1 /* $Id: time.c,v 1.1.1.1.2.6 2003/07/16 18:43:55 yoshii Exp $
2  *
3  *  linux/arch/sh/kernel/time.c
4  *
5  *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
6  *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
7  *  Copyright (C) 2003 Takashi Kusuda <kusuda-takashi@hitachi-ul.co.jp>
8  *
9  *  Some code taken from i386 version.
10  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
11  */
12 
13 #include <linux/config.h>
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/smp.h>
25 
26 #include <asm/processor.h>
27 #include <asm/uaccess.h>
28 #include <asm/io.h>
29 #include <asm/irq.h>
30 #include <asm/delay.h>
31 #include <asm/machvec.h>
32 #include <asm/rtc.h>
33 #ifdef CONFIG_SH_KGDB
34 #include <asm/kgdb.h>
35 #endif
36 
37 #include <linux/timex.h>
38 #include <linux/irq.h>
39 
40 #define TMU_TOCR_INIT	0x00	/* Don't output RTC clock */
41 
42 #define TMU0_TCR_INIT	0x0020	/* Clock/4, rising edge; interrupt on */
43 #define TMU0_TCR_CALIB	0x0000	/* Clock/4, rising edge; no interrupt */
44 #define TMU0_TSTR_INIT	0x01	/* Bit to turn on TMU0 */
45 
46 #define TMU1_TCR_INIT	0x0000	/* Clock/4, rising edge; no interrupt */
47 #define TMU1_TSTR_INIT  0x02	/* Bit to turn on TMU1 */
48 
49 #if defined(__sh3__)
50 #if defined(CONFIG_CPU_SUBTYPE_SH7300)
51 #define TMU_TSTR        0xA412FE92      /* Byte access */
52 
53 #define TMU0_TCOR       0xA412FE94      /* Long access */
54 #define TMU0_TCNT       0xA412FE98      /* Long access */
55 #define TMU0_TCR        0xA412FE9C      /* Word access */
56 
57 #define TMU1_TCOR	0xA412FEA0	/* Long access */
58 #define TMU1_TCNT	0xA412FEA4	/* Long access */
59 #define TMU1_TCR	0xA412FEA8	/* Word access */
60 
61 #define FRQCR           0xA415FF80
62 #else
63 #define TMU_TOCR	0xfffffe90	/* Byte access */
64 #define TMU_TSTR	0xfffffe92	/* Byte access */
65 
66 #define TMU0_TCOR	0xfffffe94	/* Long access */
67 #define TMU0_TCNT	0xfffffe98	/* Long access */
68 #define TMU0_TCR	0xfffffe9c	/* Word access */
69 
70 #define TMU1_TCOR	0xfffffea0	/* Long access */
71 #define TMU1_TCNT	0xfffffea4	/* Long access */
72 #define TMU1_TCR	0xfffffea8	/* Word access */
73 
74 #define FRQCR		0xffffff80
75 #endif
76 #elif defined(__SH4__)
77 #define TMU_TOCR	0xffd80000	/* Byte access */
78 #define TMU_TSTR	0xffd80004	/* Byte access */
79 
80 #define TMU0_TCOR	0xffd80008	/* Long access */
81 #define TMU0_TCNT	0xffd8000c	/* Long access */
82 #define TMU0_TCR	0xffd80010	/* Word access */
83 
84 #define TMU1_TCOR	0xffd80014	/* Long access */
85 #define TMU1_TCNT	0xffd80018	/* Long access */
86 #define TMU1_TCR	0xffd8001c	/* Word access */
87 
88 #define FRQCR		0xffc00000
89 
90 /* Core Processor Version Register */
91 #define CCN_PVR		0xff000030
92 #define CCN_PVR_CHIP_SHIFT 24
93 #define CCN_PVR_CHIP_MASK  0xff
94 #define CCN_PVR_CHIP_ST40STB1 0x4
95 
96 #ifdef CONFIG_CPU_SUBTYPE_ST40
97 #define CLOCKGEN_MEMCLKCR 0xbb040038
98 #define MEMCLKCR_RATIO_MASK 0x7
99 #endif /* CONFIG_CPU_SUBTYPE_ST40 */
100 #endif /* __sh3__ or __SH4__ */
101 
102 extern rwlock_t xtime_lock;
103 extern unsigned long wall_jiffies;
104 #define TICK_SIZE tick
105 
do_gettimeoffset(void)106 static unsigned long do_gettimeoffset(void)
107 {
108 	int count;
109 
110 	static int count_p = 0x7fffffff;    /* for the first call after boot */
111 	static unsigned long jiffies_p = 0;
112 
113 	/*
114 	 * cache volatile jiffies temporarily; we have IRQs turned off.
115 	 */
116 	unsigned long jiffies_t;
117 
118 	/* timer count may underflow right here */
119 	count = ctrl_inl(TMU0_TCNT);	/* read the latched count */
120 
121  	jiffies_t = jiffies;
122 
123 	/*
124 	 * avoiding timer inconsistencies (they are rare, but they happen)...
125 	 * there is one kind of problem that must be avoided here:
126 	 *  1. the timer counter underflows
127 	 */
128 
129 	if( jiffies_t == jiffies_p ) {
130 		if( count > count_p ) {
131 			/* the nutcase */
132 
133 			if(ctrl_inw(TMU0_TCR) & 0x100) { /* Check UNF bit */
134 				/*
135 				 * We cannot detect lost timer interrupts ...
136 				 * well, that's why we call them lost, don't we? :)
137 				 * [hmm, on the Pentium and Alpha we can ... sort of]
138 				 */
139 				count -= LATCH;
140 			} else {
141 				printk("do_slow_gettimeoffset(): hardware timer problem?\n");
142 			}
143 		}
144 	} else
145 		jiffies_p = jiffies_t;
146 
147 	count_p = count;
148 
149 	count = ((LATCH-1) - count) * TICK_SIZE;
150 	count = (count + LATCH/2) / LATCH;
151 
152 	return count;
153 }
154 
do_gettimeofday(struct timeval * tv)155 void do_gettimeofday(struct timeval *tv)
156 {
157 	unsigned long flags;
158 	unsigned long usec, sec;
159 
160 	read_lock_irqsave(&xtime_lock, flags);
161 	usec = do_gettimeoffset();
162 	{
163 		unsigned long lost = jiffies - wall_jiffies;
164 		if (lost)
165 			usec += lost * (1000000 / HZ);
166 	}
167 	sec = xtime.tv_sec;
168 	usec += xtime.tv_usec;
169 	read_unlock_irqrestore(&xtime_lock, flags);
170 
171 	while (usec >= 1000000) {
172 		usec -= 1000000;
173 		sec++;
174 	}
175 
176 	tv->tv_sec = sec;
177 	tv->tv_usec = usec;
178 }
179 
do_settimeofday(struct timeval * tv)180 void do_settimeofday(struct timeval *tv)
181 {
182 	write_lock_irq(&xtime_lock);
183 	/*
184 	 * This is revolting. We need to set "xtime" correctly. However, the
185 	 * value in this location is the value at the most recent update of
186 	 * wall time.  Discover what correction gettimeofday() would have
187 	 * made, and then undo it!
188 	 */
189 	tv->tv_usec -= do_gettimeoffset();
190 	tv->tv_usec -= (jiffies - wall_jiffies) * (1000000 / HZ);
191 
192 	while (tv->tv_usec < 0) {
193 		tv->tv_usec += 1000000;
194 		tv->tv_sec--;
195 	}
196 
197 	xtime = *tv;
198 	time_adjust = 0;		/* stop active adjtime() */
199 	time_status |= STA_UNSYNC;
200 	time_maxerror = NTP_PHASE_LIMIT;
201 	time_esterror = NTP_PHASE_LIMIT;
202 	write_unlock_irq(&xtime_lock);
203 }
204 
205 /* last time the RTC clock got updated */
206 static long last_rtc_update;
207 
sh_do_profile(unsigned long pc)208 static __inline__ void sh_do_profile (unsigned long pc)
209 {
210 	extern int _stext;
211 
212 	if (!prof_buffer)
213 		return;
214 
215 	if(pc >= 0xa0000000UL && pc < 0xc0000000UL)
216 		pc -= 0x20000000;
217 	pc -= (unsigned long) &_stext;
218 	pc >>= prof_shift;
219 	/*
220 	 * Don't ignore out-of-bounds PC values silently,
221 	 * put them into the last histogram slot, so if
222 	 * present, they will show up as a sharp peak.
223 	 */
224 	if (pc > prof_len-1)
225 		pc = prof_len-1;
226 	prof_buffer[pc]++;
227 }
228 
229 /*
230  * timer_interrupt() needs to keep up the real-time clock,
231  * as well as call the "do_timer()" routine every clocktick
232  */
do_timer_interrupt(int irq,void * dev_id,struct pt_regs * regs)233 static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
234 {
235 	do_timer(regs);
236 
237 	if (!user_mode(regs))
238 		sh_do_profile(regs->pc);
239 
240 #ifdef CONFIG_HEARTBEAT
241 	if (sh_mv.mv_heartbeat != NULL)
242 		sh_mv.mv_heartbeat();
243 #endif
244 
245 	/*
246 	 * If we have an externally synchronized Linux clock, then update
247 	 * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
248 	 * called as close as possible to 500 ms before the new second starts.
249 	 */
250 	if ((time_status & STA_UNSYNC) == 0 &&
251 	    xtime.tv_sec > last_rtc_update + 660 &&
252 	    xtime.tv_usec >= 500000 - ((unsigned) tick) / 2 &&
253 	    xtime.tv_usec <= 500000 + ((unsigned) tick) / 2) {
254 		if (sh_mv.mv_rtc_settimeofday(&xtime) == 0)
255 			last_rtc_update = xtime.tv_sec;
256 		else
257 			last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
258 	}
259 }
260 
261 /*
262  * This is the same as the above, except we _also_ save the current
263  * Time Stamp Counter value at the time of the timer interrupt, so that
264  * we later on can estimate the time of day more exactly.
265  */
timer_interrupt(int irq,void * dev_id,struct pt_regs * regs)266 static void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
267 {
268 	unsigned long timer_status;
269 
270 	/* Clear UNF bit */
271 	timer_status = ctrl_inw(TMU0_TCR);
272 	timer_status &= ~0x100;
273 	ctrl_outw(timer_status, TMU0_TCR);
274 
275 	/*
276 	 * Here we are in the timer irq handler. We just have irqs locally
277 	 * disabled but we don't know if the timer_bh is running on the other
278 	 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
279 	 * the irq version of write_lock because as just said we have irq
280 	 * locally disabled. -arca
281 	 */
282 	write_lock(&xtime_lock);
283 	do_timer_interrupt(irq, NULL, regs);
284 	write_unlock(&xtime_lock);
285 }
286 
get_timer_frequency(void)287 static unsigned int __init get_timer_frequency(void)
288 {
289 	u32 freq;
290 	struct timeval tv1, tv2;
291 	unsigned long diff_usec;
292 	unsigned long factor;
293 
294 	/* Setup the timer:  We don't want to generate interrupts, just
295 	 * have it count down at its natural rate.
296 	 */
297 	ctrl_outb(0, TMU_TSTR);
298 #if !defined(CONFIG_CPU_SUBTYPE_SH7300)
299 	ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
300 #endif
301 	ctrl_outw(TMU0_TCR_CALIB, TMU0_TCR);
302 	ctrl_outl(0xffffffff, TMU0_TCOR);
303 	ctrl_outl(0xffffffff, TMU0_TCNT);
304 
305 	rtc_gettimeofday(&tv2);
306 
307 	do {
308 		rtc_gettimeofday(&tv1);
309 	} while (tv1.tv_usec == tv2.tv_usec && tv1.tv_sec == tv2.tv_sec);
310 
311 	/* actually start the timer */
312 	ctrl_outb(TMU0_TSTR_INIT, TMU_TSTR);
313 
314 	do {
315 		rtc_gettimeofday(&tv2);
316 	} while (tv1.tv_usec == tv2.tv_usec && tv1.tv_sec == tv2.tv_sec);
317 
318 	freq = 0xffffffff - ctrl_inl(TMU0_TCNT);
319 	if (tv2.tv_usec < tv1.tv_usec) {
320 		tv2.tv_usec += 1000000;
321 		tv2.tv_sec--;
322 	}
323 
324 	diff_usec = (tv2.tv_sec - tv1.tv_sec) * 1000000 + (tv2.tv_usec - tv1.tv_usec);
325 
326 	/* this should work well if the RTC has a precision of n Hz, where
327 	 * n is an integer.  I don't think we have to worry about the other
328 	 * cases. */
329 	factor = (1000000 + diff_usec/2) / diff_usec;
330 
331 	if (factor * diff_usec > 1100000 ||
332 	    factor * diff_usec <  900000)
333 		panic("weird RTC (diff_usec %ld)", diff_usec);
334 
335 	return freq * factor;
336 }
337 
338 static unsigned int sh_pclk_freq __initdata = CONFIG_SH_PCLK_FREQ;
sh_pclk_setup(char * str)339 static int __init sh_pclk_setup(char *str)
340 {
341 	unsigned int freq;
342 	if (get_option(&str, &freq))
343 		sh_pclk_freq = freq;
344 	return 1;
345 }
346 __setup("sh_pclk=", sh_pclk_setup);
347 
348 static struct irqaction irq0  = { timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL};
349 
time_init(void)350 void __init time_init(void)
351 {
352 	unsigned int cpu_clock, master_clock, bus_clock, module_clock;
353 #ifdef CONFIG_CPU_SUBTYPE_ST40
354 	unsigned int memory_clock;
355 #endif
356 	unsigned int timer_freq;
357 	unsigned short frqcr, ifc, pfc, bfc;
358 	unsigned long interval;
359 #if defined(__sh3__)
360 #if defined(CONFIG_CPU_SUBTYPE_SH7300)
361 	static int pfc_table[] = { 1, 2, 3, 4, 6 };
362 #else
363 	static int ifc_table[] = { 1, 2, 4, 1, 3, 1, 1, 1 };
364 	static int pfc_table[] = { 1, 2, 4, 1, 3, 6, 1, 1 };
365 	static int stc_table[] = { 1, 2, 4, 8, 3, 6, 1, 1 };
366 #endif
367 #elif defined(__SH4__)
368 	static int ifc_table[] = { 1, 2, 3, 4, 6, 8, 1, 1 };
369 #define bfc_table ifc_table	/* Same */
370 	static int pfc_table[] = { 2, 3, 4, 6, 8, 2, 2, 2 };
371 
372 #ifdef CONFIG_CPU_SUBTYPE_ST40
373 	struct frqcr_data {
374 		unsigned short frqcr;
375 		struct {
376 			unsigned char multiplier;
377 			unsigned char divisor;
378 		} factor[3];
379 	};
380 
381 	static struct frqcr_data st40_frqcr_table[] = {
382 		{ 0x000, {{1,1}, {1,1}, {1,2}}},
383 		{ 0x002, {{1,1}, {1,1}, {1,4}}},
384 		{ 0x004, {{1,1}, {1,1}, {1,8}}},
385 		{ 0x008, {{1,1}, {1,2}, {1,2}}},
386 		{ 0x00A, {{1,1}, {1,2}, {1,4}}},
387 		{ 0x00C, {{1,1}, {1,2}, {1,8}}},
388 		{ 0x011, {{1,1}, {2,3}, {1,6}}},
389 		{ 0x013, {{1,1}, {2,3}, {1,3}}},
390 		{ 0x01A, {{1,1}, {1,2}, {1,4}}},
391 		{ 0x01C, {{1,1}, {1,2}, {1,8}}},
392 		{ 0x023, {{1,1}, {2,3}, {1,3}}},
393 		{ 0x02C, {{1,1}, {1,2}, {1,8}}},
394 		{ 0x048, {{1,2}, {1,2}, {1,4}}},
395 		{ 0x04A, {{1,2}, {1,2}, {1,6}}},
396 		{ 0x04C, {{1,2}, {1,2}, {1,8}}},
397 		{ 0x05A, {{1,2}, {1,3}, {1,6}}},
398 		{ 0x05C, {{1,2}, {1,3}, {1,6}}},
399 		{ 0x063, {{1,2}, {1,4}, {1,4}}},
400 		{ 0x06C, {{1,2}, {1,4}, {1,8}}},
401 		{ 0x091, {{1,3}, {1,3}, {1,6}}},
402 		{ 0x093, {{1,3}, {1,3}, {1,6}}},
403 		{ 0x0A3, {{1,3}, {1,6}, {1,6}}},
404 		{ 0x0DA, {{1,4}, {1,4}, {1,8}}},
405 		{ 0x0DC, {{1,4}, {1,4}, {1,8}}},
406 		{ 0x0EC, {{1,4}, {1,8}, {1,8}}},
407 		{ 0x123, {{1,4}, {1,4}, {1,8}}},
408 		{ 0x16C, {{1,4}, {1,8}, {1,8}}},
409 	};
410 
411 	struct memclk_data {
412 		unsigned char multiplier;
413 		unsigned char divisor;
414 	};
415 	static struct memclk_data st40_memclk_table[8] = {
416 		{1,1},	// 000
417 		{1,2},	// 001
418 		{1,3},	// 010
419 		{2,3},	// 011
420 		{1,4},	// 100
421 		{1,6},	// 101
422 		{1,8},	// 110
423 		{1,8}	// 111
424 	};
425 #endif
426 #endif
427 
428 	if(rtc_gettimeofday)
429 		rtc_gettimeofday(&xtime);
430 	else{
431         	xtime.tv_sec = mktime(2000, 1, 1, 0, 0, 0);
432         	xtime.tv_usec = 0;
433 	}
434 
435 	setup_irq(TIMER_IRQ, &irq0);
436 
437 	if( sh_pclk_freq ){
438 		module_clock = sh_pclk_freq;
439 	}else{
440 		timer_freq = get_timer_frequency();
441 		module_clock = timer_freq * 4;
442 	}
443 
444 #if defined(__sh3__)
445 	{
446 		unsigned short tmp;
447 
448 		frqcr = ctrl_inw(FRQCR);
449 #if defined(CONFIG_CPU_SUBTYPE_SH7300)
450                 bfc = ((frqcr & 0x0700) >> 8)+1;
451                 ifc = ((frqcr & 0x0070) >> 4)+1;
452                 tmp = frqcr & 0x0007;
453                 pfc = pfc_table[tmp];
454 #else
455 		tmp  = (frqcr & 0x8000) >> 13;
456 		tmp |= (frqcr & 0x0030) >>  4;
457 		bfc = stc_table[tmp];
458 		tmp  = (frqcr & 0x4000) >> 12;
459 		tmp |= (frqcr & 0x000c) >> 2;
460 		ifc  = ifc_table[tmp];
461 		tmp  = (frqcr & 0x2000) >> 11;
462 		tmp |= frqcr & 0x0003;
463 		pfc = pfc_table[tmp];
464 #endif
465 	}
466 #elif defined(__SH4__)
467 	{
468 #ifdef CONFIG_CPU_SUBTYPE_ST40
469 		unsigned long pvr;
470 
471 		/* This should probably be moved into the SH3 probing code, and then use the processor
472 		 * structure to determine which CPU we are running on.
473 		 */
474 		pvr = ctrl_inl(CCN_PVR);
475 		printk("PVR %08x\n", pvr);
476 
477 		if (((pvr >>CCN_PVR_CHIP_SHIFT) & CCN_PVR_CHIP_MASK) == CCN_PVR_CHIP_ST40STB1) {
478 			/* Unfortunatly the STB1 FRQCR values are different from the 7750 ones */
479 			struct frqcr_data *d;
480 			int a;
481 			unsigned long memclkcr;
482 			struct memclk_data *e;
483 
484 			for (a=0; a<ARRAY_SIZE(st40_frqcr_table); a++) {
485 				d = &st40_frqcr_table[a];
486 				if (d->frqcr == (frqcr & 0x1ff))
487 					break;
488 			}
489 			if (a == ARRAY_SIZE(st40_frqcr_table)) {
490 				d = st40_frqcr_table;
491 				printk("ERROR: Unrecognised FRQCR value, using default multipliers\n");
492 			}
493 
494 			memclkcr = ctrl_inl(CLOCKGEN_MEMCLKCR);
495 			e = &st40_memclk_table[memclkcr & MEMCLKCR_RATIO_MASK];
496 
497 			printk("Clock multipliers: CPU: %d/%d Bus: %d/%d Mem: %d/%d Periph: %d/%d\n",
498 			       d->factor[0].multiplier, d->factor[0].divisor,
499 			       d->factor[1].multiplier, d->factor[1].divisor,
500 			       e->multiplier,           e->divisor,
501 			       d->factor[2].multiplier, d->factor[2].divisor);
502 
503 			master_clock = module_clock * d->factor[2].divisor    / d->factor[2].multiplier;
504 			bus_clock    = master_clock * d->factor[1].multiplier / d->factor[1].divisor;
505 			memory_clock = master_clock * e->multiplier           / e->divisor;
506 			cpu_clock    = master_clock * d->factor[0].multiplier / d->factor[0].divisor;
507 			goto skip_calc;
508 		} else
509 #endif
510 		{
511 			frqcr = ctrl_inw(FRQCR);
512 
513 			ifc  = ifc_table[(frqcr>> 6) & 0x0007];
514 			bfc  = bfc_table[(frqcr>> 3) & 0x0007];
515 			pfc = pfc_table[frqcr & 0x0007];
516 		}
517 	}
518 #endif
519 	master_clock = module_clock * pfc;
520 	bus_clock = master_clock / bfc;
521 	cpu_clock = master_clock / ifc;
522 #ifdef CONFIG_CPU_SUBTYPE_ST40
523  skip_calc:
524 #endif
525 	printk("CPU clock: %d.%02dMHz\n",
526 	       (cpu_clock / 1000000), (cpu_clock % 1000000)/10000);
527 	printk("Bus clock: %d.%02dMHz\n",
528 	       (bus_clock/1000000), (bus_clock % 1000000)/10000);
529 #ifdef CONFIG_CPU_SUBTYPE_ST40
530 	printk("Memory clock: %d.%02dMHz\n",
531 	       (memory_clock/1000000), (memory_clock % 1000000)/10000);
532 #endif
533 	printk("Module clock: %d.%02dMHz\n",
534 	       (module_clock/1000000), (module_clock % 1000000)/10000);
535 	interval = (module_clock/4 + HZ/2) / HZ;
536 
537 	printk("Interval = %ld\n", interval);
538 
539 	current_cpu_data.cpu_clock    = cpu_clock;
540 	current_cpu_data.master_clock = master_clock;
541 	current_cpu_data.bus_clock    = bus_clock;
542 #ifdef CONFIG_CPU_SUBTYPE_ST40
543 	current_cpu_data.memory_clock = memory_clock;
544 #endif
545 	current_cpu_data.module_clock = module_clock;
546 
547 	/* Stop all timers */
548 	ctrl_outb(0, TMU_TSTR);
549 #if !defined(CONFIG_CPU_SUBTYPE_SH7300)
550 	ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
551 #endif
552 
553 	/* Start TMU0 (jiffy interrupts) */
554 	ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
555 	ctrl_outl(interval, TMU0_TCOR);
556 	ctrl_outl(interval, TMU0_TCNT);
557 	ctrl_outb(TMU0_TSTR_INIT, TMU_TSTR);
558 
559 #if defined(CONFIG_START_TMU1)
560 	/* Start TMU1 (free-running) */
561 	ctrl_outw(TMU1_TCR_INIT, TMU1_TCR);
562 	ctrl_outl(0xffffffff, TMU1_TCOR);
563 	ctrl_outl(0xffffffff, TMU1_TCNT);
564 	ctrl_outb((ctrl_inb(TMU_TSTR) | TMU1_TSTR_INIT), TMU_TSTR);
565 #endif
566 
567 #if defined(CONFIG_SH_KGDB)
568 	/*
569 	 * Set up kgdb as requested. We do it here because the serial
570 	 * init uses the timer vars we just set up for figuring baud.
571 	 */
572         kgdb_init();
573 #endif
574 
575 }
576