1 /*
2  *  linux/arch/ppc/kernel/process.c
3  *
4  *  Derived from "arch/i386/kernel/process.c"
5  *    Copyright (C) 1995  Linus Torvalds
6  *
7  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
8  *  Paul Mackerras (paulus@cs.anu.edu.au)
9  *
10  *  PowerPC version
11  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
12  *
13  *  This program is free software; you can redistribute it and/or
14  *  modify it under the terms of the GNU General Public License
15  *  as published by the Free Software Foundation; either version
16  *  2 of the License, or (at your option) any later version.
17  *
18  */
19 
20 #include <linux/config.h>
21 #include <linux/errno.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/smp.h>
26 #include <linux/smp_lock.h>
27 #include <linux/stddef.h>
28 #include <linux/unistd.h>
29 #include <linux/ptrace.h>
30 #include <linux/slab.h>
31 #include <linux/user.h>
32 #include <linux/elf.h>
33 #include <linux/init.h>
34 #include <linux/prctl.h>
35 
36 #include <asm/pgtable.h>
37 #include <asm/uaccess.h>
38 #include <asm/system.h>
39 #include <asm/io.h>
40 #include <asm/processor.h>
41 #include <asm/mmu.h>
42 #include <asm/prom.h>
43 
44 int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs);
45 extern unsigned long _get_SP(void);
46 
47 struct task_struct *last_task_used_math = NULL;
48 struct task_struct *last_task_used_altivec = NULL;
49 static struct fs_struct init_fs = INIT_FS;
50 static struct files_struct init_files = INIT_FILES;
51 static struct signal_struct init_signals = INIT_SIGNALS;
52 struct mm_struct init_mm = INIT_MM(init_mm);
53 /* this is 16-byte aligned because it has a stack in it */
54 union task_union __attribute((aligned(16))) init_task_union = {
55 	INIT_TASK(init_task_union.task)
56 };
57 /* only used to get secondary processor up */
58 struct task_struct *current_set[NR_CPUS] = {&init_task, };
59 
60 #undef SHOW_TASK_SWITCHES
61 #undef CHECK_STACK
62 
63 #if defined(CHECK_STACK)
64 unsigned long
kernel_stack_top(struct task_struct * tsk)65 kernel_stack_top(struct task_struct *tsk)
66 {
67 	return ((unsigned long)tsk) + sizeof(union task_union);
68 }
69 
70 unsigned long
task_top(struct task_struct * tsk)71 task_top(struct task_struct *tsk)
72 {
73 	return ((unsigned long)tsk) + sizeof(struct task_struct);
74 }
75 
76 /* check to make sure the kernel stack is healthy */
check_stack(struct task_struct * tsk)77 int check_stack(struct task_struct *tsk)
78 {
79 	unsigned long stack_top = kernel_stack_top(tsk);
80 	unsigned long tsk_top = task_top(tsk);
81 	int ret = 0;
82 
83 #if 0
84 	/* check thread magic */
85 	if ( tsk->thread.magic != THREAD_MAGIC )
86 	{
87 		ret |= 1;
88 		printk("thread.magic bad: %08x\n", tsk->thread.magic);
89 	}
90 #endif
91 
92 	if ( !tsk )
93 		printk("check_stack(): tsk bad tsk %p\n",tsk);
94 
95 	/* check if stored ksp is bad */
96 	if ( (tsk->thread.ksp > stack_top) || (tsk->thread.ksp < tsk_top) )
97 	{
98 		printk("stack out of bounds: %s/%d\n"
99 		       " tsk_top %08lx ksp %08lx stack_top %08lx\n",
100 		       tsk->comm,tsk->pid,
101 		       tsk_top, tsk->thread.ksp, stack_top);
102 		ret |= 2;
103 	}
104 
105 	/* check if stack ptr RIGHT NOW is bad */
106 	if ( (tsk == current) && ((_get_SP() > stack_top ) || (_get_SP() < tsk_top)) )
107 	{
108 		printk("current stack ptr out of bounds: %s/%d\n"
109 		       " tsk_top %08lx sp %08lx stack_top %08lx\n",
110 		       current->comm,current->pid,
111 		       tsk_top, _get_SP(), stack_top);
112 		ret |= 4;
113 	}
114 
115 #if 0
116 	/* check amount of free stack */
117 	for ( i = (unsigned long *)task_top(tsk) ; i < kernel_stack_top(tsk) ; i++ )
118 	{
119 		if ( !i )
120 			printk("check_stack(): i = %p\n", i);
121 		if ( *i != 0 )
122 		{
123 			/* only notify if it's less than 900 bytes */
124 			if ( (i - (unsigned long *)task_top(tsk))  < 900 )
125 				printk("%d bytes free on stack\n",
126 				       i - task_top(tsk));
127 			break;
128 		}
129 	}
130 #endif
131 
132 	if (ret)
133 	{
134 		panic("bad kernel stack");
135 	}
136 	return(ret);
137 }
138 #endif /* defined(CHECK_STACK) */
139 
140 #ifdef CONFIG_ALTIVEC
141 int
dump_altivec(struct pt_regs * regs,elf_vrregset_t * vrregs)142 dump_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
143 {
144 	if (regs->msr & MSR_VEC)
145 		giveup_altivec(current);
146 	memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
147 	return 1;
148 }
149 
150 void
enable_kernel_altivec(void)151 enable_kernel_altivec(void)
152 {
153 #ifdef CONFIG_SMP
154 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
155 		giveup_altivec(current);
156 	else
157 		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
158 #else
159 	giveup_altivec(last_task_used_altivec);
160 #endif /* __SMP __ */
161 }
162 #endif /* CONFIG_ALTIVEC */
163 
164 void
enable_kernel_fp(void)165 enable_kernel_fp(void)
166 {
167 #ifdef CONFIG_SMP
168 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
169 		giveup_fpu(current);
170 	else
171 		giveup_fpu(NULL);	/* just enables FP for kernel */
172 #else
173 	giveup_fpu(last_task_used_math);
174 #endif /* CONFIG_SMP */
175 }
176 
177 int
dump_fpu(struct pt_regs * regs,elf_fpregset_t * fpregs)178 dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs)
179 {
180 	if (regs->msr & MSR_FP)
181 		giveup_fpu(current);
182 	memcpy(fpregs, &current->thread.fpr[0], sizeof(*fpregs));
183 	return 1;
184 }
185 
186 void
_switch_to(struct task_struct * prev,struct task_struct * new,struct task_struct ** last)187 _switch_to(struct task_struct *prev, struct task_struct *new,
188 	  struct task_struct **last)
189 {
190 	struct thread_struct *new_thread, *old_thread;
191 	unsigned long s;
192 
193 	__save_flags(s);
194 	__cli();
195 #if CHECK_STACK
196 	check_stack(prev);
197 	check_stack(new);
198 #endif
199 
200 #ifdef CONFIG_SMP
201 	/* avoid complexity of lazy save/restore of fpu
202 	 * by just saving it every time we switch out if
203 	 * this task used the fpu during the last quantum.
204 	 *
205 	 * If it tries to use the fpu again, it'll trap and
206 	 * reload its fp regs.  So we don't have to do a restore
207 	 * every switch, just a save.
208 	 *  -- Cort
209 	 */
210 	if ( prev->thread.regs && (prev->thread.regs->msr & MSR_FP) )
211 		giveup_fpu(prev);
212 #ifdef CONFIG_ALTIVEC
213 	/*
214 	 * If the previous thread used altivec in the last quantum
215 	 * (thus changing altivec regs) then save them.
216 	 * We used to check the VRSAVE register but not all apps
217 	 * set it, so we don't rely on it now (and in fact we need
218 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
219 	 *
220 	 * On SMP we always save/restore altivec regs just to avoid the
221 	 * complexity of changing processors.
222 	 *  -- Cort
223 	 */
224 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)))
225 		giveup_altivec(prev);
226 #endif /* CONFIG_ALTIVEC */
227 #endif /* CONFIG_SMP */
228 
229 	current_set[smp_processor_id()] = new;
230 
231 	/* Avoid the trap.  On smp this this never happens since
232 	 * we don't set last_task_used_altivec -- Cort
233 	 */
234 	if (new->thread.regs && last_task_used_altivec == new)
235 		new->thread.regs->msr |= MSR_VEC;
236 	new_thread = &new->thread;
237 	old_thread = &current->thread;
238 	*last = _switch(old_thread, new_thread);
239 	__restore_flags(s);
240 }
241 
show_regs(struct pt_regs * regs)242 void show_regs(struct pt_regs * regs)
243 {
244 	int i;
245 
246 	printk("NIP: %08lX XER: %08lX LR: %08lX SP: %08lX REGS: %p TRAP: %04lx    %s\n",
247 	       regs->nip, regs->xer, regs->link, regs->gpr[1], regs,regs->trap, print_tainted());
248 	printk("MSR: %08lx EE: %01x PR: %01x FP: %01x ME: %01x IR/DR: %01x%01x\n",
249 	       regs->msr, regs->msr&MSR_EE ? 1 : 0, regs->msr&MSR_PR ? 1 : 0,
250 	       regs->msr & MSR_FP ? 1 : 0,regs->msr&MSR_ME ? 1 : 0,
251 	       regs->msr&MSR_IR ? 1 : 0,
252 	       regs->msr&MSR_DR ? 1 : 0);
253 #ifdef CONFIG_4xx
254 	/*
255 	 * TRAP 0x800 is the hijacked FPU unavailable exception vector
256 	 * on 40x used to implement the heavyweight data access
257 	 * functionality.  It is an emulated value (like all trap
258 	 * vectors) on 440.
259 	 */
260 	if (regs->trap == 0x300 || regs->trap == 0x600 || regs->trap == 0x800)
261 		printk("DEAR: %08lX, ESR: %08lX\n", regs->dar, regs->dsisr);
262 #else
263 	if (regs->trap == 0x300 || regs->trap == 0x600)
264 		printk("DAR: %08lX, DSISR: %08lX\n", regs->dar, regs->dsisr);
265 #endif
266 	printk("TASK = %p[%d] '%s' ",
267 	       current, current->pid, current->comm);
268 	printk("Last syscall: %ld ", current->thread.last_syscall);
269 	printk("\nlast math %p last altivec %p", last_task_used_math,
270 	       last_task_used_altivec);
271 
272 #if defined(CONFIG_4xx) && defined(DCRN_PLB0_BEAR)
273 	printk("\nPLB0: bear= 0x%8.8x acr=   0x%8.8x besr=  0x%8.8x\n",
274 	    mfdcr(DCRN_PLB0_BEAR), mfdcr(DCRN_PLB0_ACR),
275 	    mfdcr(DCRN_PLB0_BESR));
276 #endif
277 #if defined(CONFIG_4xx) && defined(DCRN_POB0_BEAR)
278 	printk("PLB0 to OPB: bear= 0x%8.8x besr0= 0x%8.8x besr1= 0x%8.8x\n",
279 	    mfdcr(DCRN_POB0_BEAR), mfdcr(DCRN_POB0_BESR0),
280 	    mfdcr(DCRN_POB0_BESR1));
281 #endif
282 
283 #ifdef CONFIG_SMP
284 	printk(" CPU: %d", current->processor);
285 #endif /* CONFIG_SMP */
286 
287 	printk("\n");
288 	for (i = 0;  i < 32;  i++)
289 	{
290 		long r;
291 		if ((i % 8) == 0)
292 		{
293 			printk("GPR%02d: ", i);
294 		}
295 
296 		if ( __get_user(r, &(regs->gpr[i])) )
297 		    goto out;
298 		printk("%08lX ", r);
299 		if ((i % 8) == 7)
300 		{
301 			printk("\n");
302 		}
303 	}
304 out:
305 	print_backtrace((unsigned long *)regs->gpr[1]);
306 }
307 
exit_thread(void)308 void exit_thread(void)
309 {
310 	if (last_task_used_math == current)
311 		last_task_used_math = NULL;
312 	if (last_task_used_altivec == current)
313 		last_task_used_altivec = NULL;
314 }
315 
flush_thread(void)316 void flush_thread(void)
317 {
318 	if (last_task_used_math == current)
319 		last_task_used_math = NULL;
320 	if (last_task_used_altivec == current)
321 		last_task_used_altivec = NULL;
322 }
323 
324 void
release_thread(struct task_struct * t)325 release_thread(struct task_struct *t)
326 {
327 }
328 
329 /*
330  * Copy a thread..
331  */
332 int
copy_thread(int nr,unsigned long clone_flags,unsigned long usp,unsigned long unused,struct task_struct * p,struct pt_regs * regs)333 copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
334 	    unsigned long unused,
335 	    struct task_struct *p, struct pt_regs *regs)
336 {
337 	struct pt_regs *childregs, *kregs;
338 	extern void ret_from_fork(void);
339 	unsigned long sp = (unsigned long)p + sizeof(union task_union);
340 	unsigned long childframe;
341 
342 	/* Copy registers */
343 	sp -= sizeof(struct pt_regs);
344 	childregs = (struct pt_regs *) sp;
345 	*childregs = *regs;
346 	if ((childregs->msr & MSR_PR) == 0) {
347 		/* for kernel thread, set `current' and stackptr in new task */
348 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
349 		childregs->gpr[2] = (unsigned long) p;
350 		p->thread.regs = NULL;	/* no user register state */
351 	} else
352 		p->thread.regs = childregs;
353 	childregs->gpr[3] = 0;  /* Result from fork() */
354 	sp -= STACK_FRAME_OVERHEAD;
355 	childframe = sp;
356 
357 	/*
358 	 * The way this works is that at some point in the future
359 	 * some task will call _switch to switch to the new task.
360 	 * That will pop off the stack frame created below and start
361 	 * the new task running at ret_from_fork.  The new task will
362 	 * do some house keeping and then return from the fork or clone
363 	 * system call, using the stack frame created above.
364 	 */
365 	sp -= sizeof(struct pt_regs);
366 	kregs = (struct pt_regs *) sp;
367 	sp -= STACK_FRAME_OVERHEAD;
368 	p->thread.ksp = sp;
369 	kregs->nip = (unsigned long)ret_from_fork;
370 
371 	/*
372 	 * copy fpu info - assume lazy fpu switch now always
373 	 *  -- Cort
374 	 */
375 	if (regs->msr & MSR_FP) {
376 		giveup_fpu(current);
377 		childregs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
378 	}
379 	memcpy(&p->thread.fpr, &current->thread.fpr, sizeof(p->thread.fpr));
380 	p->thread.fpscr = current->thread.fpscr;
381 
382 #ifdef CONFIG_ALTIVEC
383 	/*
384 	 * copy altiVec info - assume lazy altiVec switch
385 	 * - kumar
386 	 */
387 	if (regs->msr & MSR_VEC)
388 		giveup_altivec(current);
389 	memcpy(&p->thread.vr, &current->thread.vr, sizeof(p->thread.vr));
390 	p->thread.vscr = current->thread.vscr;
391 	childregs->msr &= ~MSR_VEC;
392 #endif /* CONFIG_ALTIVEC */
393 
394 	p->thread.last_syscall = -1;
395 
396 	return 0;
397 }
398 
399 /*
400  * Set up a thread for executing a new program
401  */
start_thread(struct pt_regs * regs,unsigned long nip,unsigned long sp)402 void start_thread(struct pt_regs *regs, unsigned long nip, unsigned long sp)
403 {
404 	set_fs(USER_DS);
405 	memset(regs->gpr, 0, sizeof(regs->gpr));
406 	memset(&regs->ctr, 0, 5 * sizeof(regs->ctr));
407 	regs->nip = nip;
408 	regs->gpr[1] = sp;
409 	regs->msr = MSR_USER;
410 	if (last_task_used_math == current)
411 		last_task_used_math = 0;
412 	if (last_task_used_altivec == current)
413 		last_task_used_altivec = 0;
414 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
415 	current->thread.fpscr = 0;
416 #ifdef CONFIG_ALTIVEC
417 	memset(current->thread.vr, 0, sizeof(current->thread.vr));
418 	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
419 	current->thread.vrsave = 0;
420 	current->thread.used_vr = 0;
421 #endif /* CONFIG_ALTIVEC */
422 }
423 
424 /*
425  * Support for the PR_GET/SET_FPEXC prctl() calls.
426  */
__unpack_fe01(unsigned int msr_bits)427 static inline unsigned int __unpack_fe01(unsigned int msr_bits)
428 {
429 	return ((msr_bits & MSR_FE0) >> 10) | ((msr_bits & MSR_FE1) >> 8);
430 }
431 
__pack_fe01(unsigned int fpmode)432 static inline unsigned int __pack_fe01(unsigned int fpmode)
433 {
434 	return ((fpmode << 10) & MSR_FE0) | ((fpmode << 8) & MSR_FE1);
435 }
436 
set_fpexc_mode(struct task_struct * tsk,unsigned int val)437 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
438 {
439 	struct pt_regs *regs = tsk->thread.regs;
440 
441 	if (val > PR_FP_EXC_PRECISE)
442 		return -EINVAL;
443 	tsk->thread.fpexc_mode = __pack_fe01(val);
444 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
445 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
446 			| tsk->thread.fpexc_mode;
447 	return 0;
448 }
449 
get_fpexc_mode(struct task_struct * tsk,unsigned long adr)450 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
451 {
452 	unsigned int val;
453 
454 	val = __unpack_fe01(tsk->thread.fpexc_mode);
455 	return put_user(val, (unsigned int *) adr);
456 }
457 
sys_clone(int p1,int p2,int p3,int p4,int p5,int p6,struct pt_regs * regs)458 int sys_clone(int p1, int p2, int p3, int p4, int p5, int p6,
459 	      struct pt_regs *regs)
460 {
461 	return do_fork(p1, p2, regs, 0);
462 }
463 
sys_fork(int p1,int p2,int p3,int p4,int p5,int p6,struct pt_regs * regs)464 int sys_fork(int p1, int p2, int p3, int p4, int p5, int p6,
465 	     struct pt_regs *regs)
466 {
467 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0);
468 }
469 
sys_vfork(int p1,int p2,int p3,int p4,int p5,int p6,struct pt_regs * regs)470 int sys_vfork(int p1, int p2, int p3, int p4, int p5, int p6,
471 	      struct pt_regs *regs)
472 {
473 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], regs, 0);
474 }
475 
sys_execve(unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4,unsigned long a5,struct pt_regs * regs)476 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
477 	       unsigned long a3, unsigned long a4, unsigned long a5,
478 	       struct pt_regs *regs)
479 {
480 	int error;
481 	char * filename;
482 
483 	filename = getname((char *) a0);
484 	error = PTR_ERR(filename);
485 	if (IS_ERR(filename))
486 		goto out;
487 	if (regs->msr & MSR_FP)
488 		giveup_fpu(current);
489 #ifdef CONFIG_ALTIVEC
490 	if (regs->msr & MSR_VEC)
491 		giveup_altivec(current);
492 #endif /* CONFIG_ALTIVEC */
493 	error = do_execve(filename, (char **) a1, (char **) a2, regs);
494 	if (error == 0)
495 		current->ptrace &= ~PT_DTRACE;
496 	putname(filename);
497 out:
498 	return error;
499 }
500 
501 void
print_backtrace(unsigned long * sp)502 print_backtrace(unsigned long *sp)
503 {
504 	int cnt = 0;
505 	unsigned long i;
506 
507 	if (sp == NULL)
508 		asm("mr %0,1" : "=r" (sp));
509 	printk("Call backtrace: ");
510 	while (sp) {
511 		if (__get_user( i, &sp[1] ))
512 			break;
513 		if (cnt++ % 7 == 0)
514 			printk("\n");
515 		printk("%08lX ", i);
516 		if (cnt > 32) break;
517 		if (__get_user(sp, (unsigned long **)sp))
518 			break;
519 	}
520 	printk("\n");
521 }
522 
show_trace_task(struct task_struct * tsk)523 void show_trace_task(struct task_struct *tsk)
524 {
525 	unsigned long stack_top = (unsigned long) tsk + THREAD_SIZE;
526 	unsigned long sp, prev_sp;
527 	int count = 0;
528 
529 	if (tsk == NULL)
530 		return;
531 	sp = (unsigned long) &tsk->thread.ksp;
532 	do {
533 		prev_sp = sp;
534 		sp = *(unsigned long *)sp;
535 		if (sp <= prev_sp || sp >= stack_top || (sp & 3) != 0)
536 			break;
537 		if (count > 0)
538 			printk("[%08lx] ", *(unsigned long *)(sp + 4));
539 	} while (++count < 16);
540 	if (count > 1)
541 		printk("\n");
542 }
543 
544 #if 0
545 /*
546  * Low level print for debugging - Cort
547  */
548 int __init ll_printk(const char *fmt, ...)
549 {
550         va_list args;
551 	char buf[256];
552         int i;
553 
554         va_start(args, fmt);
555         i=vsprintf(buf,fmt,args);
556 	ll_puts(buf);
557         va_end(args);
558         return i;
559 }
560 
561 int lines = 24, cols = 80;
562 int orig_x = 0, orig_y = 0;
563 
564 void puthex(unsigned long val)
565 {
566 	unsigned char buf[10];
567 	int i;
568 	for (i = 7;  i >= 0;  i--)
569 	{
570 		buf[i] = "0123456789ABCDEF"[val & 0x0F];
571 		val >>= 4;
572 	}
573 	buf[8] = '\0';
574 	prom_print(buf);
575 }
576 
577 void __init ll_puts(const char *s)
578 {
579 	int x,y;
580 	char *vidmem = (char *)/*(_ISA_MEM_BASE + 0xB8000) */0xD00B8000;
581 	char c;
582 	extern int mem_init_done;
583 
584 	if ( mem_init_done ) /* assume this means we can printk */
585 	{
586 		printk(s);
587 		return;
588 	}
589 
590 #if 0
591 	if ( have_of )
592 	{
593 		prom_print(s);
594 		return;
595 	}
596 #endif
597 
598 	/*
599 	 * can't ll_puts on chrp without openfirmware yet.
600 	 * vidmem just needs to be setup for it.
601 	 * -- Cort
602 	 */
603 	if ( _machine != _MACH_prep )
604 		return;
605 	x = orig_x;
606 	y = orig_y;
607 
608 	while ( ( c = *s++ ) != '\0' ) {
609 		if ( c == '\n' ) {
610 			x = 0;
611 			if ( ++y >= lines ) {
612 				/*scroll();*/
613 				/*y--;*/
614 				y = 0;
615 			}
616 		} else {
617 			vidmem [ ( x + cols * y ) * 2 ] = c;
618 			if ( ++x >= cols ) {
619 				x = 0;
620 				if ( ++y >= lines ) {
621 					/*scroll();*/
622 					/*y--;*/
623 					y = 0;
624 				}
625 			}
626 		}
627 	}
628 
629 	orig_x = x;
630 	orig_y = y;
631 }
632 #endif
633 
634 /*
635  * These bracket the sleeping functions..
636  */
637 extern void scheduling_functions_start_here(void);
638 extern void scheduling_functions_end_here(void);
639 #define first_sched    ((unsigned long) scheduling_functions_start_here)
640 #define last_sched     ((unsigned long) scheduling_functions_end_here)
641 
get_wchan(struct task_struct * p)642 unsigned long get_wchan(struct task_struct *p)
643 {
644 	unsigned long ip, sp;
645 	unsigned long stack_page = (unsigned long) p;
646 	int count = 0;
647 	if (!p || p == current || p->state == TASK_RUNNING)
648 		return 0;
649 	sp = p->thread.ksp;
650 	do {
651 		sp = *(unsigned long *)sp;
652 		if (sp < stack_page || sp >= stack_page + 8188)
653 			return 0;
654 		if (count > 0) {
655 			ip = *(unsigned long *)(sp + 4);
656 			if (ip < first_sched || ip >= last_sched)
657 				return ip;
658 		}
659 	} while (count++ < 16);
660 	return 0;
661 }
662