1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *  S390 version
5  *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/init.h>
25 
26 #include <linux/mm.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/smp_lock.h>
30 
31 #include <linux/delay.h>
32 #include <linux/cache.h>
33 
34 #include <asm/sigp.h>
35 #include <asm/pgalloc.h>
36 #include <asm/irq.h>
37 #include <asm/s390_ext.h>
38 #include <asm/cpcmd.h>
39 
40 /* prototypes */
41 extern int cpu_idle(void * unused);
42 
43 extern __u16 boot_cpu_addr;
44 extern volatile int __cpu_logical_map[];
45 
46 /*
47  * An array with a pointer the lowcore of every CPU.
48  */
49 static int       max_cpus = NR_CPUS;	  /* Setup configured maximum number of CPUs to activate	*/
50 int              smp_num_cpus;
51 struct _lowcore *lowcore_ptr[NR_CPUS];
52 cycles_t         cacheflush_time=0;
53 int              smp_threads_ready=0;      /* Set when the idlers are all forked. */
54 static atomic_t  smp_commenced = ATOMIC_INIT(0);
55 
56 spinlock_t       kernel_flag __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
57 
58 unsigned long	 cpu_online_map;
59 
60 /*
61  *      Setup routine for controlling SMP activation
62  *
63  *      Command-line option of "nosmp" or "maxcpus=0" will disable SMP
64  *      activation entirely (the MPS table probe still happens, though).
65  *
66  *      Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
67  *      greater than 0, limits the maximum number of CPUs activated in
68  *      SMP mode to <NUM>.
69  */
70 
nosmp(char * str)71 static int __init nosmp(char *str)
72 {
73 	max_cpus = 0;
74 	return 1;
75 }
76 
77 __setup("nosmp", nosmp);
78 
maxcpus(char * str)79 static int __init maxcpus(char *str)
80 {
81 	get_option(&str, &max_cpus);
82 	return 1;
83 }
84 
85 __setup("maxcpus=", maxcpus);
86 
87 /*
88  * Reboot, halt and power_off routines for SMP.
89  */
90 extern char vmhalt_cmd[];
91 extern char vmpoff_cmd[];
92 
93 extern void reipl(unsigned long devno);
94 
95 static void smp_ext_bitcall(int, ec_bit_sig);
96 static void smp_ext_bitcall_others(ec_bit_sig);
97 
98 /*
99  * Structure and data for smp_call_function(). This is designed to minimise
100  * static memory requirements. It also looks cleaner.
101  */
102 static spinlock_t call_lock = SPIN_LOCK_UNLOCKED;
103 
104 struct call_data_struct {
105 	void (*func) (void *info);
106 	void *info;
107 	atomic_t started;
108 	atomic_t finished;
109 	int wait;
110 };
111 
112 static struct call_data_struct * call_data;
113 
114 /*
115  * 'Call function' interrupt callback
116  */
do_call_function(void)117 static void do_call_function(void)
118 {
119 	void (*func) (void *info) = call_data->func;
120 	void *info = call_data->info;
121 	int wait = call_data->wait;
122 
123 	atomic_inc(&call_data->started);
124 	(*func)(info);
125 	if (wait)
126 		atomic_inc(&call_data->finished);
127 }
128 
129 /*
130  * this function sends a 'generic call function' IPI to all other CPUs
131  * in the system.
132  */
133 
smp_call_function(void (* func)(void * info),void * info,int nonatomic,int wait)134 int smp_call_function(void (*func) (void *info), void *info, int nonatomic,
135 			int wait)
136 /*
137  * [SUMMARY] Run a function on all other CPUs.
138  * <func> The function to run. This must be fast and non-blocking.
139  * <info> An arbitrary pointer to pass to the function.
140  * <nonatomic> currently unused.
141  * <wait> If true, wait (atomically) until function has completed on other CPUs.
142  * [RETURNS] 0 on success, else a negative status code. Does not return until
143  * remote CPUs are nearly ready to execute <<func>> or are or have executed.
144  *
145  * You must not call this function with disabled interrupts or from a
146  * hardware interrupt handler, you may call it from a bottom half handler.
147  */
148 {
149 	struct call_data_struct data;
150 	int cpus = smp_num_cpus-1;
151 
152 	if (!cpus || !atomic_read(&smp_commenced))
153 		return 0;
154 
155 	data.func = func;
156 	data.info = info;
157 	atomic_set(&data.started, 0);
158 	data.wait = wait;
159 	if (wait)
160 		atomic_set(&data.finished, 0);
161 
162 	spin_lock_bh(&call_lock);
163 	call_data = &data;
164 	/* Send a message to all other CPUs and wait for them to respond */
165         smp_ext_bitcall_others(ec_call_function);
166 
167 	/* Wait for response */
168 	while (atomic_read(&data.started) != cpus)
169 		barrier();
170 
171 	if (wait)
172 		while (atomic_read(&data.finished) != cpus)
173 			barrier();
174 	spin_unlock_bh(&call_lock);
175 
176 	return 0;
177 }
178 
179 /*
180  * Call a function only on one CPU
181  * cpu : the CPU the function should be executed on
182  *
183  * You must not call this function with disabled interrupts or from a
184  * hardware interrupt handler, you may call it from a bottom half handler.
185  */
smp_call_function_on(void (* func)(void * info),void * info,int nonatomic,int wait,int cpu)186 int smp_call_function_on(void (*func) (void *info), void *info,
187 			 int nonatomic, int wait, int cpu)
188 {
189 	struct call_data_struct data;
190 
191 	if (!atomic_read(&smp_commenced))
192 		return 0;
193 
194 	if (smp_processor_id() == cpu) {
195 		/* direct call to function */
196 		func(info);
197 		return 0;
198 	}
199 
200 	data.func = func;
201 	data.info = info;
202 
203 	atomic_set(&data.started, 0);
204 	data.wait = wait;
205 	if (wait)
206 		atomic_set(&data.finished, 0);
207 
208 	spin_lock_bh(&call_lock);
209 	call_data = &data;
210 	smp_ext_bitcall(cpu, ec_call_function);
211 
212 	/* Wait for response */
213 	while (atomic_read(&data.started) != 1)
214 		barrier();
215 
216 	if (wait)
217 		while (atomic_read(&data.finished) != 1)
218 			barrier();
219 
220 	spin_unlock_bh(&call_lock);
221 	return 0;
222 }
223 
224 
do_send_stop(void)225 static inline void do_send_stop(void)
226 {
227 	unsigned long dummy;
228 	int i;
229 
230 	/* stop all processors */
231 	for (i =  0; i < smp_num_cpus; i++) {
232 		if (smp_processor_id() != i) {
233 			int ccode;
234 			do {
235 				ccode = signal_processor_ps(
236 				   &dummy,
237 				   0,
238 				   i,
239 				   sigp_stop);
240 			} while(ccode == sigp_busy);
241 		}
242 	}
243 }
244 
do_store_status(void)245 static inline void do_store_status(void)
246 {
247 	unsigned long low_core_addr;
248 	unsigned long dummy;
249 	int i;
250 
251 	/* store status of all processors in their lowcores (real 0) */
252 	for (i =  0; i < smp_num_cpus; i++) {
253 		if (smp_processor_id() != i) {
254 			int ccode;
255 			low_core_addr = (unsigned long)get_cpu_lowcore(i);
256 			do {
257 				ccode = signal_processor_ps(
258 				   &dummy,
259 				   low_core_addr,
260 				   i,
261 				   sigp_store_status_at_address);
262 			} while(ccode == sigp_busy);
263 		}
264 	}
265 }
266 
267 /*
268  * this function sends a 'stop' sigp to all other CPUs in the system.
269  * it goes straight through.
270  */
smp_send_stop(void)271 void smp_send_stop(void)
272 {
273 	/* write magic number to zero page (absolute 0) */
274 	get_cpu_lowcore(smp_processor_id())->panic_magic = __PANIC_MAGIC;
275 
276 	/* stop other processors. */
277 	do_send_stop();
278 
279 	/* store status of other processors. */
280 	do_store_status();
281 }
282 
283 
284 /*
285  * Reboot, halt and power_off routines for SMP.
286  */
287 static volatile unsigned long cpu_restart_map;
288 
do_machine_restart(void * __unused)289 static void do_machine_restart(void * __unused)
290 {
291 	clear_bit(smp_processor_id(), &cpu_restart_map);
292 	if (smp_processor_id() == 0) {
293 		/* Wait for all other cpus to enter do_machine_restart. */
294 		while (cpu_restart_map != 0);
295 		/* Store status of other cpus. */
296 		do_store_status();
297 		/*
298 		 * Finally call reipl. Because we waited for all other
299 		 * cpus to enter this function we know that they do
300 		 * not hold any s390irq-locks (the cpus have been
301 		 * interrupted by an external interrupt and s390irq
302 		 * locks are always held disabled).
303 		 */
304 		reipl(S390_lowcore.ipl_device);
305 	}
306 	signal_processor(smp_processor_id(), sigp_stop);
307 }
308 
machine_restart_smp(char * __unused)309 void machine_restart_smp(char * __unused)
310 {
311 	cpu_restart_map = cpu_online_map;
312 	smp_call_function(do_machine_restart, NULL, 0, 0);
313 	do_machine_restart(NULL);
314 }
315 
do_machine_halt(void * __unused)316 static void do_machine_halt(void * __unused)
317 {
318 	if (smp_processor_id() == 0) {
319 		smp_send_stop();
320 		if (MACHINE_IS_VM && strlen(vmhalt_cmd) > 0)
321 			cpcmd(vmhalt_cmd, NULL, 0);
322 		signal_processor(smp_processor_id(),
323 				 sigp_stop_and_store_status);
324 	}
325 	for (;;)
326 		enabled_wait();
327 }
328 
machine_halt_smp(void)329 void machine_halt_smp(void)
330 {
331 	smp_call_function(do_machine_halt, NULL, 0, 0);
332 	do_machine_halt(NULL);
333 }
334 
do_machine_power_off(void * __unused)335 static void do_machine_power_off(void * __unused)
336 {
337 	if (smp_processor_id() == 0) {
338 		smp_send_stop();
339 		if (MACHINE_IS_VM && strlen(vmpoff_cmd) > 0)
340 			cpcmd(vmpoff_cmd, NULL, 0);
341 		signal_processor(smp_processor_id(),
342 				 sigp_stop_and_store_status);
343 	}
344 	for (;;)
345 		enabled_wait();
346 }
347 
machine_power_off_smp(void)348 void machine_power_off_smp(void)
349 {
350 	smp_call_function(do_machine_power_off, NULL, 0, 0);
351 	do_machine_power_off(NULL);
352 }
353 
354 /*
355  * This is the main routine where commands issued by other
356  * cpus are handled.
357  */
358 
do_ext_call_interrupt(struct pt_regs * regs,__u16 code)359 void do_ext_call_interrupt(struct pt_regs *regs, __u16 code)
360 {
361 	unsigned long bits;
362 
363 	/*
364 	 * handle bit signal external calls
365 	 *
366 	 * For the ec_schedule signal we have to do nothing. All the work
367 	 * is done automatically when we return from the interrupt.
368 	 */
369 	bits = xchg(&S390_lowcore.ext_call_fast, 0);
370 
371 	if (test_bit(ec_call_function, &bits))
372 		do_call_function();
373 }
374 
375 /*
376  * Send an external call sigp to another cpu and wait
377  * for its completion.
378  */
smp_ext_bitcall(int cpu,ec_bit_sig sig)379 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
380 {
381 	/*
382 	 * Set signaling bit in lowcore of target cpu and kick it
383 	 */
384 	set_bit(sig, &(get_cpu_lowcore(cpu)->ext_call_fast));
385 	while (signal_processor(cpu, sigp_external_call) == sigp_busy)
386 		udelay(10);
387 }
388 
389 /*
390  * Send an external call sigp to every other cpu in the system and
391  * wait for its completion.
392  */
smp_ext_bitcall_others(ec_bit_sig sig)393 static void smp_ext_bitcall_others(ec_bit_sig sig)
394 {
395 	int i;
396 
397 	for (i = 0; i < smp_num_cpus; i++) {
398 		if (smp_processor_id() == i)
399 			continue;
400 		/*
401 		 * Set signaling bit in lowcore of target cpu and kick it
402 		 */
403 		set_bit(sig, &(get_cpu_lowcore(i)->ext_call_fast));
404 		while (signal_processor(i, sigp_external_call) == sigp_busy)
405 			udelay(10);
406 	}
407 }
408 
409 /*
410  * this function sends a 'reschedule' IPI to another CPU.
411  * it goes straight through and wastes no time serializing
412  * anything. Worst case is that we lose a reschedule ...
413  */
414 
smp_send_reschedule(int cpu)415 void smp_send_reschedule(int cpu)
416 {
417         smp_ext_bitcall(cpu, ec_schedule);
418 }
419 
420 /*
421  * parameter area for the set/clear control bit callbacks
422  */
423 typedef struct
424 {
425 	__u16 start_ctl;
426 	__u16 end_ctl;
427 	__u64 orvals[16];
428 	__u64 andvals[16];
429 } ec_creg_mask_parms;
430 
431 /*
432  * callback for setting/clearing control bits
433  */
smp_ctl_bit_callback(void * info)434 void smp_ctl_bit_callback(void *info) {
435 	ec_creg_mask_parms *pp;
436 	u64 cregs[16];
437 	int i;
438 
439 	pp = (ec_creg_mask_parms *) info;
440 	asm volatile ("   bras  1,0f\n"
441 		      "   stctg 0,0,0(%0)\n"
442 		      "0: ex    %1,0(1)\n"
443 		      : : "a" (cregs+pp->start_ctl),
444 		          "a" ((pp->start_ctl<<4) + pp->end_ctl)
445 		      : "memory", "1" );
446 	for (i = pp->start_ctl; i <= pp->end_ctl; i++)
447 		cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
448 	asm volatile ("   bras  1,0f\n"
449 		      "   lctlg 0,0,0(%0)\n"
450 		      "0: ex    %1,0(1)\n"
451 		      : : "a" (cregs+pp->start_ctl),
452 		          "a" ((pp->start_ctl<<4) + pp->end_ctl)
453 		      : "memory", "1" );
454 }
455 
456 /*
457  * Set a bit in a control register of all cpus
458  */
smp_ctl_set_bit(int cr,int bit)459 void smp_ctl_set_bit(int cr, int bit) {
460         ec_creg_mask_parms parms;
461 
462         if (atomic_read(&smp_commenced) != 0) {
463                 parms.start_ctl = cr;
464                 parms.end_ctl = cr;
465                 parms.orvals[cr] = 1 << bit;
466                 parms.andvals[cr] = -1L;
467                 smp_call_function(smp_ctl_bit_callback, &parms, 0, 1);
468         }
469         __ctl_set_bit(cr, bit);
470 }
471 
472 /*
473  * Clear a bit in a control register of all cpus
474  */
smp_ctl_clear_bit(int cr,int bit)475 void smp_ctl_clear_bit(int cr, int bit) {
476         ec_creg_mask_parms parms;
477 
478         if (atomic_read(&smp_commenced) != 0) {
479                 parms.start_ctl = cr;
480                 parms.end_ctl = cr;
481                 parms.orvals[cr] = 0;
482                 parms.andvals[cr] = ~(1L << bit);
483                 smp_call_function(smp_ctl_bit_callback, &parms, 0, 1);
484         }
485         __ctl_clear_bit(cr, bit);
486 }
487 
488 
489 /*
490  * Lets check how many CPUs we have.
491  */
492 
smp_count_cpus(void)493 void smp_count_cpus(void)
494 {
495         int curr_cpu;
496 
497         current->processor = 0;
498         smp_num_cpus = 1;
499         cpu_online_map = 1;
500         for (curr_cpu = 0;
501              curr_cpu <= 65535 && smp_num_cpus < max_cpus; curr_cpu++) {
502                 if ((__u16) curr_cpu == boot_cpu_addr)
503                         continue;
504                 __cpu_logical_map[smp_num_cpus] = (__u16) curr_cpu;
505                 if (signal_processor(smp_num_cpus, sigp_sense) ==
506                     sigp_not_operational)
507                         continue;
508                 smp_num_cpus++;
509         }
510         printk("Detected %d CPU's\n",(int) smp_num_cpus);
511         printk("Boot cpu address %2X\n", boot_cpu_addr);
512 }
513 
514 
515 /*
516  *      Activate a secondary processor.
517  */
518 extern void init_cpu_timer(void);
519 extern int pfault_init(void);
520 
start_secondary(void * cpuvoid)521 int __init start_secondary(void *cpuvoid)
522 {
523         /* Setup the cpu */
524         cpu_init();
525         /* Print info about this processor */
526         print_cpu_info(&safe_get_cpu_lowcore(smp_processor_id())->cpu_data);
527         /* Wait for completion of smp startup */
528         while (!atomic_read(&smp_commenced))
529                 /* nothing */ ;
530         /* init per CPU timer */
531         init_cpu_timer();
532 #ifdef CONFIG_PFAULT
533 	/* Enable pfault pseudo page faults on this cpu. */
534 	pfault_init();
535 #endif
536         /* cpu_idle will call schedule for us */
537         return cpu_idle(NULL);
538 }
539 
540 /*
541  * The restart interrupt handler jumps to start_secondary directly
542  * without the detour over initialize_secondary. We defined it here
543  * so that the linker doesn't complain.
544  */
initialize_secondary(void)545 void __init initialize_secondary(void)
546 {
547 }
548 
fork_by_hand(void)549 static int __init fork_by_hand(void)
550 {
551        struct pt_regs regs;
552        /* don't care about the psw and regs settings since we'll never
553           reschedule the forked task. */
554        memset(&regs,0,sizeof(struct pt_regs));
555        return do_fork(CLONE_VM|CLONE_PID, 0, &regs, 0);
556 }
557 
do_boot_cpu(int cpu)558 static void __init do_boot_cpu(int cpu)
559 {
560         struct task_struct *idle;
561         struct _lowcore    *cpu_lowcore;
562 
563         /* We can't use kernel_thread since we must _avoid_ to reschedule
564            the child. */
565         if (fork_by_hand() < 0)
566                 panic("failed fork for CPU %d", cpu);
567 
568         /*
569          * We remove it from the pidhash and the runqueue
570          * once we got the process:
571          */
572         idle = init_task.prev_task;
573         if (!idle)
574                 panic("No idle process for CPU %d",cpu);
575         idle->processor = cpu;
576 	idle->cpus_runnable = 1 << cpu; /* we schedule the first task manually */
577 
578         del_from_runqueue(idle);
579         unhash_process(idle);
580         init_tasks[cpu] = idle;
581 
582         cpu_lowcore = get_cpu_lowcore(cpu);
583 	cpu_lowcore->save_area[15] = idle->thread.ksp;
584 	cpu_lowcore->kernel_stack = (__u64) idle + 16384;
585         __asm__ __volatile__("la    1,%0\n\t"
586 			     "stctg 0,15,0(1)\n\t"
587 			     "la    1,%1\n\t"
588                              "stam  0,15,0(1)"
589                              : "=m" (cpu_lowcore->cregs_save_area[0]),
590                                "=m" (cpu_lowcore->access_regs_save_area[0])
591                              : : "1", "memory");
592 
593         eieio();
594         signal_processor(cpu,sigp_restart);
595 	/* Mark this cpu as online. */
596 	set_bit(cpu, &cpu_online_map);
597 }
598 
599 /*
600  *      Architecture specific routine called by the kernel just before init is
601  *      fired off. This allows the BP to have everything in order [we hope].
602  *      At the end of this all the APs will hit the system scheduling and off
603  *      we go. Each AP will load the system gdt's and jump through the kernel
604  *      init into idle(). At this point the scheduler will one day take over
605  *      and give them jobs to do. smp_callin is a standard routine
606  *      we use to track CPUs as they power up.
607  */
608 
smp_commence(void)609 void __init smp_commence(void)
610 {
611         /*
612          *      Lets the callins below out of their loop.
613          */
614         atomic_set(&smp_commenced,1);
615 }
616 
617 /*
618  *	Cycle through the processors sending restart sigps to boot each.
619  */
620 
smp_boot_cpus(void)621 void __init smp_boot_cpus(void)
622 {
623         struct _lowcore *curr_lowcore;
624 	unsigned long async_stack;
625         sigp_ccode   ccode;
626         int i;
627 
628         /* request the 0x1202 external interrupt */
629         if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
630                 panic("Couldn't request external interrupt 0x1202");
631         smp_count_cpus();
632         memset(lowcore_ptr,0,sizeof(lowcore_ptr));
633 
634         /*
635          *      Initialize the logical to physical CPU number mapping
636          */
637         print_cpu_info(&safe_get_cpu_lowcore(0)->cpu_data);
638 
639         for(i = 0; i < smp_num_cpus; i++)
640         {
641                 curr_lowcore = (struct _lowcore *)
642                                     __get_free_pages(GFP_KERNEL|GFP_DMA, 1);
643                 if (curr_lowcore == NULL) {
644                         printk("smp_boot_cpus failed to allocate prefix memory\n");
645                         break;
646                 }
647 		async_stack = __get_free_pages(GFP_KERNEL,2);
648 		if (async_stack == 0) {
649 			printk("smp_boot_cpus failed to allocate asyncronous"
650 			       " interrupt stack\n");
651 			free_page((unsigned long) curr_lowcore);
652 			break;
653 		}
654                 lowcore_ptr[i] = curr_lowcore;
655                 memcpy(curr_lowcore, &S390_lowcore, sizeof(struct _lowcore));
656 		curr_lowcore->async_stack = async_stack + (4 * PAGE_SIZE);
657                 /*
658                  * Most of the parameters are set up when the cpu is
659                  * started up.
660                  */
661                 if (smp_processor_id() == i)
662                         set_prefix((u32)(u64)curr_lowcore);
663                 else {
664                         ccode = signal_processor_p((u64)(curr_lowcore),
665                                                    i, sigp_set_prefix);
666                         if(ccode) {
667                                 /* if this gets troublesome I'll have to do
668                                  * something about it. */
669                                 printk("ccode %d for cpu %d  returned when "
670                                        "setting prefix in smp_boot_cpus not good.\n",
671                                        (int) ccode, (int) i);
672                         }
673                         else
674                                 do_boot_cpu(i);
675                 }
676         }
677 }
678 
679 /*
680  * the frequency of the profiling timer can be changed
681  * by writing a multiplier value into /proc/profile.
682  *
683  * usually you want to run this on all CPUs ;)
684  */
setup_profiling_timer(unsigned int multiplier)685 int setup_profiling_timer(unsigned int multiplier)
686 {
687         return 0;
688 }
689 
690 EXPORT_SYMBOL(lowcore_ptr);
691 EXPORT_SYMBOL(kernel_flag);
692 EXPORT_SYMBOL(smp_ctl_set_bit);
693 EXPORT_SYMBOL(smp_ctl_clear_bit);
694 EXPORT_SYMBOL(smp_num_cpus);
695 EXPORT_SYMBOL(smp_call_function);
696 
697