463 	fp->nr_buffers = nr_buffers;
1464 
1465 	func_exit ();
1466 	return 1;
1467 }
1468 
1469 
nr_buffers_in_freepool(struct fs_dev * dev,struct freepool * fp)1470 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1471 {
1472 #if 0
1473 	/* This seems to be unreliable.... */
1474 	return read_fs (dev, FP_CNT (fp->offset));
1475 #else
1476 	return fp->n;
1477 #endif
1478 }
1479 
1480 
1481 /* Check if this gets going again if a pool ever runs out.  -- Yes, it
1482    does. I've seen "receive abort: no buffers" and things started
1483    working again after that...  -- REW */
1484 
top_off_fp(struct fs_dev * dev,struct freepool * fp,int gfp_flags)1485 static void top_off_fp (struct fs_dev *dev, struct freepool *fp, int gfp_flags)
1486 {
1487 	struct FS_BPENTRY *qe, *ne;
1488 	struct sk_buff *skb;
1489 	int n = 0;
1490 
1491 	fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1492 		    fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1493 		    fp->nr_buffers);
1494 	while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1495 
1496 		skb = alloc_skb (fp->bufsize, gfp_flags);
1497 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1498 		if (!skb) break;
1499 		ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1500 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%d)\n", ne, sizeof (struct FS_BPENTRY));
1501 		if (!ne) {
1502 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1503 			dev_kfree_skb_any (skb);
1504 			break;
1505 		}
1506 
1507 		fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1508 			    skb, ne, skb->data, skb->head);
1509 		n++;
1510 		ne->flags = FP_FLAGS_EPI | fp->bufsize;
1511 		ne->next  = virt_to_bus (NULL);
1512 		ne->bsa   = virt_to_bus (skb->data);
1513 		ne->aal_bufsize = fp->bufsize;
1514 		ne->skb = skb;
1515 		ne->fp = fp;
1516 
1517 		qe = (struct FS_BPENTRY *) (read_fs (dev, FP_EA(fp->offset)));
1518 		fs_dprintk (FS_DEBUG_QUEUE, "link at %p\n", qe);
1519 		if (qe) {
1520 			qe = bus_to_virt ((long) qe);
1521 			qe->next = virt_to_bus(ne);
1522 			qe->flags &= ~FP_FLAGS_EPI;
1523 		} else
1524 			write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1525 
1526 		write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1527 		fp->n++;   /* XXX Atomic_inc? */
1528 		write_fs (dev, FP_CTU(fp->offset), 1);
1529 	}
1530 
1531 	fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1532 }
1533 
free_queue(struct fs_dev * dev,struct queue * txq)1534 static void __devexit free_queue (struct fs_dev *dev, struct queue *txq)
1535 {
1536 	func_enter ();
1537 
1538 	write_fs (dev, Q_SA(txq->offset), 0);
1539 	write_fs (dev, Q_EA(txq->offset), 0);
1540 	write_fs (dev, Q_RP(txq->offset), 0);
1541 	write_fs (dev, Q_WP(txq->offset), 0);
1542 	/* Configuration ? */
1543 
1544 	fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1545 	kfree (txq->sa);
1546 
1547 	func_exit ();
1548 }
1549 
free_freepool(struct fs_dev * dev,struct freepool * fp)1550 static void __devexit free_freepool (struct fs_dev *dev, struct freepool *fp)
1551 {
1552 	func_enter ();
1553 
1554 	write_fs (dev, FP_CNF(fp->offset), 0);
1555 	write_fs (dev, FP_SA (fp->offset), 0);
1556 	write_fs (dev, FP_EA (fp->offset), 0);
1557 	write_fs (dev, FP_CNT(fp->offset), 0);
1558 	write_fs (dev, FP_CTU(fp->offset), 0);
1559 
1560 	func_exit ();
1561 }
1562 
1563 
1564 
fs_irq(int irq,void * dev_id,struct pt_regs * pt_regs)1565 static void fs_irq (int irq, void *dev_id,  struct pt_regs * pt_regs)
1566 {
1567 	int i;
1568 	u32 status;
1569 	struct fs_dev *dev = dev_id;
1570 
1571 	status = read_fs (dev, ISR);
1572 	if (!status) return;
1573 
1574 	func_enter ();
1575 
1576 #ifdef IRQ_RATE_LIMIT
1577 	/* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1578 	   interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1579 	{
1580 		static int lastjif;
1581 		static int nintr=0;
1582 
1583 		if (lastjif == jiffies) {
1584 			if (++nintr > IRQ_RATE_LIMIT) {
1585 				free_irq (dev->irq, dev_id);
1586 				printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1587 					dev->irq);
1588 			}
1589 		} else {
1590 			lastjif = jiffies;
1591 			nintr = 0;
1592 		}
1593 	}
1594 #endif
1595 	fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1596 		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1597 		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1598 		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1599 		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1600 
1601 	/* print the bits in the ISR register. */
1602 	if (fs_debug & FS_DEBUG_IRQ) {
1603 		/* The FS_DEBUG things are unneccesary here. But this way it is
1604 		   clear for grep that these are debug prints. */
1605 		fs_dprintk (FS_DEBUG_IRQ,  "IRQ status:");
1606 		for (i=0;i<27;i++)
1607 			if (status & (1 << i))
1608 				fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1609 		fs_dprintk (FS_DEBUG_IRQ, "\n");
1610 	}
1611 
1612 	if (status & ISR_RBRQ0_W) {
1613 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1614 		process_incoming (dev, &dev->rx_rq[0]);
1615 		/* items mentioned on RBRQ0 are from FP 0 or 1. */
1616 		top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1617 		top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1618 	}
1619 
1620 	if (status & ISR_RBRQ1_W) {
1621 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1622 		process_incoming (dev, &dev->rx_rq[1]);
1623 		top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1624 		top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1625 	}
1626 
1627 	if (status & ISR_RBRQ2_W) {
1628 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1629 		process_incoming (dev, &dev->rx_rq[2]);
1630 		top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1631 		top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1632 	}
1633 
1634 	if (status & ISR_RBRQ3_W) {
1635 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1636 		process_incoming (dev, &dev->rx_rq[3]);
1637 		top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1638 		top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1639 	}
1640 
1641 	if (status & ISR_CSQ_W) {
1642 		fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1643 		process_return_queue (dev, &dev->st_q);
1644 	}
1645 
1646 	if (status & ISR_TBRQ_W) {
1647 		fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1648 		process_txdone_queue (dev, &dev->tx_relq);
1649 	}
1650 
1651 	func_exit ();
1652 }
1653 
1654 
1655 #ifdef FS_POLL_FREQ
fs_poll(unsigned long data)1656 static void fs_poll (unsigned long data)
1657 {
1658 	struct fs_dev *dev = (struct fs_dev *) data;
1659 
1660 	fs_irq (0, dev, NULL);
1661 	dev->timer.expires = jiffies + FS_POLL_FREQ;
1662 	add_timer (&dev->timer);
1663 }
1664 #endif
1665 
fs_init(struct fs_dev * dev)1666 static int __init fs_init (struct fs_dev *dev)
1667 {
1668 	struct pci_dev  *pci_dev;
1669 	int isr, to;
1670 	int i;
1671 
1672 	func_enter ();
1673 	pci_dev = dev->pci_dev;
1674 
1675 	printk (KERN_INFO "found a FireStream %d card, base %08lx, irq%d.\n",
1676 		IS_FS50(dev)?50:155,
1677 		pci_resource_start(pci_dev, 0), dev->pci_dev->irq);
1678 
1679 	if (fs_debug & FS_DEBUG_INIT)
1680 		my_hd ((unsigned char *) dev, sizeof (*dev));
1681 
1682 	undocumented_pci_fix (pci_dev);
1683 
1684 	dev->hw_base = pci_resource_start(pci_dev, 0);
1685 
1686 	dev->base = (ulong) ioremap(dev->hw_base, 0x1000);
1687 
1688 	reset_chip (dev);
1689 
1690 	write_fs (dev, SARMODE0, 0
1691 		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1692 		  | (1 * SARMODE0_INTMODE_READCLEAR)
1693 		  | (1 * SARMODE0_CWRE)
1694 		  | IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1695 		                 SARMODE0_PRPWT_FS155_3
1696 		  | (1 * SARMODE0_CALSUP_1)
1697 		  | IS_FS50 (dev)?(0
1698 				   | SARMODE0_RXVCS_32
1699 				   | SARMODE0_ABRVCS_32
1700 				   | SARMODE0_TXVCS_32):
1701 		                  (0
1702 				   | SARMODE0_RXVCS_1k
1703 				   | SARMODE0_ABRVCS_1k
1704 				   | SARMODE0_TXVCS_1k));
1705 
1706 	/* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1707 	   1ms. */
1708 	to = 100;
1709 	while (--to) {
1710 		isr = read_fs (dev, ISR);
1711 
1712 		/* This bit is documented as "RESERVED" */
1713 		if (isr & ISR_INIT_ERR) {
1714 			printk (KERN_ERR "Error initializing the FS... \n");
1715 			return 1;
1716 		}
1717 		if (isr & ISR_INIT) {
1718 			fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1719 			break;
1720 		}
1721 
1722 		/* Try again after 10ms. */
1723 		current->state = TASK_UNINTERRUPTIBLE;
1724 		schedule_timeout ((HZ+99)/100);
1725 	}
1726 
1727 	if (!to) {
1728 		printk (KERN_ERR "timeout initializing the FS... \n");
1729 		return 1;
1730 	}
1731 
1732 	/* XXX fix for fs155 */
1733 	dev->channel_mask = 0x1f;
1734 	dev->channo = 0;
1735 
1736 	/* AN3: 10 */
1737 	write_fs (dev, SARMODE1, 0
1738 		  | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1739 		  | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1740 		  | (1 * SARMODE1_DCRM)
1741 		  | (1 * SARMODE1_DCOAM)
1742 		  | (0 * SARMODE1_OAMCRC)
1743 		  | (0 * SARMODE1_DUMPE)
1744 		  | (0 * SARMODE1_GPLEN)
1745 		  | (0 * SARMODE1_GNAM)
1746 		  | (0 * SARMODE1_GVAS)
1747 		  | (0 * SARMODE1_GPAS)
1748 		  | (1 * SARMODE1_GPRI)
1749 		  | (0 * SARMODE1_PMS)
1750 		  | (0 * SARMODE1_GFCR)
1751 		  | (1 * SARMODE1_HECM2)
1752 		  | (1 * SARMODE1_HECM1)
1753 		  | (1 * SARMODE1_HECM0)
1754 		  | (1 << 12) /* That's what hang's driver does. Program to 0 */
1755 		  | (0 * 0xff) /* XXX FS155 */);
1756 
1757 
1758 	/* Cal prescale etc */
1759 
1760 	/* AN3: 11 */
1761 	write_fs (dev, TMCONF, 0x0000000f);
1762 	write_fs (dev, CALPRESCALE, 0x01010101 * num);
1763 	write_fs (dev, 0x80, 0x000F00E4);
1764 
1765 	/* AN3: 12 */
1766 	write_fs (dev, CELLOSCONF, 0
1767 		  | (   0 * CELLOSCONF_CEN)
1768 		  | (       CELLOSCONF_SC1)
1769 		  | (0x80 * CELLOSCONF_COBS)
1770 		  | (num  * CELLOSCONF_COPK)  /* Changed from 0xff to 0x5a */
1771 		  | (num  * CELLOSCONF_COST));/* after a hint from Hang.
1772 					       * performance jumped 50->70... */
1773 
1774 	/* Magic value by Hang */
1775 	write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1776 
1777 	if (IS_FS50 (dev)) {
1778 		write_fs (dev, RAS0, RAS0_DCD_XHLT);
1779 		dev->atm_dev->ci_range.vpi_bits = 12;
1780 		dev->atm_dev->ci_range.vci_bits = 16;
1781 		dev->nchannels = FS50_NR_CHANNELS;
1782 	} else {
1783 		write_fs (dev, RAS0, RAS0_DCD_XHLT
1784 			  | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1785 			  | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1786 		/* We can chose the split arbitarily. We might be able to
1787 		   support more. Whatever. This should do for now. */
1788 		dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1789 		dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1790 
1791 		/* Address bits we can't use should be compared to 0. */
1792 		write_fs (dev, RAC, 0);
1793 
1794 		/* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1795 		 * too.  I can't find ASF1 anywhere. Anyway, we AND with just hte
1796 		 * other bits, then compare with 0, which is exactly what we
1797 		 * want. */
1798 		write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1799 		dev->nchannels = FS155_NR_CHANNELS;
1800 	}
1801 	dev->atm_vccs = kmalloc (dev->nchannels * sizeof (struct atm_vcc *),
1802 				 GFP_KERNEL);
1803 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%d)\n",
1804 		    dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1805 
1806 	if (!dev->atm_vccs) {
1807 		printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1808 		/* XXX Clean up..... */
1809 		return 1;
1810 	}
1811 	memset (dev->atm_vccs, 0, dev->nchannels * sizeof (struct atm_vcc *));
1812 
1813 	dev->tx_inuse = kmalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1814 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1815 		    dev->atm_vccs, dev->nchannels / 8);
1816 
1817 	if (!dev->tx_inuse) {
1818 		printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1819 		/* XXX Clean up..... */
1820 		return 1;
1821 	}
1822 	memset (dev->tx_inuse, 0, dev->nchannels / 8);
1823 
1824 	/* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1825 	/* -- RAS2 : FS50 only: Default is OK. */
1826 
1827 	/* DMAMODE, default should be OK. -- REW */
1828 	write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1829 
1830 	init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1831 	init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1832 	init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1833 	init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1834 
1835 	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1836 		init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1837 			 rx_buf_sizes[i], rx_pool_sizes[i]);
1838 		top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1839 	}
1840 
1841 
1842 	for (i=0;i < FS_NR_RX_QUEUES;i++)
1843 		init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1844 
1845 	dev->irq = pci_dev->irq;
1846 	if (request_irq (dev->irq, fs_irq, SA_SHIRQ, "firestream", dev)) {
1847 		printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1848 		/* XXX undo all previous stuff... */
1849 		return 1;
1850 	}
1851 	fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1852 
1853 	/* We want to be notified of most things. Just the statistics count
1854 	   overflows are not interesting */
1855 	write_fs (dev, IMR, 0
1856 		  | ISR_RBRQ0_W
1857 		  | ISR_RBRQ1_W
1858 		  | ISR_RBRQ2_W
1859 		  | ISR_RBRQ3_W
1860 		  | ISR_TBRQ_W
1861 		  | ISR_CSQ_W);
1862 
1863 	write_fs (dev, SARMODE0, 0
1864 		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1865 		  | (1 * SARMODE0_GINT)
1866 		  | (1 * SARMODE0_INTMODE_READCLEAR)
1867 		  | (0 * SARMODE0_CWRE)
1868 		  | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1869 		                  SARMODE0_PRPWT_FS155_3)
1870 		  | (1 * SARMODE0_CALSUP_1)
1871 		  | (IS_FS50 (dev)?(0
1872 				    | SARMODE0_RXVCS_32
1873 				    | SARMODE0_ABRVCS_32
1874 				    | SARMODE0_TXVCS_32):
1875 		                   (0
1876 				    | SARMODE0_RXVCS_1k
1877 				    | SARMODE0_ABRVCS_1k
1878 				    | SARMODE0_TXVCS_1k))
1879 		  | (1 * SARMODE0_RUN));
1880 
1881 	init_phy (dev, PHY_NTC_INIT);
1882 
1883 	if (loopback == 2) {
1884 		write_phy (dev, 0x39, 0x000e);
1885 	}
1886 
1887 #ifdef FS_POLL_FREQ
1888 	init_timer (&dev->timer);
1889 	dev->timer.data = (unsigned long) dev;
1890 	dev->timer.function = fs_poll;
1891 	dev->timer.expires = jiffies + FS_POLL_FREQ;
1892 	add_timer (&dev->timer);
1893 #endif
1894 
1895 	dev->atm_dev->dev_data = dev;
1896 
1897 	func_exit ();
1898 	return 0;
1899 }
1900 
firestream_init_one(struct pci_dev * pci_dev,const struct pci_device_id * ent)1901 static int __init firestream_init_one (struct pci_dev *pci_dev,
1902 				       const struct pci_device_id *ent)
1903 {
1904 	struct atm_dev *atm_dev;
1905 	struct fs_dev *fs_dev;
1906 
1907 	if (pci_enable_device(pci_dev))
1908 		goto err_out;
1909 
1910 	fs_dev = kmalloc (sizeof (struct fs_dev), GFP_KERNEL);
1911 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%d)\n",
1912 		    fs_dev, sizeof (struct fs_dev));
1913 	if (!fs_dev)
1914 		goto err_out;
1915 
1916 	memset (fs_dev, 0, sizeof (struct fs_dev));
1917 
1918 	atm_dev = atm_dev_register("fs", &ops, -1, NULL);
1919 	if (!atm_dev)
1920 		goto err_out_free_fs_dev;
1921 
1922 	fs_dev->pci_dev = pci_dev;
1923 	fs_dev->atm_dev = atm_dev;
1924 	fs_dev->flags = ent->driver_data;
1925 
1926 	if (fs_init(fs_dev))
1927 		goto err_out_free_atm_dev;
1928 
1929 	fs_dev->next = fs_boards;
1930 	fs_boards = fs_dev;
1931 	return 0;
1932 
1933  err_out_free_atm_dev:
1934 	atm_dev_deregister(atm_dev);
1935  err_out_free_fs_dev:
1936  	kfree(fs_dev);
1937  err_out:
1938 	return -ENODEV;
1939 }
1940 
firestream_remove_one(struct pci_dev * pdev)1941 void __devexit firestream_remove_one (struct pci_dev *pdev)
1942 {
1943 	int i;
1944 	struct fs_dev *dev, *nxtdev;
1945 	struct fs_vcc *vcc;
1946 	struct FS_BPENTRY *fp, *nxt;
1947 
1948 	func_enter ();
1949 
1950 #if 0
1951 	printk ("hptxq:\n");
1952 	for (i=0;i<60;i++) {
1953 		printk ("%d: %08x %08x %08x %08x \n",
1954 			i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1955 		qp++;
1956 		if (qp >= 60) qp = 0;
1957 	}
1958 
1959 	printk ("descriptors:\n");
1960 	for (i=0;i<60;i++) {
1961 		printk ("%d: %p: %08x %08x %p %p\n",
1962 			i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1963 		qd++;
1964 		if (qd >= 60) qd = 0;
1965 	}
1966 #endif
1967 
1968 	for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1969 		fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1970 
1971 		/* XXX Hit all the tx channels too! */
1972 
1973 		for (i=0;i < dev->nchannels;i++) {
1974 			if (dev->atm_vccs[i]) {
1975 				vcc = FS_VCC (dev->atm_vccs[i]);
1976 				submit_command (dev,  &dev->hp_txq,
1977 						QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1978 				submit_command (dev,  &dev->hp_txq,
1979 						QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1980 
1981 			}
1982 		}
1983 
1984 		/* XXX Wait a while for the chip to release all buffers. */
1985 
1986 		for (i=0;i < FS_NR_FREE_POOLS;i++) {
1987 			for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1988 			     !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1989 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1990 				dev_kfree_skb_any (fp->skb);
1991 				nxt = bus_to_virt (fp->next);
1992 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1993 				kfree (fp);
1994 			}
1995 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1996 			dev_kfree_skb_any (fp->skb);
1997 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1998 			kfree (fp);
1999 		}
2000 
2001 		/* Hang the chip in "reset", prevent it clobbering memory that is
2002 		   no longer ours. */
2003 		reset_chip (dev);
2004 
2005 		fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
2006 		free_irq (dev->irq, dev);
2007 		del_timer (&dev->timer);
2008 
2009 		atm_dev_deregister(dev->atm_dev);
2010 		free_queue (dev, &dev->hp_txq);
2011 		free_queue (dev, &dev->lp_txq);
2012 		free_queue (dev, &dev->tx_relq);
2013 		free_queue (dev, &dev->st_q);
2014 
2015 		fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2016 		kfree (dev->atm_vccs);
2017 
2018 		for (i=0;i< FS_NR_FREE_POOLS;i++)
2019 			free_freepool (dev, &dev->rx_fp[i]);
2020 
2021 		for (i=0;i < FS_NR_RX_QUEUES;i++)
2022 			free_queue (dev, &dev->rx_rq[i]);
2023 
2024 		fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2025 		nxtdev = dev->next;
2026 		kfree (dev);
2027 	}
2028 
2029 	func_exit ();
2030 }
2031 
2032 
2033 #if 0
2034 int __init fs_detect(void)
2035 {
2036 	struct pci_dev  *pci_dev;
2037 	int devs = 0;
2038 
2039 	func_enter ();
2040 	pci_dev = NULL;
2041 	while ((pci_dev = pci_find_device(PCI_VENDOR_ID_FUJITSU_ME,
2042 					  PCI_DEVICE_ID_FUJITSU_FS50,
2043 					  pci_dev))) {
2044 		if (fs_register_and_init (pci_dev, &fs_pci_tbl[0]))
2045 			break;
2046 		devs++;
2047 	}
2048 
2049 	while ((pci_dev = pci_find_device(PCI_VENDOR_ID_FUJITSU_ME,
2050 					  PCI_DEVICE_ID_FUJITSU_FS155,
2051 					  pci_dev))) {
2052 		if (fs_register_and_init (pci_dev, FS_IS155))
2053 			break;
2054 		devs++;
2055 	}
2056 	func_exit ();
2057 	return devs;
2058 }
2059 #else
2060 
2061 #if 0
2062 int __init init_PCI (void)
2063 { /* Begin init_PCI */
2064 
2065 	int pci_count;
2066 	printk ("init_PCI\n");
2067 	/*
2068 	  memset (&firestream_driver, 0, sizeof (firestream_driver));
2069 	  firestream_driver.name = "firestream";
2070 	  firestream_driver.id_table = firestream_pci_tbl;
2071 	  firestream_driver.probe = fs_register_and_init;
2072 	*/
2073 	pci_count = pci_register_driver (&firestream_driver);
2074 
2075 	if (pci_count <= 0) {
2076 		pci_unregister_driver (&firestream_driver);
2077 		pci_count = 0;
2078 	}
2079 
2080 	return(pci_count);
2081 
2082 } /* End init_PCI */
2083 #endif
2084 #endif
2085 
2086 /*
2087 #ifdef MODULE
2088 #define firestream_init init_module
2089 #endif
2090 */
2091 
2092 static struct pci_device_id firestream_pci_tbl[] __devinitdata = {
2093 	{ PCI_VENDOR_ID_FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50,
2094 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, FS_IS50},
2095 	{ PCI_VENDOR_ID_FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155,
2096 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, FS_IS155},
2097 	{ 0, }
2098 };
2099 
2100 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2101 
2102 static struct pci_driver firestream_driver = {
2103 	name:           "firestream",
2104 	id_table:       firestream_pci_tbl,
2105 	probe:          firestream_init_one,
2106 	remove:         __devexit_p(firestream_remove_one),
2107 };
2108 
firestream_init_module(void)2109 static int __init firestream_init_module (void)
2110 {
2111 	int error;
2112 
2113 	func_enter ();
2114 	error = pci_module_init(&firestream_driver);
2115 	func_exit ();
2116 	return error;
2117 }
2118 
firestream_cleanup_module(void)2119 static void __exit firestream_cleanup_module(void)
2120 {
2121 	pci_unregister_driver(&firestream_driver);
2122 }
2123 
2124 module_init(firestream_init_module);
2125 module_exit(firestream_cleanup_module);
2126 
2127 MODULE_LICENSE("GPL");
2128 EXPORT_NO_SYMBOLS;
2129